¹⁴Be(g.s.) and single-particle energies in ¹³Be

H. T. Fortune

Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA (Received 19 September 2014; revised manuscript received 1 November 2014; published 1 December 2014)

Coupling two sd-shell neutrons to a pure p-shell ¹²Be ground state (g.s.), rather than to the physical g.s., removes difficulties in applying a previous simple model to ¹⁴Be. I have calculated the g.s. wave function in this simple model, and have estimated the $2s_{1/2}$ single-particle energy.

DOI: 10.1103/PhysRevC.90.064305

PACS number(s): 21.10.Dr, 21.60.Cs, 27.20.+n

Orbital	Relative to ¹² Be _{phys} (g.s.)	Relative to ${}^{12}\mathrm{Be}_{1p}(\mathrm{g.s.})$
$2s_{1/2}$	E_{s}	$E_{\rm s}-E_{\rm 0}$
$1d_{5/2}$	$E_{\rm d} = E_{\rm s} + 2.3~{\rm MeV}$	$E_{\rm d}-E_{\rm 0}$

TABLE II. Single-particle energies in ¹³Be.

I. INTRODUCTION

Recently, I analyzed selected 0^+ states in 10,12 Be and 14,16 C in terms of a simple model that assumed their structure was dominated by the configuration of two sd-shell neutrons coupled to p-shell cores [1]. There, I mentioned the problem of extending the model to 14 Be because of three difficulties: (1) The 12 Be core is not even close to being of pure p-shell character [2–4]. (2) The s and d single-particle energies (spe's) are not well known in 13 Be [5, and references therein]. (3) The s state in 13 Be is unbound, and unbound neutron s states are notoriously hard to handle. Here, I examine an approach that is aimed at overcoming these difficulties.

II. MODEL AND RESULTS

If E_s and E_d are, respectively, the s and d spe's relative to the physical ground state (g.s.) of 12 Be, then relative to a pure p-shell 12 Be(g.s.), the spe's are $E_s' = E_s - E_0$ and $E_d' = E_d - E_0$, where E_0 is the energy of 12 Be_{1p}(g.s.) relative to 12 Be_{phys}(g.s.). My favorite wave function [6] for 12 Be_{phys}(g.s.) has 68% of the configuration 10 Be_{1p}×(sd)² and 32% of 12 Be_{1p}, with the excited 0^+ state at 2.24 MeV [7] having the orthogonal configuration (Table I). With these two wave functions, E_0 would be 1.52 MeV, but it will turn out that my final results do not depend on E_0 . For any expected value of E_s , $E_s - E_0$ will be negative, so that the s state is bound relative to 12 Be_{1p}(g.s.).

Of course, coupling two sd-shell neutrons to the physical g.s. of 12 Be would have done violence to the Pauli principle, but coupling to 12 Be $_{1p}$ has no such problem. Single-particle energies are listed in Table II. I treat E_s as an unknown parameter to be determined later. I previously estimated $E_d - E_s$ in 13 Be [5] to be about 2.3 MeV. I arrived at that value by considering the trends in N = 9 and in Z = 4 nuclei. Recently, Hoffman *et al.* [8] analyzed $1/2^+$ and $5/2^+$ in several light nuclei. For 13 Be, they have $E_d - E_s = 1.5$ MeV, because they consistently used the lowest $1/2^+$ and $5/2^+$

TABLE I. Wave-function intensities for first two 0⁺ states in ¹²Be (Ref. [6]).

State	Energy (MeV)	10 Be _{1p} $x(sd)^2$	$^{12}\mathrm{Be}_{1p}$	
g.s.	0.00	0.68	0.32	
exc 0 ⁺	2.24	0.32	0.68	
Energy centroid (MeV)		0.72	1.52	

states. However, I demonstrated earlier [5] that the first $5/2^+$ state in 13 Be is predominantly of $(sd)^3$ character. The value of 2.3 MeV is not inconsistent with the general trend [8] of s and d states in several nuclei. Using the same 0^+ two-body matrix elements as before [1], the resulting E_{2n} eigenvalues for the two 0^+ states of 14 Be are as listed in Table III.

The g.s. of ¹⁴Be is bound by 1.27(13) MeV relative to ¹²Be_{phys}(g.s.) +2n [9]. If its structure is completely ¹²Be_{1p} × $(sd)^2$, equating the calculated 0_1^+ energy in Table III to this experimental energy results in a value of $E_s = 0.50(7)$ MeV. The extracted value of E_s is relatively insensitive to the assumed value of $E_d - E_s$. For example, changing the latter from 2.3 to 2.0 MeV changes E_s only from 0.50 to 0.55 MeV. If the ¹⁴Be g.s. contains some $(sd)^4$ component, then the $(sd)^2$ energy will be above -1.27 MeV, so that my result becomes $E_s \ge 0.43$ MeV. Simply for illustrative purposes, let us assume the lowest 0^+ state that is predominately of $(sd)^4$ character is at 4-MeV excitation. Then, it is an easy matter to show that E_s would be given by $E_s = [0.50(7) + 2.0\beta^2]$ MeV, where β^2 is the intensity of $(sd)^4$ in the ¹⁴Be(g.s.). Thus, e.g., if E_s is <0.7 MeV, we have $\beta^2 < 0.10$ —quite a reasonable value.

III. DISCUSSION

I recently summarized the experimental and theoretical findings for 13 Be [5]. I demonstrated there that the lowest $5/2^+$ state is predominantly of 10 Be $_{1p}\times(sd)^3$ character rather than 12 Be $_{1p}\times d_{5/2}$ single particle. Of course, because

TABLE III. E_{2n} eigenvalues and wave functions for two $(sd)^2$ 0⁺ states in ¹⁴Be.

State	Relative to ¹² Be _{1p} (g.s.)	Relative to ¹² Be _{phys} (g.s.)	s^2	d^2
$0_1^+ \ 0_2^+$	$2(E_s - E_0) - 2.26 \text{ MeV}$ $2(E_s - E_0) + 2.54 \text{ MeV}$	$2E_{\rm s} - 2.26 {\rm MeV}$ $2E_{\rm s} + 2.54 {\rm MeV}$	0.85 0.15	

 $^{12}\mathrm{Be}_{\mathrm{phys}}(\mathrm{g.s.})$ contains appreciable $^{10}\mathrm{Be}_{1p} \times (sd)^2$ component [6], this lowest $5/2^+$ state has a large spectroscopic factor to $^{12}\mathrm{Be}_{\mathrm{phys}}(\mathrm{g.s.})$. I also estimated that the s,d spe splitting is about $E_{\mathrm{d}}-E_{\mathrm{s}}=2.3$ MeV in $^{13}\mathrm{Be}$. Two papers [10,11] that have appeared since that summary have served partly to further confuse the issue. I will return to this point below.

As demonstrated above, in the simple model used here, if the g.s. of 14 Be is pure 12 Be $_{1p} \times (sd)^2$, then E_s in 13 Be is 0.50(7) MeV. Any component of $(sd)^4$ in 14 Be(g.s.) causes an increase in this spe. Thus, it would appear that the present results rule out all prior suggestions of an s state near threshold in 13 Be. The present approach removes all three difficulties mentioned in the Introduction.

Several workers [12–17] have treated 13 Be as 12 Be + n, and 14 Be as 12 Be + n + n, and have used the known 2n separation energy of 14 Be(g.s.) to deduce properties of the low-lying resonances of 13 Be. Bertsch and Esbensen [12] and Thompson and Zhukov [13] found that they needed an s state just above threshold to reproduce S_{2n} . Reference [12] had a $d_{5/2}$ state at 2.4 MeV, whereas Ref. [13] found they needed $E_d = 1.3$ or 1.0 MeV. Labiche *et al.* [14] concluded that to fit the known 2n separation energy of 14 Be(g.s.) and to have a d state near 2 MeV in 13 Be, the g.s. of 13 Be should not be $1/2^+$, but rather it was necessary to have a $1/2^-$ resonance near 0.3 MeV as the g.s. of 13 Be. Pacheco and Vinh Mau [15] concluded the

TABLE IV. Recently reported resonance energies (MeV) in ¹³Be.

J^{π}	Randisi et al.a	Aksyutina et al.b	Present	
1/2+	0.40(3)	0.46	>0.43	
$1/2^{+}$	_	2.9	_	
$5/2^{+}$	$0.85^{+.15}_{11}$	_	_	
1/2 ⁺ 1/2 ⁺ 5/2 ⁺ 5/2 ⁺	2.35(14)	2.0	$E_{\rm s} + 2.3$	
1/2-	<1	0.45	_	

^aReference [10].

 $s_{1/2}$, $p_{1/2}$ ordering in ^{12,13}Be was the same as in ¹¹Be, as did Blanchon *et al.* [16]. Hamomoto [17] suggested the two lowest states in ¹³Be might both be $1/2^+$. Reference [5] summarizes several other results.

Returning to two recent papers [10,11] on 13 Be, Table IV lists resonance energies reported by them, compared with present results. Consistency can be noted for the first $1/2^+$ energy, but agreement for $5/2^+$ is less clear.

Finally, the ¹⁴Be(g.s.) wave function obtained here has 85% s^2 , whereas analysis of matter radius gave a result for s^2 probability of 72(7)% [18]. An earlier, somewhat different analysis of matter radius provided $P(s^2) = 0.55(30)$ [19]. These would all appear to be consistent.

^bReference [11].

^[1] H. T. Fortune, Phys. Rev. C 89, 067302 (2014).

^[2] D. E. Alburger, D. P. Balamuth, J. M. Lind, L. Mulligan, K. C. Young, R. W. Zurmuhle, and R. Middleton, Phys. Rev. C 17, 1525 (1978).

^[3] D. E. Alburger, S. Mordechai, H. T. Fortune, and R. Middleton, Phys. Rev. C 18, 2727 (1978).

^[4] H. T. Fortune, G.-B. Liu, and D. E. Alburger, Phys. Rev. C 50, 1355 (1994).

^[5] H. T. Fortune, Phys. Rev. C 87, 014305 (2013).

^[6] R. Sherr and H. T. Fortune, Phys. Rev. C 60, 064323 (1999).

^[7] S. Shimoura et al., Phys. Lett. B **560**, 31 (2003).

^[8] C. R. Hoffman, B. P. Kay, and J. P. Schiffer, Phys. Rev. C 89, 061305(R) (2014).

^[9] M. Wang, G. Audi, A. H. Wapstra, F. G. Kondev, M. Mac-Cormick, X. Xu, and B. Pfeiffer, Chin. Phys. C 36, 1603 (2012).

^[10] G. Randisi et al., Phys. Rev. C 89, 034320 (2014).

^[11] Yu. Aksyutina et al., Phys. Rev. C 87, 064316 (2013).

^[12] G. F. Bertsch and H. Esbensen, Ann. Phys. (NY) 209, 327 (1991).

^[13] I. J. Thompson and M. V. Zhukov, Phys. Rev. C 53, 708 (1996).

^[14] M. Labiche, F. M. Marqués, O. Sorlin, and N. Vinh Mau, Phys. Rev. C 60, 027303 (1999).

^[15] J. C. Pacheco and N. Vinh Mau, Phys. Rev. C **65**, 044004 (2002).

^[16] G. Blanchon, N. Vinh Mau, A. Bonaccorso, M. Dupuis, and N. Pillet, Phys. Rev. C 82, 034313 (2010).

^[17] Ikuko Hamamoto, Phys. Rev. C 77, 054311 (2008).

^[18] T. Moriguchi et al., Nucl. Phys. A 929, 83 (2014).

^[19] H. T. Fortune and R. Sherr, Eur. Phys. J. A 48, 103 (2012).