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Microscopic particle-rotor model for the low-lying spectrum of � hypernuclei

H. Mei,1,2 K. Hagino,1,3 J. M. Yao,1,2 and T. Motoba4,5

1Department of Physics, Tohoku University, Sendai 980-8578, Japan
2School of Physical Science and Technology, Southwest University, Chongqing 400715, China

3Research Center for Electron Photon Science, Tohoku University, 1-2-1 Mikamine, Sendai 982-0826, Japan
4Laboratory of Physics, Osaka Electro-Communications University, Neyagawa 572-8530, Japan

5Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan
(Received 19 August 2014; revised manuscript received 1 November 2014; published 1 December 2014)

We propose a novel method for low-lying states of hypernuclei based on the particle-rotor model, in which
hypernuclear states are constructed by coupling the hyperon to low-lying states of the core nucleus. In contrast
to the conventional particle-rotor model, we employ a microscopic approach for the core states; that is, the
generator coordinate method (GCM) with the particle number and angular momentum projections. We apply this
microscopic particle-rotor model to 9

�Be as an example employing a point-coupling version of the relativistic
mean-field Lagrangian. A reasonable agreement with the experimental data for the low-spin spectrum is achieved
using the �N coupling strengths determined to reproduce the binding energy of the � particle.
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I. INTRODUCTION

In the past decade, many high-resolution γ -ray spec-
troscopy experiments have been carried out for p-shell �
hypernuclei [1,2]. The measured energy spectra and electric
multipole transition strengths in the low-lying states provide
rich information on the �-nucleon interaction in the nuclear
medium and on the impurity effect of the � particle on nuclear
structure. In this context, several interesting phenomena have
been disclosed. One of the most important findings is the
appreciable shrinkage of the nuclear core after adding a �
particle, as compared to the core without � [3–6], for which
a theoretical prediction has been clearly confirmed in the
experiment [7].

The theoretical studies of γ -ray spectroscopy for p-shell
hypernuclei have been mainly performed with the cluster
model [3,6,8–12] and with the shell model [13–15]. Recently,
an ab initio method as well as antisymmetrized molecular
dynamics (AMD) have also been extended in order to study
low-lying states of hypernuclei [16,17]. Most of these models,
however, have been limited to light hypernuclei, and it
may be difficult to apply them to medium-heavy and heavy
hypernuclei.

A self-consistent mean-field approach offers a way to study
globally the structure of atomic nuclei as well as hypernuclei
from light to heavy systems [18]. In the last decade, self-
consistent mean-field models have been applied to study the
impurity effect of the � particle on the nuclear deformation of
p- and sd-shell � hypernuclei [19–25]. It has been found that
the shape polarization effect of the � hyperon is in general not
prominent, except for a few exceptions, including 13

�C, 23
�C,

and 29,31
� Si [20].

A drawback of the mean-field approach is that the pure
mean-field approximation does not yield a spectrum of nuclei
due to the broken symmetries. This can be actually cured
by restoring the symmetries by angular momentum and
particle number projections. For transitional nuclei, the shape
fluctuation effect is also important, and can be taken into
account with the generator coordinate method (GCM) or its

approximation, the collective Hamiltonian approach. These
schemes are referred to as beyond-mean-field approaches, and
have been applied in recent years in order to describe the
low-lying spectrum of many even-even nuclei [26].

It has been difficult, however, to extend the beyond-mean-
field scheme to odd-mass nuclei. In fact, it has been a
long-standing problem in nuclear physics to perform a beyond-
mean-field calculation for low-lying states of odd-mass nuclei
based on modern energy density functionals. See Ref. [27] for a
recent attempt based on the Skyrme energy density functional.
One important reason for the difficulty is that the last unpaired
nucleon breaks some of the symmetries. Moreover, due to
the pairing correlation, many quasiparticle configurations are
close in energy and will be strongly mixed with each other.
Both of these facts complicate a calculation for low-lying
spectra of odd-mass nuclei at the beyond-mean-field level,
and have prevented us from quantifing the impurity effect
of the � particle on the structure of hypernuclei using the
mean-field type approaches, even though the first attempt has
been undertaken in Ref. [28].

In this paper, we overcome this difficulty by proposing
a novel microscopic particle-rotor model for the low-lying
states of single-� hypernuclei. The novel feature is that we
combine the motion of the � particle with the core nucleus
states, which are described by the state-of-the-art covariant
density functional approach; that is, the generator coordinate
method (GCM) based on the relativistic mean-field (RMF)
approach supplemented with the particle number and the
angular momentum projections. We emphasize that with this
method a spectrum of hypernuclei is calculated for the first
time based on a density functional approach.

The particle-rotor model was firstly proposed by Bohr and
Mottelson [29] (see also Ref. [30]), and has recently been
applied also to study the structure of odd-mass neutron-rich
nuclei, such as 11Be [31,32], 15,17,19C [33], and 31Ne [34].
In this model, the motion of a valence particle is coupled
to the rotational motion of a deformed core nucleus, which
is usually described by the rigid rotor model. The Pauli
principle between the valence nucleon and the nucleons in
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the core nucleus is treated approximately. In contrast to this
conventional particle-rotor model, in this paper we construct
low-lying states of the nuclear core microscopically. That is,
we superpose many quadrupole deformed RMF + BCS states,
after both the particle-number and the angular-momentum
projections are carried out [26]. An idea similar to the
microscopic particle-rotor model has recently been employed
by Minomo et al. in order to describe the structure of the
one-neutron halo nucleus 31Ne with AMD [35]. We apply this
microscopic particle-rotor model to hypernuclei, for which
the Pauli principle between the valence � particle and the
nucleons in the core nucleus is absent. We will demonstrate
the applicability of this method by studying the low-lying
spectrum of 9

�Be as an example.
The paper is organized as follows. In Sec. II, we formulate

the microscopic particle rotor model for � hypernuclei using
the realtivistic mean-field Lagrangian. In Sec. III, we apply it
to the 9

�Be hypernucleus and discuss its low-lying spectrum.
We then summarize the paper in Sec. IV.

II. PARTICLE-ROTOR MODEL WITH RELATIVISTIC
MEAN-FIELD LAGRANGIAN

We describe a single-� hypernucleus as a system in which
a � hyperon interacts with nucleons inside a nuclear core via
scalar and vector contact couplings. The Lagrangian for the
single-� hypernucleus then reads

L = Lfree + Lem + LNN
int + LN�

int , (1)

where Lfree is the free part of the Lagrangian for the nucleons
and the hyperon, Lem is for the photon field which describes
the Coulomb interaction between protons, and LNN

int is the
effective strong interaction between nucleons. In this paper, we
employ the PC-F1 parameter set for LNN

int [36], together with a
density-independent δ pairing interaction with a smooth cutoff
factor [37]. We employ a similar form for the N� effective
interaction term LN�

int as in Ref. [38], in which the vector and
scalar N� interaction terms V̂ N�

V and V̂ N�
S are given by

V̂ N�
V (r�,rN ) = αN�

V δ(r� − rN ), (2)

V̂ N�
S (r�,rN ) = αN�

S γ 0
�δ(r� − rN )γ 0

N, (3)

respectively. For simplicity, the higher-order coupling terms
and the derivative terms in the N� interaction are not taken
into account in the present study.

Based on the idea of particle-rotor model, we expand the
total wave function of the core+� particle system with the
eigenstates of the core part of the Lagrangian (excluding the
N� term, LN�

int ). That is, we construct the wave function for
single-� hypernuclei with an even-even nuclear core as

�IM (r�,{rN }) =
∑
j�Ic

Rj�Ic
(r�)F IM

j�Ic
(r̂�,{rN }), (4)

where

F IM
j�Ic

(r̂�,{rN }) = [Yj�(r̂�) ⊗ �Ic
({rN })](IM) (5)

with r� and rN being the coordinates of the � hyperon and the
nucleons, respectively. In this equation, I is the total angular
momentum and M is its projection onto the z axis for the

whole � hypernucleus. Rj�Ic
(r�) and Yj�(r̂�) are the four-

component radial wave function and the spin-angular wave
function for the � hyperon, respectively.

In the microscopic particle-rotor model, the wave function
for the nuclear core part, �IcMc

({rN }), is given as a super-
position of particle-number and angular-momentum projected
RMF + BCS states, |ϕ(β)〉; that is,

|�IcMc
〉 =

∑
β

fIcNZ(β)P̂ Ic

McK
P̂ N P̂ Z|ϕ(β)〉, (6)

where P̂
Ic

McK
, P̂ N , P̂ Z are the projection operators onto

good numbers of angular momentum, neutrons, and protons,
respectively. The mean-field wave functions |ϕ(β)〉 are a set
of Slater determinants of quasiparticle states with different
quadrupole deformation β. For simplicity, we consider only
the axial deformation for the nuclear core and thus the K
quantum number is zero in Eq. (6). The weight factor fIcNZ(β)
is determined by solving the Hill-Wheeler-Griffin equation.
We call this scheme a generator coordinate method (GCM)
plus particle-number (PN) and one-dimensional angular-
momentum (1DAM) projections, or GCM+PN1DAMP. See
Ref. [26] for more details on the GCM calculation for the
nuclear core states.

Substituting Eq. (4) into the Dirac equation for the
whole hypernucleus, H |�IM〉 = EI |�IM〉, where H is the
relativistic Hamiltonian corresponding to Eq. (1), one can
derive the coupled-channels equations for Rj�Ic

(r�), in which
the coupling potentials are given in terms of the transition
densities from the GCM calculations. The reduced electric
quadrupole (E2) transition strength can be computed using
the E2 operator, Q̂2μ = ∑

i∈p r2
i Y2μ(r̂i). Notice that we use

the bare charge in evaluating the B(E2) strengths, that is, +e
for protons and 0 for neutrons and a � particle, since our
microscopic calculations are in the full configuration space.

III. APPLICATION TO LOW-LYING SPECTRUM OF 9
�Be

Let us now apply the microscopic particle-rotor model
to 9

�Be and discuss its low-lying spectrum. To this end,
we first carry out the GCM+PN1DAMP calculation for the
nuclear core, 8Be. We generate the mean-field states |ϕ(β)〉
with constrained RMF+BCS calculations with quadrupole
deformation. More numerical details can be found in Ref. [26].
In this paper, since we are primarily interested in how the �-
rotor coupled states emerge in hypernuclei, we here focus our
attention onto the ground rotational band and the related hyper-
nuclear states. We thus do not discuss the high-lying states of
8Be at 16–19 MeV. These states are known to have α-breaking
structures [39] and therefore they are out of the present
framework, which assumes an axially symmetric shape of 8Be.

The results of the GCM+PN1DAMP calculation for 8Be
are shown in column (a) in Fig. 1. These energies are in
a reasonable agreement with the experimental data shown
in column (b) [40], although these are slightly smaller than
the observed energies. In view of this, we note that both the
2+ and 4+ states are resonance states having large widths in
the continuum spectrum, and a proper treatment of boundary
conditions is necessary in order to describe them in a consistent
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FIG. 1. (Color online) The low-energy excitation spectra of 8Be [columns (a) and (b)] and 9
�Be [columns (c)–(i)]. For 8Be, the full

GCM+PN1DAMP calculations shown in column (a) are compared with the experimental data taken from Ref. [40]. For 9
�Be, columns (c), (d),

and (e) show the results of the single-channel calculations for the � particle in the s1/2, p1/2, and p3/2 channels, respectively. Columns (f), (g),
and (h) show the results of the coupled-channels calculations, which are compared with the experimental data [1,42,43] shown in column (i).

manner. Even though we could reproduce the excitation energy
of the 2+ state by choosing different mesh points in the
deformation parameter β in the GCM calculations, here we
show the 8Be energy levels calculated with the common set of
deformation parameters which better describe the 9

�Be.
Let us next discuss the spectrum of 9

�Be constructed using
the solutions of the GCM calculations for 8Be. To this end, we
solve the coupled-channels equations by expanding the radial
wave function Rj�Ic

(r�) on the basis of eigenfunctions of a
spherical harmonic oscillator with 18 major shells. We take the
same value for the parameter αS in the N� interaction as in
Ref. [38] and vary the value of αV so that the experimental �

binding energy of 9
�Be, B(exp.)

� (9
�Be) = 6.71 ± 0.04 MeV [41],

is reproduced with the microscopic particle-rotor model.
The resultant values are αN�

S = −4.2377 × 10−5 MeV−2 and
αN�

V = 1.2756 × 10−5 MeV−2. The cutoff of the angular
momentum for the core states (Ic) is chosen to be 4, which
gives well converged results for the low-lying states of 9

�Be.
We include only the bound core states, that is, the lowest energy
state for each value of Ic, even though all the possible states,
including continuum states, should be included in principle.

Before we discuss the results of the full coupled-channels
calculations, it is useful to investigate the results of single-
channel calculations, obtained by ignoring the off-diagonal
couplings in the coupled-channels equations. The columns (c),
(d), and (e) in Fig. 1 show the results for the � particle in the
s1/2, p1/2, and p3/2 orbitals, respectively. For the � particle in
the s1/2 orbit, when it is coupled to the core excitation states
of 2+

1 and 4+
1 , the degenerate (3/2+,5/2+) and (7/2+,9/2+)

doublet states in 9
�Be are yielded, respectively. We find that

the excitation energies of these two doublet states are slightly
larger than those of the corresponding excited states of the
core nucleus. This is caused by the fact that the energy gain
due to the N� interaction is larger in the ground state as
compared to that in the other states. For the � particle in the

p1/2 and p3/2 orbitals, one obtains the lowest negative parity
1/2− and 3/2− states in 9

�Be. The 1/2− state is higher than the
3/2− state by 0.03 MeV, which reflects the size of spin-orbit
splitting in the p� state of 9

�Be. The 1/2−
1 , 7/2−

1 , 3/2−
2 , and

5/2−
1 states around 10 MeV in column (e) in Fig. 1 result from

the 2+ ⊗ p3/2 configuration. The order of these states can be
understood in terms of the reorientation effect; that is, the
diagonal component for the quardupole term in the coupling
potential in the coupled-channels equations. On the other hand,
for the 2+ ⊗ p1/2 configuration, in which the � particle in the
p1/2 orbital is coupled to the 2+ state of the core nucleus, the
quadrupole term does not contribute, and the 3/2− and 5/2−
states are degenerate in energy in column (d) in Fig. 1. A more
detailed discussion on this characteristic appearance of the
multiples will be given in the forthcoming publication [44].

The low-energy spectrum of 9
�Be, obtained by mixing

these single-channel configurations with the coupled-channels
method, is shown in columns (f), (g), and (h) in Fig. 1. The low-
lying states are categorized into three rotational bands, whose
structures are confirmed by the calculated B(E2) relations.
Among these rotational bands, column (g) corresponds to
what they called genuine hypernuclear states [3], which are
also referred to as the supersymmetric states having SU(3)
symmetry (λμ) = (50) of s4p5 shell-model configuration [45].
These states do not have corresponding states in the ordinary
nucleus, 9Be, because of the Pauli principle of the valence
neutron. The calculated spectrum is compared with the
available data [1,42,43] shown in column (i) in Fig. 1. One can
see that a good agreement with the data is obtained with our
calculations. According to our calculations, the measured state
with excitation energy of 5.80(13) MeV is actually a mixture
of two negative-parity states with Jπ = 3/2− and 1/2−.

Table I lists the values of the probability of the dominant
components (with Pj�Ic

� 0.10) for a few low-lying states
of 9

�Be. The unperturbed energies, E
(0)
1ch, obtained by the
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TABLE I. The probability PjlIc of the dominant components in the wave function for low-lying states of 9
�Be obtained by the microscopic

particle-rotor model. Only those components which have PjlIc larger than 0.1 are shown. E is the energy of each state obtained by solving the
coupled-channels equations, while E

(0)
1ch is the unperturbed energy obtained with the single-channel calculations. The energies are listed in units

of MeV.

Iπ E (lj ) ⊗ Ic PjlIc E
(0)
1ch Iπ E (lj ) ⊗ Ic PjlIc E

(0)
1ch

1/2+
1 0.000 s1/2 ⊗ 0+ 0.928 0.000 1/2+

2 10.603 s1/2 ⊗ 0+ 0.995 9.035

3/2+
1 3.118 s1/2 ⊗ 2+ 0.919 3.085 3/2+

2 13.034 d3/2 ⊗ 0+ 0.841 11.467
s1/2 ⊗ 2+ 0.131 11.610

5/2+
1 3.125 s1/2 ⊗ 2+ 0.919 3.085 5/2+

2 12.999 d5/2 ⊗ 0+ 0.845 11.450
s1/2 ⊗ 2+ 0.125 11.610

7/2+
1 10.267 s1/2 ⊗ 4+ 0.894 9.807 7/2+

2 15.510 d3/2 ⊗ 2+ 0.833 13.804
d5/2 ⊗ 2+ 0.112 14.124

9/2+
1 10.281 s1/2 ⊗ 4+ 0.894 9.807 9/2+

2 15.483 d5/2 ⊗ 2+ 0.943 13.734

1/2−
1 6.276 p1/2 ⊗ 0+ 0.516 7.744 1/2−

2 11.271 p1/2 ⊗ 0+ 0.575 7.744
p3/2 ⊗ 2+ 0.445 8.741 p3/2 ⊗ 2+ 0.419 8.741

3/2−
1 6.249 p3/2 ⊗ 0+ 0.524 7.691 3/2−

2 11.258 p3/2 ⊗ 0+ 0.568 7.691
p3/2 ⊗ 2+ 0.220 10.212 p3/2 ⊗ 2+ 0.220 10.212
p1/2 ⊗ 2+ 0.217 10.259 p1/2 ⊗ 2+ 0.206 10.259

5/2−
1 9.756 p1/2 ⊗ 2+ 0.625 10.259 5/2−

2 12.835 p3/2 ⊗ 2+ 0.769 10.978
p3/2 ⊗ 2+ 0.186 10.978 p1/2 ⊗ 2+ 0.226 10.259
p3/2 ⊗ 4+ 0.150 14.935 7/2−

2 15.729 p3/2 ⊗ 2+ 0.603 9.842
7/2−

1 9.717 p3/2 ⊗ 2+ 0.813 9.842 p1/2 ⊗ 4+ 0.216 15.926
p1/2 ⊗ 4+ 0.100 15.926 p3/2 ⊗ 4+ 0.157 16.215

single-channel calculations are also shown for each com-
ponent. One can see that the positive-parity states in the
ground state rotational band are almost pure I+

c ⊗ �s1/2 states,
while there are appreciable configuration mixings for the
negative-parity states as well as the positive-parity states in
the excited band. For instance, for the first negative-parity
state, 1/2−

1 , there is a strong mixing between the 0+ ⊗ �p1/2

and the 2+ ⊗ �p3/2 configurations with almost equal weights.
It is remarkable that the present calculation reconfirms an
interesting prediction of the cluster model; that is, the strong
coupling of a hyperon to the collective rotation is realized
when the � is in the p orbit [3]. It is interesting to notice
that the values of Pj�Ic

obtained in the present calculations are
similar to those with the cluster model calculations shown in
Fig. 1 of Ref. [3]. This large admixture is caused by the fact
that the unperturbed energies, E

(0)
1ch, are similar to each other

for these configurations due to the reorientation effect. We
also remark that in the second positive parity states (I+

2 ) the
�d state is admixed appreciably, while in the second negative
parity states (I−

2 ) the wave functions have the “out-of-phase”
nature in comparison with the corresponding first negative
parity states (I−

1 ).
Table II shows the calculated E2 transition strengths for

low-lying states of 8Be and 9
�Be. The calculated E2 transition

strengths for 2+ → 0+ and 4+ → 2+ in 8Be are 25.0 e2fm4

and 47.3 e2fm4, respectively, which are slightly larger than the
values 22.4 e2fm4 and 39.3 e2fm4 [3] (as well as 19.6 e2fm4 and
30.0 e2fm4 [5]) obtained with the cluster model calculations.
Both of these calculations overestimate the recently measured
B(E2 : 4+ → 2+) value, 21 ± 2.3 e2fm4 [46], by a factor
of about 2. For 9

�Be, the experimental upper limit for the

lifetime of 0.1 ps has been deduced for the first 3/2+ and
5/2+ states [42], which corresponds to the B(E2) value larger
than 29.07 e2fm4 [42,43]. The present calculation slightly
underestimates this value (see Table II), possibly due to a
limitation of the model space mentioned below.

As has been pointed out in Ref. [3], each state in 9
�Be can

be classified in terms of the total orbital angular momentum L,
which couples to the spin 1/2 of the � particle to form the total
angular momentum I . In order to remove the trivial factor due
to the angular momentum coupling for spin 1/2 and see more
clearly the impurity effect of � particle on nuclear collectivity,
we follow Ref. [3] and compute the cB(E2) value defined as

cB(E2 : Li → Lf )

≡ L̂i
−2

Îf
−2

{
Lf If 1/2
Ii Li 2

}−2

B(E2 : Ii → If ), (7)

TABLE II. The calculated E2 transition strengths (in units of
e2fm4) for low-lying states of 8Be and 9

�Be. cB(E2 : Li → Lf ) is
defined by Eq. (7), where L is the total orbital angular momentum.

8Be 9
�Be

Iπ
i → Iπ

f B(E2) Iπ
i → Iπ

f

(
Lπ

i → Lπ
f

)
B(E2) cB(E2)

2+
1 → 0+

1 24.99 3/2+
1 → 1/2+

1 (2+ → 0+) 22.55 22.55
5/2+

1 → 1/2+
1 (2+ → 0+) 22.57 22.57

4+
1 → 2+

1 47.28 7/2+
1 → 3/2+

1 (4+ → 2+) 37.43 41.58
9/2+

1 → 5/2+
1 (4+ → 2+) 41.55 41.55

7/2+
1 → 5/2+

1 (4+ → 2+) 4.152 41.52
5/2−

1 → 1/2−
1 (3− → 1−) 13.14 16.90

7/2−
1 → 3/2−

1 (3− → 1−) 17.15 17.15
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where Î ≡ √
2I + 1. The impurity effect of � particle on 8Be

can be discussed by comparing the B(E2) values in 8Be and
the cB(E2) values in 9

�Be in Table II. One can see that the E2
strengths are slightly decreased due to the shrinkage effect of
� hyperon.

The degree of reduction in B(E2) with the present model
is much smaller than the results of cluster model calcula-
tions [3,5,47]. Also, in our calculation, the energy of the 2+
state increases significantly by adding a � particle, whereas
the experimental data as well as the cluster model calculations
indicate that the energy shift is negligibly small [3,5,47] (see
Fig. 1). These discrepancies between the present calculation
and the cluster model calculations would be due to the effects
of higher members of the core excited states, which are not
included in present calculations. However, with the current
implementation of GCM, we have a limitation in constructing
the wave functions for the nonresonant core states (that is, the
second and the third 0+, 2+, and 4+ states), which extend up to
large values of deformation parameter β. For this reason, we
did not obtain reasonable results for the hypernuclear states
above 5/2+

1 when we included the higher members of the core
states.

IV. SUMMARY

We have proposed a novel method for a low-lying spectrum
of hypernuclei based on a mean-field type approach. Whereas
the pure mean-field approximation does not yield a spectrum
due to the broken rotational symmetry, we employed a beyond-
relativistic mean-field approach by carrying out the angular
momentum and the particle number projections as well as the
configuration mixing with the generator coordinate method. In
this novel method, the beyond-mean-field approach is applied
to low-lying states of the core nucleus, to which the � hyperon
couples in the wave function of hypernuclei, and thus we call it
the microscopic particle-rotor model. We emphasize that this
is the first calculation for a spectrum of hypernuclei based on
a density functional approach. By applying the microscopic
particle-rotor model to 9

�Be, a reasonable agreement with the
experimental data of low-spin spectrum has been achieved
without introducing any adjustable parameters, except for the

N� coupling strengths, which were determined to reproduce
the � binding energy. More details on the microscopic particle
model, including also a comparison with a nonrelativistic ap-
proach, will be introduced in the forthcoming publication [44].

In this paper, since our main focus was on a proposal of
a novel method for spectra of hypernuclei, we have assumed
the axial deformation for the core nucleus 8Be and taken into
account only the ground rotational band. An obvious extension
of our method is to take into account the triaxial deformation
of the core nucleus. One interesting candidate for this is 25

�Mg,
for which the triaxial degree of freedom has been shown to be
important in the core nucleus 24Mg [22,26,48]. A treatment of
high-lying collective states in the core nucles will also be an
important issue.

Another point which we would like to make is that the
microscopic particle-rotor model proposed in this paper is
much beyond the picture of the conventional particle-rotor
model, in the sense that the core excited states are given by
the full microscopic beyond-mean-field calculations, where
the collective motions of both rotations and vibrations, as
well as their couplings, are taken into account automatically
with the angular momentum projection and GCM. It will
be interesting to apply systematically the present method to
many hypernuclei and to study a transition in the low-lying
spectrum from a vibrational to a rotational characters. An
application of our method to a production of hypernuclei is
another interesting problem. To this end, one would need to
apply the present method consistently also to ordinary nuclei
with an odd number of nucleons, for which a treatment of the
Pauli principle would make it more complicated as compared
to hypernuclei studied in this paper.
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