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Background: A primary goal of deuteron electrodisintegration is the possibility of extracting the deuteron
momentum distribution. This extraction is inherently fraught with difficulty, as the momentum distribution is not
an observable and the extraction relies on theoretical models dependent on other models as input.
Purpose: We present a new method for extracting the momentum distribution which takes into account a wide
variety of model inputs thus providing a theoretical uncertainty due to the various model constituents. To test
the extraction, pseudodata were generated, and the extracted “experimental” distribution, which has theoretical
uncertainty accounted by this extraction method, can be compared to the theoretical distribution. This procedure
can provide an upper bound on the deuteron momentum distribution.
Method: The calculations presented here are using a Bethe-Salpeter-like formalism with a wide variety of bound
state wave functions, form factors, and final state interactions.
Results: In the examples we compared, the original distribution was typically within the error band of the
extracted distribution. The input wave functions do contain some outliers which are discussed in the text. Due to
the reliance on the theoretical calculation to obtain this quantity, any extraction method should account for the
theoretical error inherent in these calculations due to model inputs.
Conclusions: The extraction method works well and provides a systematic way to investigate the deuteron
momentum distribution, while accounting for theoretical uncertainty and providing a theoretical error band.
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I. INTRODUCTION

One of the primary reasons for measuring deuteron elec-
trodisintegration at large missing momenta is the possibility
of finding small (exotic) configurations of quarks which are
of small size and could possibly be examined by determin-
ing the deuteron momentum distribution at large missing
momenta. This requires that the momentum distribution be
extracted from the experimental cross sections. This is in
general not possible since the cross section is obtained
from squares of the transition matrix element denoted by
〈p1,s1; p2,s2; (−)|Jμ

em|P,λd〉, where |P,λd〉 is the state of
the initial deuteron with total momentum P and helicity
λd , 〈p1,s1; p2,s2; (−)| is the proton-neutron scattering state
with incoming wave boundary conditions, and J

μ
em is the

electromagnetic current operator. The relationship between
the interactions producing the initial and final states and
the electromagnetic current operator is constrained by the
requirement of electromagnetic current conservation, which
may appear as a commutation relation between the Hamil-
tonian and the components of the current operator or in the
case of Bethe-Salpeter based formulations, such as the one
used in this work, as two-body Ward identities [1]. As a
result, construction of a consistent description of the matrix
element will result in different partitions into initial and final
states, and the current operator which depends on the basic
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formalism used to model the matrix element. This implies that
the momentum distribution of the initial deuteron is model
dependent [2] and can only be determined approximately if
there are sound theoretical grounds for ignoring final state
interaction and two-body electromagnetic currents.

At relatively small momentum transfers the interactions and
currents can be constructed consistently by means of chiral
perturbation theory, by traditional nonrelativistic potential
models with some input from meson exchange models or
in terms of Bethe-Salpeter-like models based on meson
exchange. All of these models are constrained by fitting np

scattering to cross sections for energies up to slightly above
pion production threshold. At present there are no consistent
calculations of matrix elements at the larger momentum
transfers needed to explore large missing momenta.

At large missing momenta it is therefore necessary to
construct models of the matrix elements and cross section
based on a set of reasonable choices for initial and final states
as well as the electromagnetic current operator. This means
that the available models do not conserve current and that
a large number of different theoretical models are available
based on the number of possible reasonable choices that are
available for initial wave functions or their equivalent, for
final state interactions and for the current operators, as well as
differences due to alternate theoretical choices used to produce
the matrix elements.

The basic experimental approach to extracting an approxi-
mate momentum distribution is to search for kinematic regions
where the effects of final-state interactions and two-body
currents are small [3]. This requires input from theory that may
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result in a certain amount of model dependence based on the
range of models that are used to select these regions. The cross
sections measured for the chosen kinematics are then divided
by some kinematical factors related to the deuteron cross
section and a prescription for an off-shell ep cross section.
This results in a reduced cross section which is assumed to be
close in size and shape to the deuteron ground-state momentum
distribution.

The objective of this work is to examine this procedure
for extracting the deuteron momentum distribution by means
of producing a large number of model calculations using
reasonable choices for initial state wave functions, final state
interactions and nucleon electromagnetic form factors based
on the Bethe-Salpeter-like approach of [4–7]. This allows us
to study the properties of the usual procedure and to generate
a statistical treatment of theoretical corrections which can be
used to improve the description of the momentum distribution
along with a theoretical error band. In doing this we choose
the kinematics of the approved Jefferson Lab experiment
E1210003 [8]. Similar calculations could be made using
different frameworks [9–11] and would in combination with
those presented here help to establish the possible variations
in theoretical models.

This paper is organized as follows: In Sec. II, we lay out
the theoretical framework for our calculations. In Sec. III
we discuss our choices of wave functions, electromagnetic
form factors, and final state interaction models that we use
in this work. Finally in Sec. IV we discuss the characteristics
of the model calculations which are produced. The method
that we propose to provide theoretical corrections and error
to the reduced cross sections to obtain improved momentum
distributions is presented in Sec. V. Section VI presents
several tests of this method obtained by using a selection
of model calculations as pseudodata and comparing to the
actual momentum distributions associated with the model.
A summary of this work and conclusions drawn from it are
contained in Sec. VII.

II. THEORETICAL FRAMEWORK

The calculations used in this work use the formalism
of [4–7] which is based on approximations to the Bethe-

Salpeter equation. For large Q2 it is not possible at this
point to construct a consistent meson exchange model for the
complete matrix elements for deuteron electrodisintegration.
For this reason the calculations are performed using bound
states, current operators, and final state interactions from a
variety of sources that will result in a violation of current
conservation. The current consensus is that two-body currents
give no substantial contribution at large Q2 and that they can
safely be ignored. The calculations are therefore performed
in impulse approximation as represented by Fig. 1. Dia-
gram 1(a) represents the plane wave impulse approximation
(PWIA). Diagrams 1(a) plus 1(b) represent the plane wave
born approximation (PWBA). The t matrices providing the
final state interactions (FSIs) in diagrams 1(c) and 1(d) are
properly antisymmetrized assuming that isospin is a good
quantum number. In diagrams 1(a)–1(d) the initial bound
state is represented by the spectator equation deuteron vertex
function (A1).

The unpolarized cross section for deuteron electrodisinte-
gration can be written as

dσ 5

dε′d�ed�p

= mp mn pp

8π3 Md

σMott f
−1
rec [vLRL + vT RT

+ vT T RT T cos 2φp + vLT RLT cos φp], (1)

where the Mott cross section is

σMott =
(

α cos(θe/2)

2ε sin2(θe/2)

)2

(2)

and the recoil factor is

frec =
∣∣∣∣1 + ωpp − Epq cos θp

Md pp

∣∣∣∣ . (3)

The vi are kinematical factors defined as

vL = Q4

q4
, (4)

vT = Q2

2q2
+ tan2 θe

2
, (5)

vT T = − Q2

2q2
, (6)
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FIG. 1. (Color online) Feynman diagrams representing the impulse approximation to deuteron electrodisintegration. In all diagrams particle
1 is a proton and particle 2 is a neutron.
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vLT = − Q2

√
2q2

√
Q2

q2
+ tan2 θe

2
. (7)

If the response tensor is defined as

Wμν = 1

3

∑
s1,s2,λd

〈 p1s1; p2s2|Jμ|Pλd〉∗〈 p1s1; p2s2|J ν |Pλd〉

(8)

the response functions RK are defined by

RL ≡ W 00,

RT ≡ W 11 + W 22,

RT T cos 2φp ≡ W 22 − W 11,

RLT cos φp ≡ 2
√

2 �(W 01).

(9)

For convenience we define

σeD ≡ dσ 5

dε′d�ed�p

(10)

It is conventional to define a reduced cross section as

σred = σeD

kσep

, (11)

where σep is an off shell electron proton cross section
usually chosen to be either De Forest cc1 or cc2 [12] and
k is some appropriate combination of factors obtained to
reproduce the deuteron electrodisintegration cross section
under the assumption that the PWIA cross section factorizes.
A demonstration of how such a factorization can be obtained
from the formalism used here is contained in the Appendix.

III. MODEL CONSTITUENTS

In extracting the momentum distributions one must rely on
accurate theoretical models. The primary objective of this work
is to examine the variation in calculated cross sections on a
variety of reasonable choices for the constituents, and thereby
provide the theoretical uncertainty that can be expected when
extracting the approximate momentum distributions.

The three major uncertainties that can influence the cal-
culation stem from form factors, the deuteron wave function,
and final state interactions. Our approach is to perform our
calculation using as many possible variations of each of
these in order to understand the way each can influence the
calculation. The final result is represented as the mean and the
standard deviation is treated as the theoretical uncertainty due
to input model dependencies. The various models we use as
input are given in Table I.

All of these form factors and wave functions are widely
used in the literature. Clearly, they introduce deviations in the
calculations, and these deviations vary in size from tiny to
significant, depending on the kinematics.

A. Wave functions

In the calculations performed here we use eight different
wave functions. Those labeled IIB [22], WJC 1 and WJC 2 [23]
are the results of fitting the spectator or Gross equation to NN

TABLE I. Model inputs to the calculation.

Final state interactions Form factors Deuteron wave function

IIB [22]
WJC 1 [23]

Regge [7,13,14] GKex05 [18,19] WJC 2 [23]
SAID [15–17] AMT [20] AV18 [24]

MMD [21] CD Bonn [25]
NIMJ 1 [26]
NIMJ 2 [26]
NIMJ 3 [26]

scattering data. WJC 1 and WJC 2 are associated with fits
with χ2 per degree of freedom of approximately 1. IIB is the
result of earlier fits with larger χ2 but was used successfully
in calculating electron-deuteron elastic scattering and has a
momentum distribution comparable to that of the majority of
nonrelativistic potentials, and is used here to provide continuity
with earlier results. These are technically not wave functions
but are the result of calculating the spectator equation vertex
functions. The remaining wave functions are the nonrelativistic
potentials AV18 [24], CD Bonn [25], NIJM 1, NIJM 2, and
NIJM 3 [26]. All of these potentials produce fits to the
NN data with χ2 per degree of freedom of approximately
1. As a result, all of the wave functions but IIB produce
on-shell equivalent scattering amplitudes but differ off shell.
The nonrelativistic wave functions are used in the calculations
presented here by replacing u and w in (A2) the s- and d-state
wave functions for the nonrelativistic wave functions and
setting vs and vt in (A2) to zero. As can be seen from the
Appendix, this results in the commonly used factorization of
the PWIA.

The momentum distributions for the eight sets of initial
states are shown in Fig. 2 using the normalization given
by (A15). From Fig. 2 it can be seen that the momentum
distribution for CD Bonn is the softest (has the smallest high-
momentum tail) and the next softest is NIJM 2. The hardest
distribution is for WJC 1. This wave function has the largest
relativistic p-wave contributions that result from the presence

FIG. 2. (Color online) Momentum density distributions for the
eight wave functions used in the calculations presented in this
work.
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µ
µ

FIG. 3. (Color online) A comparison of three different parametrizations of the electric and magnetic form factors of the proton and neutron,
divided by the corresponding dipole form factors. In each case the vertical line corresponds to Q2 = 4.25 GeV2 which is the value for the
chosen kinematics.

of negative-energy projections in the spectator equation. These
negative-energy projections provide a repulsive contribution to
the NN force resulting in a stronger repulsive core and thus
a larger high-momentum tail. The remaining wave functions
provide momentum distributions which fall within a relatively
narrow band.

B. Form factor parameterizations

We use the standard Dirac-plus-Pauli form of the single
nucleon current operator

�μ(q) = F1(Q2)γ μ + F2(Q2)

2m
iσμνqν (12)

in the calculations presented here. We choose three different
parametrizations of the form factors. The form factors GKex05
are the result of a vector meson dominance model (VMD) to the
nucleon electromagnetic form factor data including the rapidly
falling G

p
E data obtained from electron-proton scattering with

either polarized initial of final states. The form factors AMT
are a fit to the new proton scattering data only with the usual
Galster parametrization of the neutron form factors. The form
factors MMD and VMD model fit to the form factor data
prior to the availability of the data from polarized protons.
This is included for continuity with earlier calculations and to
provide a sense of the importance of the new parametrizations
of G

p
E at the kinematics chosen for the calculations presented

here. Figure 3 shows the Sachs form factors divided by the
equivalent simple dipole forms for 0 < Q2 < 10 GeV2 for the
three chosen parametrizations.

We choose the kinematics of experiment E1210003, which
is approved for running in Hall C at Jefferson Lab. These are
specified by ε = 12 GeV, Q2 = 4.25 GeV2, x = 1.35, and
φp = 180◦. Figure 4 shows the PWIA cross section calculated
at these kinematics using the IIB wave functions and the
three parametrizations of the electromagnetic form factors.
Although Fig. 3 shows that the different parametrizations vary
considerably at this point, Fig. 4 shows that variation in the
PWIA cross section due to the form factors is relatively small

FIG. 4. (Color online) PWIA cross sections calculated for the
E121003 kinematics with the IIB wave functions and the three form
factor parametrizations. Cross sections are plotted as a function of
the missing momentum pm.
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FIG. 5. (Color online) Center of momentum pn elastic cross
sections calculated using both SAID and Regge methods. Data close
to the chosen value of s are also displayed.

but non-negligible. Note however that the PWIA uses only the
proton form factors.

C. Final state interactions

For the E1210003 kinematics the square of the invariant
mass of the final state is s = 5.5568 Gev2 which is well above
the pion-production threshold and beyond the range where
meson exhange models have been capable of reproducing the
NN cross sections and spin observables. This means that it is
only possible to describe the final state interactions in terms
of fits of parametrized amplitudes that are fit to available NN
scattering data. Two methods are available that contain the
full spin dependence of the amplitudes. The first of these
is the use of the helicity amplitudes that are available from
SAID. For the pn amplitudes these are reliable only up
to about Tlab = 1.3 GeV or s = 5.9675 GeV2. The second
method is a fit to NN cross sections and spin observables
from s = 5.4 GeV2 to s = 4000 GeV2 using a Regge model
parametrization. The E1210003 kinematics are therefore in
a region where both methods may be used. Figure 5 shows
the c.m. differential pn elastic cross sections at the value
of s for the E1210003 kinematics. Some care should be
taken in judging the relative quality of the two methods
based on this single figure. In fitting the differential cross
sections the normalizations are generally allowed to float
due to the difficulty of experimentally determining absolute
normalization. The data shown have been rescaled as required
by the Regge model fit. A careful comparison would also
include comparisons of spin observables. At this point it
is reasonable to assume that either method produces results
that can be reasonably used in calculating the deuteron
electrodisintegration cross sections.

IV. CALCULATIONS

We now have 8 possible choices of wave function, 3 choices
of electromagnetic form factors and 2 choices for the final state
interaction as summarized in Table I. This means that there
are 24 possible calculations for the PWIA given by diagram

FIG. 6. (Color online) The envelope containing all 24 calcula-
tions of the cross section in PWIA is shown in panel (a). The
corresponding envelope containing all 48 of the complete calculations
represented by the diagrams of Fig. 1 is shown in panel (b).

Fig. 1(a) and 48 possible calculations for the complete IA
given by all of the diagrams in Fig. 1.

Since the number of calculations in each case is large we
choose to plot the envelopes containing all 24 of the PWIA
calculations and all 48 of the full IA calculations for the
E1210003 kinematics in Fig. 6. That is in each case for each
pm we determine the largest and smallest values given by
the set of calculations giving the boundaries of the shaded
areas or envelopes. Note that the envelope for the PWIA
calculatons, Fig. 6(a), increases in width with increasing pm

and covers a range of more than an order of magnitude
at pm = 1 GeV, which is in agreement with the range of
momentum distributions shown in Fig. 2. We would like to
point out that the inclusion of FSIs reduces the width of the
envelope at high missing momenta as the FSIs redistribute
strength from the low-momentum part of the wave function
to high momenta, and the PWIA envelope is narrower at low
missing momentum.

Figure 6(b) shows the envelope containing the 48 cross
section calculations with FSI. Note that above approximately
pm = 0.65 GeV the envelope for the FSI calculations begins
to narrow and covers a significantly smaller range at pm =
1 GeV.
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FIG. 7. (Color online) The ratio of FSI to PWIA cross sections
for wave function IIB, the GKex05 electromagnetic form factors at
ε = 11 GeV, Q2 = 4.25 GeV2, and a range of values for x.

A. Choice of kinematics

To argue that the reduced cross section is a rough rep-
resentation of the deuteron momentum distribution requires
that a region of kinematics must be found where the role of
FSI is minimal. This is the approach used in [3] and for the
E1210003 kinematics. The ability to do this using the IIB wave
functions, the GKex05 electromagnetic form factors, and the
Regge model FSI is shown in Fig. 7. Here we show the ratio
of the cross section for the full IA to the corresponding PWIA.
In this figure the incident electron energy is ε = 11 GeV2,
Q2 = 4.25 GeV2, and x is allowed to vary from 1 to 1.35 in
steps of 0.05. A ratio of 1 would indicate that the FSI had
no effect at a given kinematics. For all values of x this ratio
is below 1 for pm � 0.3 GeV. The ratios then increase to
above 1 for 1 � x � 1.2 with the magnitude decreasing as
x increases. For x � 1.25 the ratio remains below 1. In this
case, it would seem that the choice of x = 1.25 would tend to
minimize the role of the FSI while the E1210003 kinematics, at
x = 1.35, would increase the role of the FSI. Since the choice
of optimal kinematics relies on calculation, it is not surprising
that the choice is model dependent. The extent of this problem
can be shown by plotting the envelope containing the ratio
FSI to PWIA cross sections for all 48 cases at the E1210003
kinematics. This envelope is shown by the shaded area in
Fig. 8. The large upper value of the ratio at pm = 1 GeV is the
result of calculations using the CD Bonn wave functions which
produce the lower values of the PWIA and FSI calculations
at large pm. Since the final state interactions tend to raise the
cross section in this region and the PWIA cross sections for
CD Bonn are small, the ratio of cross sections then becomes
large.

The cause of the narrowing of the range of FSI cross
sections at large pm is illustrated by Fig. 9. In this figure the
ratio of FSI to PWIA cross sections for the IIB wave function
and the AMT electromagnetic form factors is shown for the
E1210003 kinematics. The curves labeled SAID (a)+(c) or
Regge (a)+(c) have contributions only from diagrams (a) and
(c) of Fig. 1 where the electron scatters from the proton only.
The curves labeled SAID or Regge have contributions from
all of the diagrams in Fig. 1, including contributions where

FIG. 8. The envelope containing the ratio FSI to PWIA cross
sections for all 48 calculations is shown by the shaded band.

the electron scatters from both the proton and the neutron.
While the inclusion of the neutron contributions is relatively
small at lower pm, at larger pm they have the effect of causing
the ratios for the SAID and Regge FSI to become very close
in value. The neutron contributions are then responsible for
narrowing the range of the FSI calculations at large pm. This
indicates that the complete IA must be used in calculation of
cross sections at the E1210003 kinematics.

The model dependence of the choice of optimal kinematics
along with the substantial range in the values of the cross
sections at large pm implies that a method for obtaining
momentum distributions from data be found that is less
sensitive to the choice of optimal kinematics and includes
information about the range of possible calculations. We will
describe one possible approach to this problem in the following
section.

FIG. 9. (Color online) Ratio of FSI to PWIA cross sections for
wave function IIB and the AMT electromagnetic form factors at
the E1210003 kinematics for both SAID and Regge FSI. Curves
labeled with (a)+(c) contain only the proton contributions to the IA
[diagrams (a) and (c) of Fig. 1], while those without the label also
contain contributions of from the neutron given by diagrams (b) and
(d) of Fig. 1.
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V. A NEW METHOD FOR EXTRACTING THE DEUTERON
MOMENTUM DISTRIBUTION

In formulating a new approach to obtaining the deuteron
momentum distribution it should include information about
how well the reduced cross section for each represents the
actual momentum distribution calculated directly from the
wave functions used in the model. It should also include an
estimate of the theory error associated with the wide range of
possible calculations that can be produced by the acceptable
range of wave functions, electromagnetic form factors, and
final state interactions that can be combined to produce the
calculations. It should then take into account the fact that
the momentum distribution is not an observable quantity. To
accomplish this we propose the following procedure.

Our goal is to provide a procedure for the extraction of
an experimental momentum distribution, nexp(p). It can be
obtained in the following way:

nexp(p) = σexp(p)

kσep(p)
− 〈ξth(p)〉 ± δξth(p) ± δσred(p). (13)

Here, σexp(p) is the experimentally measured cross section,
and kσep is the factor that is used to extract the reduced cross
section; see our description of the method in the Appendix.
The reduction factor contains the (off-shell) electron-proton
cross section σep, which requires an electromagnetic form
factor. This form factor is chosen from one of the available
parametrizations. The term δσred(p) is the experimental error.

The other two terms account for the theoretical differ-
ence between the calculated reduced cross section and the
corresponding calculated momentum distribution, and its
theoretical error, δξth(p). These two quantities are obtained as
follows: for each of the N = 48 possible calculations, labeled
i, we calculate the theoretical quantity

ξthi
(p) = σeDi

(p)

kσep(p)
− nthi

(p) (14)

for a range of values of p. The first term is the calculated
reduced cross section which we calculate here using the
method presented in Appendix with the same electromagnetic
form factors used in σep for the extraction of the experimental
reduced cross section, for all 48 variations of the theoretical
calculation. This quantity therefore represents the difference
between the reduced cross section and the actual momentum
distribution for the wave functions used in the calculation.
The average value of this difference for all calculations can be
calculated as

〈ξth(p)〉 = 1

N

N∑
i=1

ξthi
(p) (15)

and the average of the square of the difference as

〈
ξ 2
th(p)

〉 = 1

N

N∑
i=1

ξ 2
thi

(p). (16)

The standard deviation of this difference is

δξth(p) =
√〈

ξ 2
th(p)

〉 − 〈ξth(p)〉2 (17)

and can be taken as an approximate measure of the theory
error.

VI. RESULTS

Preliminary examples of how this method may work
can be obtained by using selected cross sections from the
48 used in this work as pseudodata and determining how
well the procedure reproduces the corresponding theoretical
momentum distributions.

In Fig. 10 the pseudodata are represented by the calculated
cross section for the WJC 2 wave function, the GKex05
electromagnetic form factors, and the Regge model FSI. The
reduced cross section is calculated using the factorization
procedure of the Appendix with the AMT proton form factors
used in the reduction factor σep. The reduced cross section
is represented by the dotted line, and the central value of
the extracted momentum distribution using the procedure of
Sec. V is represented by the dashed line and the theoretical
error is represented by the shaded band. The calculated
momentum distribution for the WJC 2 wave functions is given
by the solid line. At momenta above 0.7 GeV the extracted
momentum distribution and the calculated distribution agree
within the theoretical error.

Figure 11 uses the calculation for the AV18 wave function,
with the same electromagnetic form factors and FSI as the
previous figure, as pseudodata. In this case the extracted and
calculated momentum distributions are in excellent agree-
ment for large momenta and are well within the theoretical
error.

The calculations are repeated using the CD Bonn wave
functions in Fig. 12. In this case the extracted momentum
distribution is much larger than the calculated distribution.
The CD Bonn potential is by far the softest of those used
here. The integration over the FSI moves strength from lower
momentum to higher momentum which causes a much larger

FIG. 10. (Color online) This figure uses the calculation of the
cross section with the WJC 2 wave functions, the GKex05 electro-
magnetic form factor, and the Regge FSI as pseudodata. The dotted
line is the reduced cross section using the AMT form factor in σep ,
and the dashed line is the extracted momentum distribution using
the procedure described above with a shaded band representing the
theoretical error. The solid line is the momentum distribution for the
WJC 2 wave functions.
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FIG. 11. (Color online) Same as Fig. 10 but using the AV18 wave
function.

effect for the softer wave functions. As a result, the reduced
cross section is much larger at large momentum, indicating
that the ratio of the full calculation to the PWIA is much larger
than 1. This means that the approach presented here will tend
to give an upper bound on the momentum distribution for all
but the softest of potentials. As a contrast to the case of the CD
Bonn wave functions, Fig. 13 uses the WJC 1 wave function,
which is the hardest of those used in this work. In this case the
calculated momentum distribution is larger than the extracted
momentum distribution, but is well within the range implied
by statistics. In contrast to the previous case, the effect of the
FSI on the extracted momentum distribution is much smaller
than is the case for the CD Bonn wave functions.

VII. SUMMARY AND CONCLUSIONS

The goal of this paper is to find a measure of the theoretical
uncertainties in the extraction of momentum distributions
from experimental data that are due to model inputs. Model
inputs—electric and magnetic form factors, wave functions,
and nucleon-nucleon scattering amplitudes—are necessary
for all theoretical calculations. There are several versions of
these available in the literature, and all of them are widely
used. So, completely apart from the theoretical model used to

FIG. 12. (Color online) Same as Fig. 10 but using the CD Bonn
wave function.

FIG. 13. (Color online) Same as Fig. 10 but using the WJC 1
wave function.

describe the reaction mechanism of the 2H(e,e′p) reaction,
there will be uncertainties involved that stem from these
inputs.

We have mimicked the experimental data with a set of
calculations, and then used all 48 possible input combinations
to extract the momentum distribution, leading to an error
band. We performed our calculations at the kinematics for the
planned Jefferson Lab E1210003 experiment. In all studied
cases, the error band has a reasonable width that tends to
increase with higher missing momentum. The increase in
uncertainty at higher momentum can in part be attributed
to the contribution of graphs with final state interactions
and contributions from virtual photon absorption on the
neutron.

In most of our examples, the band that represents the
theory input error around the extracted momentum distribution
includes the momentum distribution nth consistent with the
calculation used to generate the pseudodata in the first place.
The approach presented here will tend to give an upper
bound on the momentum distribution for all but the softest of
potentials. We are confident that the method for a calculation
of the theoretical error band provided in this paper will be very
helpful for the analysis of the forthcoming high-precision data
from Jefferson Lab’s 12 GeV upgrade.
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a b

FIG. 14. (Color online) Diagram representing the half-on-shell
deuteron vertex function.

APPENDIX: CROSS SECTION FACTORIZATION AND THE
MOMENTUM DISTRIBUTION

The extraction of the deuteron momentum distribution
from measured cross sections depends upon the assumption
that the cross section can be factored into a factor due to
scattering on an off-shell proton and a factor equal to the
momentum density distribution. This factorization becomes
more complicated when FSI are introduced and becomes
somewhat dependent upon the theoretical formalism used.
The factorization procedure used here can be obtained directly
from consideration of the PWIA contribution described by
Fig. 1(a). For this diagram both of the final state nucleons are
on-shell which implies that the vertex function has particle
2 on shell as well. This is represented by Fig. 14. For either
the full Bethe-Salpeter equation or the spectator, or Gross
equation, the half-off-shell vertex function can be written as

�λd
(p2,P ) =

[
g1

(
p2

2,p2 · P
)
γ · ξλd

(P ) + g2
(
p2

2,p2 · P
)p · ξλd

(P )

m

−
(

g3
(
p2

2,p2 · P
)
γ · ξλd

(P ) + g4
(
p2

2,p2 · P
)p · ξλd

(P )

m

)
γ · p1 + m

m

]
C. (A1)

where ξλd
(P ) is the deuteron polarization four-vector, C is the charge conjugation matrix and the invariant functions gi(p2

2,p2 · P )
are given by

g1
(
p2

2,p2 · P
) = 2EpR

− Md√
8π

[
u(k) − 1√

2
w(k) +

√
3

2

m

pR

vt (pR)

]
,

g2
(
p2

2,p2 · P
) = 2EpR

− Md√
8π

[
m

EpR
+ m

u(pR) + m(2EpR
+ m)√

2pR
2

w(pR) +
√

3

2

m

pR

vt (pR)

]
,

(A2)

g3
(
p2

2,p2 · P
) =

√
3

16π

mEpR

pR

vt (pR),

g4
(
p2

2,p2 · P
) = − m2

√
8πMd

[
(2EpR

− Md )

(
1

EpR
+ m

u(pR) − EpR
+ 2m√

2pR
2

w(pR)

)
+

√
3Md

pR

vs(pR)

]
.

Here, the scalar pR is defined as

pR =
√

(P · p2)2

P 2
− p2

2 (A3)

and is the magnitude of the neutron three-momentum in the
deuteron rest frame, and the corresponding energy is

EpR
=

√
pR

2 + m2. (A4)

The functions u(pR), w(pR), vs(pR), and vt (pR) are the
s-wave, d-wave, and singlet and triple p-wave radial wave
functions of the deuteron in momentum space.

For convenience, the half-off-shell deuteron wave function
can be defined as

ψλd,s2 (p2,P ) = G0(P − p2)�T
λd

(p2,P )ūT ( p2,s2). (A5)

We choose to normalize this wave function such that in the
deuteron rest frame

∑
s2

∫
d3p2

(2π )3

m

Ep2

ψ̄λd ,s2 (p2,P )γ 0ψλd,s2 (p2,P ) = 1, (A6)

which is correct only in the absence of energy-dependent
kernels. This results in the normalization of the radial wave
functions given by

∫ ∞

0

dp p2

(2π )3

[
u2(p) + w2(p) + v2

t (p) + v2
s (p)

] = 1. (A7)

The plane wave contribution to the current matrix element
represented by Fig. 1(a) can then be written as

〈 p1s1; p2s2|Jμ
(1)|Pλd〉a = −ū( p1,s1)�μ(q)ψλd,s2 (p2,P ),

(A8)
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where the one-body nucleon electromagnetic current operator
is chosen to be of the Dirac-plus-Pauli form

�μ(q) = F1(Q2)γ μ + F2(Q2)

2m
iσμνqν. (A9)

The PWIA response tensor is then

Wμν
aa = 1

3

∑
s1,s2,λd

ψλd ,s2
(p2,P )�μ(−q)u( p1,s1)ū( p1,s1)

× �ν(q)ψλd,s2 (p2,P )

= Tr[�μ(−q)�+( p1)�ν(q)N (p2,P )], (A10)

where the momentum distribution operator is given by

N (p2,P ) = 1

16π

[
P · p2

M2
dmN

γ · Pntv(pR)

−
(

γ · p2

mn

− P · p2

M2
dmN

γ · P

)
nsv(pR) + ns(pR)

]
(A11)

with three scalar momentum distributions defined as

ntv(pR) = u2(pR) + w2(pR) + v2
t (pR) + v2

s (pR), (A12)

nsv(pR) = u2(pR) + w2(pR) − v2
t (pR) − v2

s (pR),

− 2mN√
3pR

[(u(pR) +
√

2w(pR))vs(pR)

− (
√

2u(pR) − w(pR))vt (pR)], (A13)

ns(pR) = u2(pR) + w2(pR) − v2
t (pR) − v2

s (pR)

+ 2pR√
3mN

[(u(pR) +
√

2w(pR))vs(pR)

− (
√

2u(pR) − w(pR))vt (pR)]. (A14)

Note that only the time-like-vector momentum distribution ntv

is related to the normalization condition such that∫ ∞

0

dp p2

(2π )3
ntv(p) = 1. (A15)

In the absence of relativistic p-wave contributions all three-
momentum distributions are the same and we can define

n+(pR) = ntv(pR) = nsv = ns(pR) = u2(pR) + w2(pR).

(A16)

which is the usual nonrelativistic momentum distribution. In
this case the momentum density operator becomes

N+(p2,P ) = 1

8π
�+( p)n+(p), (A17)

where

p = (
√

p2 + m2
N, p). (A18)

The PWIA response tensor then becomes

Wμν
aa = 1

8π
Tr[�μ(−q)�+( p1)�ν(q)�+( p)]n+(p), (A19)

which clearly factors into a contribution composed of an
off shell single-nucleon contribution and the positive-energy
momentum distribution.

The off-shell four-momentum of the struck proton is given
in the rest frame by

k = P − p2 = (Md,0) − (Ep, − p) = (Md − Ep, p)

= p + (Md − 2Ep,0) = p + �, (A20)

where

� = (Md − 2Ep,0) = (δ,0). (A21)

Four-momentum conservation requires that

k + q = p + � + q = p1 (A22)

if we define

q̃ = q + � = p1 − p. (A23)

It can be seen that the factorization prescription given by (A19)
is the same as the De Forest cc2 prescription [12] with
modification for the covariant normalization of the Dirac
spinors.

Factored response functions defined by Ri = rin+(p) can
then be written as

rL = 1

64πm4
N

{ − 4F 2
1 (Q2)m2

NQ2 − 8F1(Q2)F2(Q2)m2
N (ν2 + Q2) + 4E2

p

[
4F 2

1 (Q2)m2
N + F 2

2 (Q2)Q2
]

+ 4Epν
[
4F 2

1 (Q2)m2
N + F 2

2 (Q2)Q2
] + F 2

2 (Q2)[ν2Q2 − 4m2
N (ν2 + Q2)] − 2δ(2Ep + ν)

[−4F 2
1 (Q2)m2

N

+F 2
2 (Q2)(2Epν + ν2 − Q2)

] + δ2
[ − 4E2

pF 2
2 (Q2) + 4F 2

1 (Q2)m2
N − 12EpF 2

2 (Q2)ν + F 2
2 (Q2)(−5ν2 + Q2)

]
− 4δ3F 2

2 (Q2)(Ep + ν) − δ4F 2
2 (Q2)

}
, (A24)

rT = 1

64πm4
N

{
4
[
4F1(Q2)F2(Q2)m2

NQ2 + F 2
2 (Q2)(2m2

N + p2
⊥)Q2 + 2F 2

1 (Q2)m2
N (2p2

⊥ + Q2)
]

− 16δF1(Q2)[F1(Q2) + F2(Q2)]m2
Nν + δ2

[
8E2

pF 2
2 (Q2) − 8F 2

1 (Q2)m2
N + 8EpF 2

2 (Q2)ν − 2F 2
2 (Q2)Q2

]
+ 4δ3F 2

2 (Q2)(2Ep + ν) + 2δ4F 2
2 (Q2)

}
, (A25)

rT T = −4p2
⊥
[
4F 2

1 (Q2)m2
N + F 2

2 (Q2)Q2
]

64πm4
N

, (A26)
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and

rLT = 1

64πm4
N

4
√

2
{
(2Ep + ν)p⊥

[
4F 2

1 (Q2)m2
N + F 2

2 (Q2)Q2
]

+ δp⊥
[
4F 2

1 (Q2)m2
N + F 2

2 (Q2)(−2Epν − ν2 + Q2)
] − δ2F 2

2 (Q2)νp⊥
}
, (A27)

where p⊥ is the magnitude of the component of p perpendicular to q.
The reduction factor can then be written as

kσep = mp mn pp

8π3 Md

σMott f
−1
rec [vLrL + vT rT + vT T rT T cos 2φp + vLT rLT cos φp]. (A28)
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Réal, J. Reinhold, B. Reitz, R. Roché, M. Roedelbronn, A.
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