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Neutron interferometric measurement of the scattering length difference
between the triplet and singlet states of n-3He
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We report a determination of the n-3He scattering length difference �b′ = b′
1 − b′

0 = [−5.411 ±
0.031 (statistical) ± 0.039 (systematic)] fm between the triplet and singlet states using a neutron interferometer.
This revises our previous result �b′ = [−5.610 ± 0.027 (statistical) ± 0.032 (systematic)] fm obtained using
the same technique in 2008 [Huber et al., Phys. Rev. Lett. 102, 200401 (2009); ,103, 179903(E) (2009)]. This
revision is attributable to a reanalysis of the 2008 experiment that now includes a systematic correction caused
by magnetic-field gradients near the 3He cell which had been previously underestimated. Furthermore, we more
than doubled our original data set from 2008 by acquiring 6 months of additional data in 2013. Both the new
data set and a reanalysis of the older data are in good agreement. Scattering lengths of low-Z isotopes are valued
for use in few-body nuclear effective field theories, provide important tests of modern nuclear potential models,
and, in the case of 3He, aid in the interpretation of neutron scattering from quantum liquids. The difference
�b′ was determined by measuring the relative phase shift between two incident neutron polarizations caused
by the spin-dependent interaction with a polarized 3He target. The target 3He gas was sealed inside a small,
flat-windowed glass cell that was placed in one beam path of the interferometer. The relaxation of 3He polarization
was monitored continuously with neutron transmission measurements. The neutron polarization and spin-flipper
efficiency were determined separately using 3He analyzers and two different polarimetry analysis methods.
A summary of the measured scattering lengths for n-3He with a comparison to nucleon interaction models is
given.

DOI: 10.1103/PhysRevC.90.064004 PACS number(s): 03.75.Dg, 28.20.Cz, 21.45.−v

I. INTRODUCTION

Understanding the properties of nuclei from the point of
view of a collection of individual interacting nucleons is
an important goal of nuclear physics [1,2]. Unfortunately,
direct calculations of low-energy nuclear phenomena using
quantum chromodynamics (QCD) is currently impractical.
Instead, properties of few-body nuclear systems are calculated
using a variety of phenomenological models. The prevailing
two-nucleon (NN) models, AV18 [3], CD-Bonn [4], and
Nijmegen [5], incorporate a fit to np and pp scattering data [6]
for energies up to 350 MeV. Problems arise with NN models
when applying them to systems containing more than two
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nucleons. This is most evident by their failure to accurately
predict the binding energy of the triton by 800 keV [7].
For this reason three-nucleon interactions (3N ), which arise
in lowest order in the meson exchange model from the
exchange of two pions between three separate nucleons, are
included with NN models to describe larger few-body systems.
Three-nucleon interactions, including Urbana [8], Tucson
Melbourne [9], Brazil [10], and Illinois [7] potentials, can
correct for this and now accurately predict many nuclear levels
for atomic number up to 13 [7,11,12]. However, the increase
in the prediction accuracy of binding energies has not meant
that NN + 3N models have accurately predicted low-energy
scattering data in systems involving more than two nucleons
[13,14].

Nuclear effective field theories [15,16] have also been
a successful approach to understanding few-body nuclear
systems. Effective field theories separate nucleon interactions
into two distinct energy regions that are separated by the pion
mass. Below the pion mass threshold, interaction diagrams are
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explicitly calculated. For higher-energy processes, the inter-
actions are described by using low-energy observables such
as scattering lengths to parametrize mean-field behavior. For
instance, using the triton binding energy, Kirscher et al. [17]
predicted a value of the scattering length for the singlet state
in n-3He to 8% relative uncertainty. Although presently not
as precise as other approaches, effective field theories are
attractive because they provide clear theoretical uncertainties
from estimates of the relative contribution of higher-order
terms [18].

A final motivation for measuring the n-3He scattering
length to high precision is that it also arises in the study of
quantum liquids. Inelastic neutron scattering in liquid 3He
for a momentum Q and energy transfer E is described by a
dynamic structure factor S( Q,E) [19]. The dynamic structure
factor can be separated into coherent Sc and incoherent Si

terms as [20,21]

S( Q,E) = Sc( Q,E) + |√3�b′|2
|b′

0 + 3b′
1|2

Si( Q,E). (1)

One can see that the incoherent density term is weighted by
a ratio composed of both the triplet b′

1 and the singlet b′
0

scattering lengths, where �b′ = b′
1 − b′

0. (The real part of
the scattering length is denoted by ′). For the n-3He system
the sum b′

0 + 3b′
1 has been previously measured to <1%

relative uncertainty. An accurate determination of Sc( Q,E)
and Si( Q,E) from S( Q,E) relies on determining �b′ to
similar precision.

Neutron scattering lengths can be determined very precisely
using neutron interferometry. In the case of silicon, neutron
interferometry has been utilized to measure the scattering
length to 0.005% relative uncertainty [22]. In the past few
years, there have been several precision measurements using
neutron interferometry with light nuclei targets. These include
measurements of the spin-independent scattering length b′ of
n-1H, n-2H [23], and n-3He [24,25] to less than 1% relative
uncertainty.

Here we report a determination of the scattering length
difference �b′ = b′

1 − b′
0 of n-3He using a neutron interfer-

ometer that is based on a reanalysis of Huber et al. [26,27]
and additional data. This effort was revisited to quantify the
phase shift owing to a nonuniform magnetic field near the
target cell. Phase shifts caused by a nonuniform magnetic
field were previously underestimated and only included in our
analysis as an overall systematic uncertainty. In this work we
have more thoroughly estimated the magnetic-field gradient
induced phase shift and now include an additional correction
for this effect.

A review of the relevant neutron optical theory is covered
in Sec. II. The experimental setup and measured phase shift
caused by the 3He target sample is discussed in Sec. III.
A discussion of the source of correction to the 2008 data
set can be found in Sec. IV. In Sec. V we describe neu-
tron polarimetry measurements using 3He analyzers with
two different analysis methods. Systematically limiting this
technique is the uncertainty in the triplet absorption cross
section of 3He. This limit in determining �b′ and other
nonstatistical uncertainties are discussed in Sec. VI. Finally,

we compare world averages of the current experimental results
of the coherent and incoherent scattering lengths to various
theoretical predictions in Sec. VIII.

II. NEUTRON SCATTERING

Neutron scattering from a single target atom can be
described by the wave function [28]

� = eik·r + eikr

r
f (θ ). (2)

The first term in Eq. (2) describes the incident neutron where k
is the incident wave vector and r is the position of the neutron.
The latter term corresponds to the scattered wave in the first
Born approximation with a scattering amplitude f (θ ) that can
be expanded in terms of k as [29]

f (θ ) = −a + ika2 + O(k2) + · · · ≈ −a, (3)

where a is called the free scattering length. The approximation
in Eq. (3) is valid because the magnitude of a is of O (1 fm)
and for low-energy neutrons k is of O (10−4 fm−1). In general,
a is complex such that a = a′ + ia′′, where a′,a′′ are both real
numbers. As discussed later, neutron absorption by the target
atom is related to the imaginary term a′′. Most importantly,
a represents a measurable quantity of the interaction that is
unique for each nuclear isotope. In neutron interferometry,
even when considering a gas target, the forward-scattered
momentum transfer is zero. For this reason, it is more relevant
to define everything using the bound scattering length

b =
(

MN + mn

MN

)
a. (4)

Here MN and mn are the mass of the target atom and neutron,
respectively.

To describe neutrons scattering from a homogeneous
material, one uses the time-independent Schrödinger equation(

�
2K2

2mn
+ Vopt

)
ψ = �

2k2

2mn
ψ, (5)

where K is the magnitude of the neutron wave vector in the
material. The optical potential

Vopt = 2π�
2

mn
Nb, (6)

is the effective potential of the material with an atom density
N . The index of refraction

n = K

k
=

√
1 − λ2Nb

π
, (7)

of the material can be derived using Eqs. (5) and (6). Here
λ = 2π/k is the neutron wavelength in vacuum. The index of
refraction for neutron optics is conceptually the same as for
light optics with two subtle differences. For one, the index of
refraction for neutrons is only a small deviation from unity,
i.e., 1 − n = O(10−6), and generally n is less than 1.

A neutron interferometer splits the neutron’s wave function
along two spatially separate paths labeled I and II. When a
sample of thickness D is introduced into beam path II, there
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FIG. 1. (Color online) A simplified schematic of an interferom-
eter. A beam splitter separates a neutron wave function into two
paths that are recombined in a final analyzing beam splitter before
being detected. A sample placed in one path causes a relative phase
shift φsam because of a change in wavelength owing to the index of
refraction of the material.

is a phase difference relative to the path I of

φsam = k(1 − n)D = −λNDb′. (8)

This phase shift is attributable to the change of the neutron
wavelength as it passes through a material. A conceptual illus-
tration of this is provided in Fig. 1. A neutron interferometer
is extremely sensitive to phase differences between paths and
therefore can be used to measure φsam to high precision. Along
with information of the quantities λ, N , and D, often performed
using individual auxiliary measurements, one can use Eq. (8)
to determine the scattering length of the material.

In the case of neutrons with spin σ n incident on a target
with nuclear spin I , the scattering length can be written as

b = bc + 2bi√
I (I + 1)

σ n · I, (9)

where bc and bi are called the coherent and incoherent scat-
tering lengths, respectively. Despite its name the incoherent
scattering length is attributable to a coherent interaction and
corresponds to the spin-dependent part of the scattering length.
The scattering lengths for a given spin channel, J = I ± σ n,
are defined as

b+ = bc +
√

g−
g+

bi, (10a)

b− = bc −
√

g+
g−

bi. (10b)

Here g+ = (I + 1)/(2I + 1) and g− = 1 − g+ = I/(2I +
1) are statistical weight factors. Equations (10a) and (10b)
are for general systems; for n-3He there is a triplet (J = 1)
and singlet (J = 0) channel allowing us to write the triplet
scattering length as b+ ≡ b1 and the singlet scattering length
as b− ≡ b0 (likewise, g+ → g1 and g− → g0). Inverting
Eqs. (10a) and (10b), the 3He coherent and incoherent

scattering lengths become

bc = g1b1 + g0b0, (11a)

bi = √
g1g0(b1 − b0). (11b)

The total cross section for the n-3He interaction is σt =
σs + σa . Here σs is the scattering cross section given by

σs = σs,c + σs,i = 4π |bc|2 + 4π |bi |2. (12)

The absorption cross section σa is related to the imaginary part
of the scattering length b′′ by the optical theorem [30]

σa = 4π

k
b′′. (13)

The measured unpolarized neutron absorption cross section
for 3He(n,p)3H is σun = (5333 ± 7) b [31] at the reference
thermal neutron wavelength λth = 1.798 Å. The uncertainty
quoted for σun, as well as all other uncertainties quoted below,
is a standard uncertainty with a confidence level of 68%. For
3He(n,γ )4He the absorption cross section is (54 ± 6) μb [32]
at these energies and thus for our purposes can be ignored.

The absorption cross section for polarized neutrons incident
on polarized 3He nuclei is given by

σa = σun ∓ P3σp, (14)

where P3 is the 3He polarization. The ∓ sign in Eq. (14)
represents the cases where the neutron and 3He spins are
aligned parallel (−) or antiparallel (+). Similar to Eqs. (11a)
and (11b), σun and σp can be defined in terms of singlet and
triplet contributions as

σun = g1σ1 + g0σ0, (15a)

σp = g0(σ0 − σ1). (15b)

Because σa is dominated by the singlet channel, it is
often assumed that σ1 = 0 so that σun = σp. Although σ1 is
small, there is no theoretical justification for assuming σ1

to be precisely zero. Neutron transmission measurements are
consistent with σ1 = 0 only at the level of a few percent. The
uncertainty in the triplet absorption cross section leads to the
largest systematic uncertainty in both neutron interferometric
and pseudomagnetic spin precision measurements of �b′. This
is discussed in more detail in Sec. VI A.

III. EXPERIMENTAL PROCEDURE

We used a neutron interferometer to measure the phase
difference between two polarized neutron states that are
transmitted through a polarized 3He target cell. Neutrons
are polarized in the vertical direction and can be flipped
by π radians using a precession coil spin flipper. The
target 3He polarization direction stays constant throughout a
measurement, but its magnitude decreases exponentially in
time. For neutrons with spin state ↑ and ↓ incident on a
polarized 3He sample we can insert the effective scattering
length for 3He [Eq. (9)],

b′ = b′
c ± b′

i√
3
, (16)
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FIG. 2. (Color online) The n-3He experiment (not to scale). (a) A monochromatic neutron beam entering from the left is polarized by a
supermirror. The polarization direction can be changed using a precession coil spin flipper. A 2-mm × 6-mm slit provided collimation just
before the interferometer. (b) Neutrons Bragg diffract in the first blade of the interferometer, coherently splitting the neutron into two separate
paths. The two paths are diffracted in separate mirror blades so that they mix and interfere at the analyzer blade of the interferometer. One
neutron path contains the 3He target cell, while the other path contains 8 mm of boron-free glass to compensate for the phase shift caused by the
target cell windows. A quartz phase flag is rotated to vary the intensity in the two 3He-filled proportional counters labeled the O- and H-beam
detectors. The 3He polarization was monitored by a third 3He detector labeled C4.

into Eq. (8) and find the phase difference

�φ0 = φ↑
sam − φ↓

sam

= −λN3D3

[(
b′

c + N+
b′

i√
3

− N−
b′

i√
3

)

−
(

b′
c − N+

b′
i√
3

+ N−
b′

i√
3

)]
, (17)

where N3 is the 3He number density and D3 is the active length
of the target cell. Here N± = (1 ± P3)/2 is the fraction of 3He
nuclei in each polarization state. Using Eqs. (11b) and (17)
one finds that the phase difference between opposite neutron
spin states is related to the triplet and singlet scattering lengths
by

b′
1 − b′

0 = −2�φ0

N3λD3P3
. (18)

The factors in the denominator of Eq. (18) are determined
simultaneously with �φ0 by measuring the spin-dependent
transmission of neutrons through the 3He cell. This is an
advantage over typical interferometric measurements of b′
in that none of the factors in the denominator need to
be determined individually; the spin-dependent transmission
asymmetry determines their product directly.

A. Neutron interferometer and facility

This experiment was done at the National Institute of Stan-
dards and Technology’s (NIST) Center for Neutron Research
(NCNR) in Gaithersburg, MD. A 20-MW reactor produces
a steady source of neutrons that are moderated by a liquid-
hydrogen cold source [33]. These moderated neutrons are
transported from the cold source to several neutron instruments
by 58Ni-coated glass guides. At the Neutron Interferometer and
Optics Facility (NIOF) a double monochromator assembly
reflects 2.35-Å neutrons into an environmentally isolated

enclosure [34]. The first monochromator is a single pyrolytic
graphite PG(002) crystal that reflects neutrons out of the
neutron guide and toward a second monochromator 3 m
away. This second monochromator vertically focuses the
beam using nine individually adjustable 1-cm ×5-cm PG(002)
crystals [35]. Further details of the facility can be found in
Ref. [36].

A schematic of the experiment inside the enclosure is
shown in Fig. 2. After the double-monochromator assem-
bly a pyrolytic graphite filter was used to remove λ/2 =
1.175-Å neutrons from the beam. Neutrons passing through
the filter were polarized by a transmission-mode supermir-
ror polarizer [37]. The polarizer consisted of two separate
0.64- and 0.73-m-long supermirrors that were slightly offset
so that no incoming neutrons had a clear line of sight to
the interferometer. Neutrons in the incorrect spin state were
reflected from the supermirror and absorbed on cadmium
shielding.

Immediately downstream of the supermirror polarizer was
a precession coil spin flipper made from two orthogonal
aluminum wire coils [38]. One coil provided a magnetic field
opposite of the guide field that created, in the absence of the
other coil, a zero-field region in the center of the coils. A
second coil created a magnetic field,

Bf = π2
�

2

μnmnλ
L−1, (19)

perpendicular to the neutron polarization direction. The field
Bf was tuned such that the neutron undergoes half a Larmor
precession cycle. Here L is the active length inside the coils, mn

is the neutron mass, μn = γ �σ n is the neutron magnetic dipole
moment, and γ is the gyromagnetic ratio. When energized, the
precession coil spin flipper allowed the neutron spin state to
be rotated π radians with nearly 100% efficiency.

Helmholtz coils 56 cm in diameter were centered on the
target cell and provided a field of 1.5 mT. To preserve the
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FIG. 3. The skew symmetric interferometer made by Cliff
Holmes and others at the University of Missouri-Columbia machine
shop (on loan from Dr. Samuel A. Werner).

neutron polarization between the supermirror polarizer and
the Helmholtz coils a series of permanent magnets provided a
magnetic guide field with a minimum of 1 mT. The heat output
from the Helmholtz coils, which was not actively cooled,
increased the temperature variation for this experiment. The
temperature around the interferometer was controlled with
heating tape and calibrated platinum resistance sensors in
a closed-loop, proportional-integral-derivative operation and
typically achieved a temperature stability of ±5 mK [35].
For this experiment the interferometer enclosure was stable
to only ±20 mK because of the increased heat caused by the
Helmholtz coils.

A neutron interferometer consists of a perfect silicon crystal
machined so that there are several parallel crystal blades on
a common monolithic base. The interferometer used here is
shown in Fig. 3. Neutrons entering the interferometer Bragg
diffract in the first (splitter) blade of the interferometer. This
coherently separates the neutron into two spatially separate
paths labeled I and II [see Fig. 2(b)]. Both neutron paths are
Bragg diffracted in a second (mirror) blade and interfere in the
final (analyzer) blade of the interferometer. Conceptually, this
is analogous to a Mach-Zehnder interferometer in light optics.
The two beams exiting the interferometer are historically
labeled the O and H beams. Neutrons are detected with
near 100% efficiency using 25.4-mm-diameter cylindrical
3He-filled proportional counters.

The target was a sealed glass cell containing 3He gas (see
Fig. 4) placed in path I of the interferometer. A phase flag,
which consisted of 2-mm-thick quartz, was placed in both
paths of the interferometer. Rotating the phase flag by an
angle ε varied the relative phase shift between the two neutron
paths and thus modulated the intensity in the O- and H-beam
detectors. For the O- and H-beam detectors, the intensity can
be written for a neutron with spin state ↑ (↓) as

I0(ε) = c
↑(↓)
0 + c

↑(↓)
1 cos[φflag(ε) + φ↑(↓)], (20)

IH (ε) = c
↑(↓)
3 − c

↑(↓)
1 cos[φflag(ε) + φ↑(↓)], (21)

where I0 + IH = constant. (22)

FIG. 4. Two 3He cells. The larger of the two cells, called Skylight,
was used in the polarimetry measurements. The smaller flat-window
cell called Pistachio was used as a target cell. Rubidium deposits can
be seen as dark spots along the walls of the cell.

The coefficients c
↑(↓)
i for i = 0,1,2,3 are treated as fit param-

eters. Here [φflag(ε) + φ↑(↓)] is the relative phase difference
between the two paths. The phase φ↑(↓) includes both φsam

and any initial relative phase difference between paths I and
II. The term φflag(ε) = c2f (ε) is the phase shift owing to the
phase flag, where

f (ε) = sin(θB) sin(ε)

cos2(θB) − sin2(ε)
(23)

is the difference in optical path length for paths I and II. Here
θB = 37.73◦ is the Bragg angle for the interferometer. Because
3He has spin-dependent absorption, c

↑
i �= c

↓
i for i = 0,1,3.

The contrast or fringe visibility C of the interferometer
is the ratio of the amplitude c1 and mean c0 in Eq. (20). In
practice, the contrast for a typical neutron interferometer is
less than unity owing to a host of reasons including small
crystal imperfections and temperature gradients. Under the
best experimental conditions, neutron interferometers have
demonstrated at most around 90% contrast. In this experiment
there are two losses of contrast that, although not unique, are
of particular interest.

The first case is attributable to the interaction of the neutron
as it passes through the glass windows of the target cell. As
a neutron passes through the glass windows it experiences
a large phase shift φwin. Although this phase shift φwin

is spin independent and is canceled when subtracting the
phase measured in both neutron spin states, φwin does affect
the measured contrast and hence overall precision of the
experiment. This is because the incident neutron beam contains
a small wavelength spread of σλ/λ = 1%. Neutrons of slightly
different wavelengths will experience slightly different φwin,
which dephases the detectable neutron beam after the interfer-
ometer. This does not affect the measured phase determined by
Eq. (20), but dephasing does decrease the contrast. Assuming

064004-5



M. G. HUBER et al. PHYSICAL REVIEW C 90, 064004 (2014)

a Gaussian spectrum of λ, the measured contrast becomes
C = C0 exp [ − (NwinDwinb

′
winσλ)2/2], where C0 is the initial

contrast of the interferometer. Here Nwin, Dwin, and b′
win are

the density, thickness, and effective scattering length of the
window, respectively. This effect is negligible for the 3He itself
because the density of the gas is much lower. A more complete
description of coherence and subsequent contrast loss can be
found in a number of sources including Refs. [35,39–43]. To
minimize the loss of contrast from the cell windows, 8 mm of
compensating glass made from two target cell windows was
placed in path I of the interferometer.

Another mechanism of contrast loss in this experiment
is attributable to the fact that the 3He sample is a neutron
absorber; therefore, both c0 and c1 are decreased from what
they would otherwise be in an empty interferometer. For
absorption we have [29]

c0′ = c0

2
(1 + e−σaN3D3 ), (24)

c1′ = c1e
−σaN3D3/2, (25)

C = c1′

c0′
= C0 sech(σaN3D3/2). (26)

Absolute contrast during this experiment was a function of
the environment, effectiveness of compensation glass, neutron
spin state, and the 3He polarization and varied between 30%
and 75%.

B. Glass target cells

The NIST optical shop fabricated four geometrically
identical flat-windowed 3He cells. Two of these cells, named
Cashew and Pistachio (Pistachio is shown in Fig. 4) were
used in this experiment. Each cell was made from boron-free
aluminosilicate glass [44] and consisted of two flat 25-mm-
diameter, 4-mm-thick windows fused onto a 34-mm-long
cylindrical base. Before the cells were sealed they were filled
with between 1.7 and 1.9 bar of 3He gas. Nitrogen and
rubidium were also added to polarize the 3He using spin
exchange optical pumping (SEOP) [45]. Properties of the cells
can be found in Table I.

TABLE I. The 3He-cell properties. Spin relaxation times are
for the interferometer facility which had magnetic-field gradients.
N3σpD3 is the opacity of the cell. The pressure at 26 ◦C was
determined assuming that the transmission through the cell windows
was 88% [47]. The cell Cashew’s relaxation time was 135 h in 2008
and 150 h in the 2013 data set. Pistachio was used only in 2008.

Cell name Relaxation N3σpD3 Pressure Function
time (h) at 2.35 Å (bar)

Cashew (’08) 135 1.1 1.9 Target
Cashew (’13) 150 1.1 1.9 Target
Pistachio 35 1.0 1.7 Target
Skylight 110 3.1 3.1 Polarimetry
Haystack 80 3.0 2.94 Polarimetry
Whiteface 35 3.6 3.50 Polarimetry

The environmental constraints at the NIOF required that
the cells be polarized at a separate facility. In this facility
SEOP was employed to polarize the 3He gas over a period of
2 days to an initial 3He polarization between 65% and 75%.
It was also possible at the SEOP facility to monitor and flip
the 3He polarization by nuclear magnetic resonance (NMR)
techniques [46]. The cells were transported to the NIOF using a
portable battery-powered solenoid. Losses in 3He polarization
from transporting the cell between the two facilities were
measured to be <2%. Helmholtz coils placed around the
interferometer provided a uniform magnetic field which
minimized the loss of 3He polarization owing to magnetic-field
gradients. Cell relaxation times at the interferometer varied per
cell with a maximum of 150 h.

C. Phase data

The phase shift caused by the spin-dependent interaction
with the target 3He was measured by rotating the phase flag
from an angle of ε = 0 mrad to εmax and then from ε = εmin to
0 mrad in 2.18-mrad steps. The angles εmax and εmin varied
slightly per run, with εmax − εmin = 56.68 mrad. Each run
lasted 4 to 9 h, with a statistical mode of 4.4 h. At each angle of
the phase flag the spin flipper was operated in a off-on-on-off
sequence to reduce the effect of linear drifts. Two simultaneous
interferograms, one for each precession coil spin-flipper state,
were constructed from the background-subtracted off-on-on-
off data. A typical pair of interferograms are shown in Fig. 5.
Figure 6 shows the measured phases φ

↑
1 and φ

↓
1 over a span of

1 month that includes five cell transfers.
Comparing the two interferograms yields a measured phase

shift �φM . A correction must be applied to �φM = φ
↑
1 − φ

↓
1

to determine �b′ using Eq. (18). This is because the incident
beam is an incoherent mixture of both spin-up and spin-down
neutrons (the neutron polarization Pn �= 1). The measured
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FIG. 5. (Color online) Typical interferograms generated by a off-
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(blue squares) and on (red circles). Each point was counted for 150 s.
The lower intensity for the “Flipper ON” interferogram is attributable
to stronger absorption in that case. The uncertainties shown are purely
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statistical uncertainties are smaller than the points.

interferogram is actually a sum of two different interferograms,

I0(off) = c
↑
1 cos(φflag + φ

↑
1 )

= cos(φflag + φ2) + η− cos(φflag + φ3), (27)

where

η− = (1 − Pn)

(1 + Pn)
e−N3σpD3P3 (28)

is the ratio of the number of minority-spin neutrons to the
number of majority-spin neutrons that exit the 3He target cell.
In Eq. (27) the mean intensity has been subtracted but this does
not affect the overall result below. When the precession coil
spin flipper is energized,

I0(on) = c
↓
1 cos(φflag + φ

↓
1 )

= η+ cos(φflag + φ2) + cos(φflag + φ3), (29)

where

η+ = (1 − sPn)

(1 + sPn)
e+N3σpD3P3 (30)

is again the ratio of the number of minority-spin to majority-
spin neutrons. We can now write the measured phase shift
�φM in terms of �φ0 = φ2 − φ3, which is the phase shift if
the neutron polarization had been perfect (100%), using

�φM = arctan

(
sin �φ0

η+ + cos �φ0

)

− arctan

(
η− sin �φ0

1 + η− cos �φ0

)
. (31)

No correction is necessary for the fact that the helium
polarization P3 �= 1 because each individual neutron interacts
with multiple 3He atoms.

We have collected two sets of n-3He phase-shift data taken
in separate years. The first run of this experiment was done in
2008 and has previously been reported in Huber et al. [26,27].
A second data set consisting of 6 months of additional phase
measurements was taken in the spring and summer of 2013.
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FIG. 7. (Color online) The average cell transmissions I↑ (blue
squares) and I↓ (red circles) as measured by the C4 detector for a
subset of the data that includes five cell transfers. The data taken with
the cell Pistachio are marked. The statistical uncertainties are smaller
than the points.

D. Measuring cell relaxation

Target cell transmission was measured in situ during each
scan using the C4 detector (see Fig. 7). For each run the
asymmetry

A =
∣∣∣∣I↑ − I↓

I↑ + I↓

∣∣∣∣ (32)

was calculated from the individual off-on spin-flipper asym-
metries. The asymmetry is related to the neutron polarization
Pn and spin-flipper efficiency,

s =
∣∣∣∣ Pn(on)

Pn(off)

∣∣∣∣ , (33)

where on (off) refers to the state of the precession coil spin
flipper [48], by

A = (1 + s)PnPA

2 + (1 − s)PnPA

. (34)

The values of s and Pn are known from the polarimetry
measurements. For each interferogram an averaged asymmetry
A was calculated. The analyzing power PA of a 3He cell can
be written [49]

PA = tanh(ξ ), (35)

where

ξ = N3σpD3P3 (36)

is the product of the opacity of the cell N3σpD3 and 3He
polarization. One can use Eqs. (34) and (35) to write ξ in
terms of the measured asymmetry A as

ξ = tanh−1

[
2A

(s + 1)Pn + (s − 1)PnA

]
. (37)
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IV. PHASE SHIFT OWING TO A NONUNIFORM
MAGNETIC FIELD

When a magnetic field B in the direction of the neutron
polarization is present, the additional magnetic potential VM =
−μn · B experienced by the neutron creates a phase shift,

φmag = ±μnmnλD

2π�2
B = ±κDB, (38)

where κ = −545 mrad/(cm-mT). The distance D is the path
length inside the interferometer. The (+) and (−) signs
correspond to neutron polarization parallel and antiparallel
to the magnetic field, respectively. When calculating the phase
difference between precession coil spin-flipper states off and
on the ± sign in Eq. (38) reverses; hence, in the absence of
polarized 3He gas this difference is 2φmag for each path of the
interferometer. Because the length of both interferometer paths
are equal, φmag can only be nonzero if the magnetic field in the
two paths are different. In this case, the phase shift difference
will be

2φmag = 2κ(B1 − B2)D, (39)

where B1 and B2 are the magnetic-field strengths averaged over
paths 1 and 2, respectively. For this interferometer the longer,
parallel part of the beam paths, which contained both the cell
and the compensating glass, was 6.4 cm, with a total path
length of 8.6 cm. A magnetic-field gradient will be manifested
as a nonzero phase shift in the absence of polarized gas and a
nonzero y intercept for a fit of the variation of phase shift with
3He polarization.

By direct measurements without the cell inside the interfer-
ometer Huber et al. [26,27] determined 2φmag = 2 ± 10 mrad,
hence consistent with zero but with a relatively large uncer-
tainty. Both the phase shift data versus helium polarization and
an estimate of 2φmag from 3He relaxation also yielded 2φmag

consistent with zero. However, after applying the incoherent
beam correction of Eq. (31) a fit of the phase shift data versus
helium polarization yielded a nonzero value of (16 ± 4) mrad.
Furthermore, we found an error in the estimate of 2φmag from
3He relaxation in Ref. [27]. This led us to directly map the
magnetic field, revisit the estimate from 3He relaxation, and
perform a better evaluation of the y intercept of �φ versus
P3 (see Sec. VII). In addition to this reanalysis of our 2008
data, we obtained new data in 2013 with a focus on a better
evaluation of the intercept. In particular, we obtained data for
both directions of the 3He polarization and substantially more
data at P3 = 0.

Figure 8 shows a map of the magnetic field obtained
with the Helmholtz coils, which revealed a fairly linear
gradient (1/Bz)dBz/dy ≈ 7 × 10−4 cm−1. The two paths of
the interferometer are separated by 2.2 cm; hence, this gradient
yields B1 − B2 ≈ 2.3 × 10−3 mT and thus 2φmag ≈ 16 mrad.
Although magnetic parts were avoided near the 3He cell, there
was a rotation stage with magnetic components below the coils.
This stage was necessary so that the interferometer could be
aligned to satisfy the Bragg condition.

The observed relaxation time T1 of the 3He gas results
from contributions from dipole-dipole relaxation [50], wall
relaxation [51], and magnetic-field gradients. The first two
components yield the “intrinsic” relaxation time of the cell,
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FIG. 8. (Color online) The difference between the maximum
magnetic field in mT and the magnetic field Bz in the region of
the target cell’s center (0,0) measured using a fluxgate magnetometer.
Contour lines show a 7 × 10−4 cm−1 field gradient.

Ti. The observed relaxation time in the interferometer in the
presence of a field gradient is

1

T1
= 1

Ti
+ 1

Tfg
, (40)

where the gradient contribution is given by [52]
1

Tfg
= 6700

p

( |∇Bx |2
B2

+ |∇By |2
B2

)
= 6700β2

p
h−1. (41)

Here p is the pressure in bar and Bx,y are the perpendicular
components of the magnetic field where the applied field is
in the z direction. For the cell Cashew, T1 = 135 h and Ti =
330 h, which yields β = 1.1 × 10−3 cm−1. Whereas β includes
several components, by using ∇ × B = 0 and by assuming
the gradient is dominated by the linear gradient observed in
the field map, one obtains (1/Bz)dBz/dy ≈ 1.0 × 10−3 cm−1,
B1 − B2 ≈ 3.6 × 10−3 mT, and thus 2φmag ≈ 25 mrad. It is
likely that this value is an upper limit because several gradient
components contribute to relaxation. As discussed in Sec. VII,
we obtained y intercepts of (16 ± 4) mrad in the 2008 run and
(21 ± 3) mrad in the 2013 run, consistent with the estimates
from the field map and 3He relaxation.

Between 2008 and 2013 other interferometry experiments
were performed at the NIOF. Changes to the NIOF included
different shielding, changes to the polarizer, wavelength
changes, the use of different interferometers and mounting
and a change in the monochromator crystal [36]. Despite these
changes, the experimental conditions were reasonably well
reproduced. Planning for additional phase data at P3 = 0 was
started almost immediately after 2008 as the magnetic-field
gradient became more of a concern. The Helmholtz coils and
spin flipper were at identical positions in 2008 and 2013.
Other components of the experiment like the electronics,
detectors, the interferometer, cell mounting, and other system
components were the same between the two runs as they
were reserved for this work and not otherwise used. Initial
P3 was 10% higher in 2013 because of advances in helium
polarization techniques [53]. Another difference was that in
2008 the polarization direction of P3 was kept fixed, whereas
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in 2013 P3 was twice polarized in the reversed direction. Last,
the neutron polarization was 3% lower (see Sec. V B) in 2013
owing to changes in the supermirror alignment.

V. AUXILIARY MEASUREMENTS

A. Neutron wavelength

Because the skew symmetric interferometer uses a (220)
reflection in silicon, it is necessary to eliminate higher order
n = 2,3, . . . reflections from the incident beam. Neutrons with
wavelengths of λ < 2.35 Å are poorly polarized by the super-
mirror and could potentially affect the phase and polarimetry
measurements. Neutrons with wavelengths corresponding to
n � 3 are suppressed by the liquid-hydrogen cold source.
However a non-negligible amount (5%) of λ/2 =1.175-Å
neutrons are present in the incident beam. To eliminate these
neutrons, a pyrolytic graphite filter [54] consisting of nine
separate PG crystals of varying thickness (50 mm overall)
was placed upstream of the supermirror polarizer. Neutrons of
wavelength 1.175 Å are preferentially reflected by the (114)
plane of the graphite and are absorbed by a surrounding boron
shield.

A measurement of the fraction of λ/2 neutrons was
performed with the interferometer removed and a nearly
perfect silicon analyzer crystal (NPC) placed in the direct beam
before the interferometer. This crystal analyzer is denoted as
“nearly perfect” because it contains a small mosaic spread
(a small variation in lattice vector direction throughout the
crystal) of 3.5 × 10−4 rad. The mosaic of the crystal allows
a greater fraction of incident neutrons to satisfy the Bragg
condition; thus, more reflect from the crystal and increase the
overall reflected intensity. The relative intensity of (Iλ/2)/Iλ

was measured by rotating the “nearly perfect” crystal ±θB and
examining the reflected beams. In addition to the NPC, a disk
chopper made from a rotating, neutron-absorbing cadmium
disk with a small slit was used as well. The disk chopper
allows time-of-flight analysis of the neutron spectrum. Both
techniques placed an upper limit of (Iλ/2)/Iλ < 0.1% that was
determined by comparing the relative intensities with and
without the filter in place. This ratio is mainly limited by
the accuracy in determining the small background signal. The
presence of 1.175-Å neutrons at this level had a negligible
effect on �φM and polarimetry measurements.

B. Polarimetry

Several neutron polarimetry measurements were made
throughout the experiment to verify that the neutron po-
larization was stable over the duration of the experiment.
Each polarimetry measurement took place during pauses in
collection of the phase data. Common techniques to measure
neutron polarizations and spin-flipper efficiencies along with
their difficulties are described in Ref. [55]. In this experiment
the neutron polarization Pn was measured with 3He cells and
by using two analysis methods, which we refer to as the
asymmetry and normalized transmission methods. Polarimetry
cells are physically larger than target cells and one of them is
shown in Fig. 4. Properties of the cells are listed in Table I.

A 3He analyzer had two advantages over crystal or
supermirror analyzers. First, the analyzing power PA of the

cell was determined from unpolarized neutron transmission
measurements. Second, we could flip the cell’s polarization by
π radians using NMR at the SEOP facility. This NMR-induced
flip eliminated the need for a second spin flipper to uniquely
determine Pn, PA, and spin-flipper efficiency. These cells had
three times the opacity of the target cells and thus provided high
analyzing powers that were relatively insensitive to variations
in 3He polarization.

The setup for both methods was the same. Low-neutron flu-
ence rates in the H-beam prevented any practical polarization
analysis behind the interferometer. Instead, the interferometer
was removed from its cradle and replaced with one of the
analyzing cells. Because the neutron polarization produced
by the supermirror polarizer should depend very weakly on
wavelength and the beam spectrum was sufficiently narrow
(σλ/λ = 1%), the difference between the measured Pn of the
direct beam and the neutron polarization of paths I and II of
the interferometer is believed to be negligible. The neutron
transmission through the cell was measured using a 3He
detector located directly behind the analyzer.

For both methods the analyzing power of the cell was
determined by the transmission of unpolarized neutrons. The
analyzing power of a 3He cell is given by Eq. (35). For the
polarimetry cells the range of initial PA was between 86% and
99% but was typically around 97% depending on the cell and
its initial 3He polarization. Equation (35) can be rewritten as a
ratio of two unpolarized neutron transmission measurements
as

PA =
√

1 −
(

Tun

Tpol

)2

, (42)

where Tpol(Tun) is the transmission of unpolarized neutrons
through a polarized (unpolarized) 3He cell. These transmis-
sions are discussed later in Sec. V B 2. Unpolarized neutrons
were obtained by translating the supermirror out of the beam
using an encoded linear stage. The position of the supermirror
was reproducible to within 1 μm. To measure Tun the analyzer
cell was depolarized by temporarily connecting the Helmholtz
coils to an alternating-current voltage supply.

1. Asymmetry method

The asymmetry method used the difference in count rates
for the two neutron spin states, I↑ and I↓, to determine the
neutron polarization and spin-flipper efficiency. Here I↑(↓)

is the intensity when the neutron and 3He polarization are
aligned parallel (antiparallel). The asymmetry A is related to
the neutron polarization and spin-flipper efficiency by

A = I↑ − I↓

I↑ + I↓ = (1 + s)PnPA

2 + (1 − s)PnPA

. (43)

To uniquely determine Pn and s using this method, it is
necessary to have two separate asymmetries A and A∗, where
one reverses the direction of the 3He polarization. Similar to
Eq. (43), we have

A∗ = (1 + s)PnPA∗

2 − (1 − s)PnPA∗
. (44)

The minus sign in the denominator of Eq. (44) compared to that
of Eq. (43) stemmed from defining A∗ � 0 and incorporating
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FIG. 9. (Color online) The neutron polarization (circles) and
spin-flipper efficiency (diamonds) measured in 2008 (solid) and 2013
(open) determined using the asymmetry method. The uncertainties
shown are purely statistical. Fits of the data are shown as solid lines
for 2008 and dotted lines for 2013. Points with larger uncertainties
were taken when the cell had lower polarization.

the appropriate signs in the following equations. The analyzing
powers PA and PA∗ were not the same because of a few percent
loss in P3 caused by performing an NMR-induced spin flip
and transporting the cell to and from the SEOP facility. Using
Eqs. (43) and (44) the spin-flipper efficiency is

s = A[1 + A∗]PA∗ + PA[A − 1]A∗

A[A∗ − 1]PA∗ + PA[1 + A]A∗ . (45)

With knowledge of s, Pn can be determined via

Pn = 2A

PA[(s − 1)A + (1 + s)]

= 2A∗

PA∗ [(1 − s)A∗ + (1 + s)]
. (46)

Measurements of Pn and s that were obtained using the
asymmetry method are shown in Fig. 9.

The intensities I↑ and I↓ for both this method and the
normalized transmission method discussed in Sec. V B 2 were
performed symmetrically around measurements of Tpol and,
hence, PA and PA∗ . Specifically, I↑ (and likewise I↓) was
measured twice, once before and once after a measurement of
Tpol. The averages of I↑ and I↓ were then used in Eqs. (43)
and (44). This was done to compensate for the decay of P3

while the measurements were being performed to a level where
no correction for P3 decay was needed.

2. Normalized transmission method

When Pn = 1 the transmission of neutrons through a
polarized 3He cell is

Toff(on) = Tg exp(−N3σaD3)

= Tg exp(−N3σunD3) exp (±ξ ), (47)

where Eqs. (14) and (36) have been used to relate the
absorption cross section σa to ξ . The signs (+) and (−)
are for “off” and “on” states of the precession coil spin

flipper, respectively. Here we have taken that the initial neutron
polarization and 3He polarization is in the same direction. Tg

is the transmission of neutrons through the cell windows.
For a neutron beam with Pn � 1 the transmission Toff

becomes

Toff =
(

Tg

2

)
e−N3σunD3

[
(1 + Pn)eξ + (1 − Pn)e−ξ

]
. (48)

Equation (48) can be expressed more compactly as

Toff = Tge
−N3σunD3 [cosh(ξ ) + Pn sinh(ξ )]. (49)

The transmission of unpolarized neutrons through a polar-
ized 3He cell is given by

Tpol = Tun cosh(ξ ), (50)

where

Tun = Tge
−N3σunD3 (51)

is the transmission of unpolarized neutrons through an unpo-
larized 3He cell. Dividing Eq. (49) by Eq. (50) yields

Toff

Tpol
= 1 + Pn tanh(ξ ). (52)

It follows from Eqs. (35), (42), and (52) that

Pn =
Toff
Tpol

− 1√
1 − (

Tun
Tpol

)2
. (53)

When one energizes the spin flipper, one has the antiparallel
case, where

sPn =
1 − Ton

Tpol√
1 − (

Tun
Tpol

)2
. (54)

It should be noted that the uncertainty associated with
determining the polarimetry from Eq. (53) is different than that
for Eq. (54). Propagating the uncertainty σ of the polarization
product Zoff = PAPn and Zon = PAsPn, we find

σ 2
Zoff

=
(

1

Tpol

)2

σ 2
Toff

+
(

Toff

T
2

pol

)2

σ 2
Tpol

(55)

σ 2
Zon

=
(

1

Tpol

)2

σ 2
Ton

+
(

Ton

T
2

pol

)2

σ 2
Tpol

. (56)

For this experiment, Zoff ≈ Zon ≈ 0.9 and Ton ≈ 0.05Toff .
Using Eqs. (55) and (56) we find that

σZon ≈ 0.05σZoff . (57)

So despite the relative uncertainties of Toff and Ton being
comparable, the overall uncertainty in determining Pn versus
sPn differs by a factor of 20. The contribution to the overall
uncertainty of Pn from the uncertainty in PA is small because of
higher statistics without the supermirror in the neutron beam.
By reversing the 3He spin using NMR we can invert Eq. (57)
so that

σZoff ≈ 0.05σZon , (58)
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FIG. 10. (Color online) The neutron polarization (circles) and
neutron polarization when energizing the precession coil spin flipper
(squares) measured in 2008 (solid) and 2013 (open) determined using
the normalized transmission method. The uncertainties shown are
purely statistical. All points shown were taken in the antiparallel state
of n-3He (see text). Fits of the data are shown as solid lines for 2008
and dotted lines for 2013. Points with larger uncertainties were taken
when the cell had lower polarization.

when the 3He polarization has been flipped. It follows
that using the antiparallel state to determine Pn or sPn is
advantageous despite a much smaller Ton or Toff , respectively,
being measured because the overall uncertainty is better. Thus,
we have chosen to use only the antiparallel measurements for
the normalized transmission method (shown in Fig. 10).

3. Polarimetry result

Both the asymmetry and the normalized transmission
methods yield neutron polarizations and spin-flipper effi-
ciencies to less than 0.1% relative standard uncertainty.
These results are shown in Table II. For the 2008 data
set there was a 2σ disagreement in measured neutron po-
larization between the two methods. To handle this dis-
crepancy, the uncertainties for the 2008 polarimetry re-
sults are determined by adding the largest uncertainty of
the two methods in quadrature with the difference be-
tween the methods, for example, σPn

=
√

σ 2
largest + (�Pn)2 =√

(0.0033)2 + (0.928 74 − 0.929 41)2. In 2013 the polarime-
try (see Figs. 9 and 10) data were more consistent and

TABLE II. Results of the polarimetry for the various methods
used. σR is the relative standard uncertainty.

Variable Method 2008 2013

Value (σ ) σR (%) Value (σ ) σR (%)

Asy. 0.928 74(33) 0.04 0.902 60(36) 0.04
Pn N.T. 0.929 41(17) 0.02 0.901 84(41) 0.05

Asy. + N.T. 0.929 08(75) 0.09 0.902 27(55) 0.06
Asy. 0.995 02(31) 0.03 0.994 44(63) 0.06

s N.T. 0.995 16(23) 0.02 0.995 06(63) 0.06
Asy. + N.T. 0.995 10(34) 0.03 0.994 75(89) 0.09

this expansion of their uncertainty was not done. An equal
weighted average of the asymmetry and normalized transmis-
sion methods yields

Pn = 0.929 08 ± 0.000 75 in 2008

= 0.902 27 ± 0.000 55 in 2013 (59)

and

s = 0.995 10 ± 0.000 34 in 2008

= 0.994 75 ± 0.000 89 in 2013. (60)

The differences between the 2008 and the 2013 neutron
polarizations is believed to be attributable to nonreproducible
changes in the angular separation between the two mirror
surfaces of the supermirror polarizer that is often varied
between experiments. In both 2008 and 2013 the neutron
precession coil spin flipper was the same device, was located
in the same place, and showed much better agreement.

VI. SYSTEMATIC EFFECTS

A. Absorption cross section

The quantity ξ is a function of λ and can be written as

ξ = N3σpD3P3 = N3

[
1

4
(σ0 − σ1)

]
λ

λth
D3P3, (61)

where λth = 1.798 Å is the reference thermal neutron wave-
length. To extract N3λD3P3 from ξ , one needs the singlet and
triplet absorption cross sections σ0 and σ1. The experimental
value of σun ≈ σ0/4 is well known from transmission mea-
surements as (5333 ± 7) b at λth [31]. However, the triplet
absorption cross section is poorly known experimentally.
Passell and Schermer [56] measured neutron transmission
through 3He and determined the ratio of singlet to total
absorption cross section to be g0σ0/σun = (1.010 ± 0.032).
An indirect measurement of the same quantity was made
by Borzakov et al. [57], where they determined g0σ0/σun =
(0.998 ± 0.010) by examining deviations from a purely “1/v”
absorption law for neutron energies up to 150 keV. Both of
these experiments support σ1 ≈ 0 but only at the 1% level.
Owing to the lack of precision measurements of σ1, we used
a theoretical prediction of the imaginary part of the scattering
length to estimate σ1.

Calculations performed by Hofmann and Hale [58,59]
of the imaginary free scattering length a′′

1 using R-matrix
and AV18 + 3N interactions give a range of values a′′

1 of
between 0.0012 and 0.0051 fm. However, as noted in the same
paper, AV18 + 3N models underpredict the experimentally
measured a′′

0 by up to 30%. To be conservative, we used
a′′

1 = (0.005 ± 0.005) fm. This allowed for the possibility that
theoretical calculations are low by as much as a factor of two.
With a′′

1 and the measured thermal absorption cross section for
unpolarized 3He, we have

σ0 − σ1 = (21 236 ± 100) b. (62)

With Eqs. (37) and (62) one may extract N3λD3P3 from the
asymmetry measurements of ξ .
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B. Polarimetry effects

The effect of uncertainties in Pn and s on calculating
�φ0 is complicated by the fact that they affect both η− and
η+ directly and also indirectly through ξ . To determine the
systematic uncertainty in �φ0 contributed by the uncertainties
σPn

and σs we studied a simulated set of [�φM ]sim and
[ξ ]sim data. This simulated data was generated using a fixed
value of �b′ = −5.400 fm and a randomly distributed set of
[ξ ]sim to generate a [�φM ]sim. �φ0 was then calculated using
the simulated [�φM ]sim and [ξ ]sim while varying Pn and s
by their respective uncertainties. The variance in �φ0, and
hence �b′, resulting from the uncertainties σPn

and σs was
taken as the systematic uncertainty owing to the polarimetry
measurements.

VII. RESULTS

Figure 11(a) shows the measured �φ0 versus ξ for the
2008 data set, which was collected over several reactor cycles
for a total of 12 weeks. From Eq. (18) the value of �b′ can
be determined by the slope of �φ0 in Fig. 11(a). There are
two significant changes in determining �b′ from what was
done previously in Huber et al. [26,27]. The first and most
significant is that in Refs. [26,27] the slope of �φ0 versus
ξ was determined using a one-parameter fit. This fixed the y
intercept of the fit to be precisely zero, corresponding to �φ0 =
0 at P3 = 0. In the presence of a magnetic-field gradient, this
approach is no longer valid. Instead, we now perform a two-
parameter fit of �φ0 versus ξ . The fitted y intercept of the data
shown in Fig. 11(a) yields 2φmag = (16 ± 4) mrad.

The other change we have made has been in the manner in
which we cut individual data points. In Refs. [26,27] we cut
the data based on the reduced χ2 (χ2

red) of the interferogram fit.
All fits with χ2

red � 1.5 were discarded and not included in our
2008 results. This was done to account for phase instabilities,
especially those seen immediately following a cell transfer
which introduced temporary temperature and mechanical
instabilities lasting 12 h or more. However, discarding in-

terferograms based on χ2
red values included eliminating points

taken in the middle of runs where the phase was more stable.
As discussed below, a systematic uncertainty of 0.012 fm
attributed to phase instabilities was also applied to the result
in Ref. [26]. Because we already incorporate an uncertainty
owing to phase instabilities, for this result we make no cut
based on the χ2

red in either the 2008 or the 2013 data set. Phase
instabilities were greater in 2013, as the temperature stability
that we had in 2008 was not reproduced. This is contrary
to 2008, where temperature drifts were highly correlated to
opening the facility doors to perform a cell transfer (because
P3 ≈ 0 in most of 2013, transfers were infrequent in that data
run). The inclusion of data points with χ2

red � 1.5 does not
affect the values determined by a fit of �φ0 versus ξ but does
decrease the statistical uncertainty.

A two-parameter fit of Fig. 11(a) gives �b′ = (−5.381 ±
0.053) fm with χ2/dof = 530/(435 − 2) = 1.2. This χ2 rep-
resents a low probability of fit (<1%) and is attributable to
random-phase instabilities that were most likely caused by
small temperature fluctuations. To estimate the systematic
uncertainty owing to this effect, the uncertainty of �φ0

was inflated by 0.016 rad in quadrature with the statistical
uncertainty for each point so that the χ2/dof = 1. The average
statistical uncertainty for �φ0 was ≈ 0.033 rad but varied
strongly with P3. A histogram of the residual of the fit with
a reduced χ2 = 1 is shown in the inset of Fig. 11(a). The
distribution of points in the figure closely follows a Gaussian
function centered at zero.

Figure 11(b) shows �φ0 versus ξ for the 2013 data set. In
2013 we polarized the 3He gas only four times focusing instead
on measuring �φ0 at low P3. Twice we polarized the 3He in
the opposite direction with respect to the neutron polarization
defined by the supermirror polarizer. In this case there is more
neutron absorption when the precession coil spin flipper is
off. These reverse-polarized data are shown in the lower left
quadrant of Fig. 11(b). Again applying a two-parameter fit of
Fig. 11(b) gives �b′ = −5.439 ± 0.038 fm with a χ2/dof =
1120/(507 − 2) = 2.2. To fix χ2/dof = 1 the uncertainty of
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FIG. 11. (Color online) �φ0 vs ξ values for (a) 2008 and (b) 2013. The solid line is a weighted average with a χ2/dof = 1 (see text).
(Insets) Histograms of the residual distribution with Gaussian fits (solid lines). The residual is defined by R = yi − y, where y is the fit function
and yi is the ith data point. (a) The Gaussian fit is centered at −0.001 rad with a full width at half maximum (FWHM) of 0.091 rad. (b) The
Gaussian fit is centered at +0.002 rad with FWHM of 0.117 rad.

064004-12



NEUTRON INTERFEROMETRIC MEASUREMENT OF THE . . . PHYSICAL REVIEW C 90, 064004 (2014)

TABLE III. The uncertainty budget for �b′. Uncertainties related
to 3He absorption cross section that are identical for both data sets
are summed in quadrature.

2008 Parameter 2013
σ (fm) σ (fm)

0.053 �φ0/ξ Fit (Statistical) 0.038
0.028 Triplet absorption cross section σ1 0.028
0.007 Total absorption cross section σun 0.007
0.029 Total systematic from cross sections 0.029
0.025 Phase instabilities 0.040
0.005 Neutron polarization Pn 0.004
0.002 Spin-flipper efficiency s 0.004
0.026 Total non-cross-section systematic 0.040
0.053 Total statistical 0.038
0.039 Total systematic 0.049

�φ0 was inflated in quadrature by 0.043 rad. For 2013 we find
that 2φmag = 21 ± 3 mrad, which is consistent with both the
2008 data and the field gradient measurement.

The weighted average of both data sets gives

�b′ = [−5.411 ± 0.031 (stat.) ± 0.039 (syst.)] fm. (63)

This corresponds to a 4σ shift of �b′ compared to our previous
result reported in Ref. [26]. This shift is entirely attributable
to the inclusion of phase shifts from magnetic-field gradients
in our fitting. Allowing our fit of �φ0 versus ξ an additional
degree of freedom increased the statistical uncertainty in the
scattering length by a factor of 2. However, tripling the original
data set yielded a final statistical uncertainty only 20% larger
than that reported in Ref. [26]. The uncertainty budget for �b′
for each individual data set is given in Table III. The weighted
average is performed by weighting both the statistical and the
systematic uncertainties unrelated to neutron absorption on
3He in quadrature. The systematic uncertainty related to 3He
absorption was added to the total systematic uncertainty in
Eq. (63).

VIII. CONCLUSIONS AND DISCUSSION

We have performed a precision measurement of the differ-
ence �b′ = [−5.411 ± 0.031 (stat.) ± 0.039 (syst.)] fm be-
tween the triplet and singlet scattering lengths of n-3He using
neutron interferometry to 0.9% relative standard uncertainty.
The ultimate precision of this technique is systematically
limited by the triplet absorption cross section corresponding
to a relative uncertainty of 0.5%. This result is in good
agreement with the only previous direct measurement of
�b′ = −5.462 ± 0.046 fm performed by Zimmer et al. at
the Institut Laue-Langevin (ILL) [60]. Reference [60] used
a spin-echo apparatus to measure the relative difference in the
pseudomagnetic spin precession [61,62] between a neutron
passing though a polarized 3He cell and an empty reference
beam. That technique is fundamentally different than the
technique applied here. One can state the results independent
of the triplet absorption cross section and total absorption cross
section from our results and those of Ref. [60]. This is done
for two reasons: (i) Both groups estimated σ1 differently and

5.5 5.75 6 6.25 6.5 6.75

b'c  (fm)

Weighted Average
 = (5.87 ± 0.04) fm 
(Uncertainty scaled by 5.3)

                                               χ
2

              _____
ILL     06  NI   44.8 

NIST    04  NI    2.9

IBR     81  CS

ILL     79  NI

ILL     77  NI    7.7

BNL     74  Re
                 _____

          55.4

FIG. 12. (Color online) An ideogram of the coherent scattering
length measurements for n-3He taken from Refs. [24,25,63–66].
The blue band represents the weighted average ±σ of the three
experiments with smallest quoted uncertainties. Techniques used
were neutron interferometry (NI), total cross section (CS), and
reflectivity (RE).

(ii) in the event of future more accurate measurements of the
absorption cross sections, one can immediately update the
spin-dependent n-3He scattering length. Zimmer et al. de-
termined σ1 from an average of the experimental results of
Refs. [56,57], with the limitation that σ1 � 0. Whereas, as
described in Sec. VI A, we used a theoretically predicted σ1

but with an inflated uncertainty. Our result, stated independent
of the triplet absorption cross section, is

�b′ (this work)

= [(−10.1929 ± 0.0760) × 10−4 fm/b]

(
1 − σ1

σun

)
σun.

(64)

This is in disagreement with the result of Zimmer et al. of

�b′ (Ref. [60])

= [(−10.3628 ± 0.0180) × 10−4 fm/b]

(
1 − σ1

σun

)
σun

(65)

by 2σ when factoring out the absorption cross sections.
There have been a number of experiments measuring the

coherent scattering length of n-3He defined by Eq. (11a) using
techniques such as measuring neutron reflectivity, relative
phase shifts, and neutron transmissions. The three most precise
measurements of b′

c were done with neutron interferometry:
Kaiser et al. [64], Huffman et al. [24], and Ketter et al. [25].
However, the two most recent results differ by more than
7σ . Figure 12 shows an ideogram of the coherent scattering
length measurements. Each measurement is represented by a
Gaussian centered about their result with a normalized area
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FIG. 13. (Color online) Current experimental data on the n-3He
system from this work, ILL 2006 [25], NIST 2004 [24], ILL
2002 [60], ILL 1979 [65] compared to theoretical predictions [58,59].
Bands represent the experimentally determined values ±1σ .

equal to 1/σ [67]. The uncertainty of the weighted average has
been inflated in the manner described in Ref. [67].

Calculations employing models AV18 + UIX, AV18 +
UIX + V∗

3 [58,59], and AV18 + LL2 [17] have all predicted
similar values for the triplet and singlet scattering lengths. For
example, �b′(AV18 + UIX) = −5.753 ± 0.002 fm. Neither
this work nor the work of Zimmer et al. agrees with NN + 3N
calculations. Figure 13 shows a selection of measured values
of b′

1 and b′
0 beside some theoretical predictions. Four-nucleon

interactions have yet to be included into the theoretical models
owing to the difficulty in handling long-range Coulomb forces,
but should constitute only a tiny correction to NN + 3N
predictions. A calculation of pionless effective field theory to

next-to-leading order shows promise [17], but the uncertainty
of the predicted value is still too large to compare to high-
precision measurements. A recent measurement of the total
scattering cross section [68] that suggests a much larger
scattering cross section and would lie outside of Fig. 13 is
omitted for space.

The recent work on the n-3He interaction can lead to
further understanding of low-energy nucleon systems. Al-
though there are several discrepant measurements, scattering
length measurements do not match theoretical models. Taken
alone, the coherent scattering length by Ref. [24] agrees with
AV18 + UIX, but does not intersect a measurement of the
spin-dependent difference in triplet and singlet states. This
work and Ref. [60] agrees with the R-matrix prediction. More
work needs to be done to resolve the discrepancy between
different n-3He coherent scattering length measurements. The
uncertainty in the triplet absorption cross section needs to
be experimentally determined to better precision, if other
measurements of the spin-dependent quantity �b′ are to be
made. The authors hope that this work along with the previous
scattering length measurements can improve future NN + 3N
models and is part of the ongoing exploration into few-body
systems at the NIOF.

ACKNOWLEDGMENTS

We wish to thank John Fuller and Jeff Anderson at NIST for
making the glass target cells. The development and application
of the polarized 3He cells and methods used in this experiment
were supported in part by the US Department of Energy,
Basic Energy Sciences. Also we would like thank Sam Werner
and Helmut Kaiser for their helpful discussions. This work
is supported by NIST and the National Science Foundation
through Grants No. PHY-0555347, No. PHY-0855445, and
No. PHY-1205342.

[1] R. Lazauskas, J. Carbonell, A. C. Fonseca, M. Viviani,
A. Kievsky, and S. Rosati, Phys. Rev. C 71, 034004 (2005).

[2] M. Viviani, A. Kievsky, L. Marcucci, and S. Rosati, Nucl. Phys.
A 751, 226 (2005).

[3] R. B. Wiringa, V. G. J. Stoks, and R. Schiavilla, Phys. Rev. C
51, 38 (1995).

[4] R. Machleidt, Phys. Rev. C 63, 024001 (2001).
[5] V. G. J. Stoks, R. A. M. Klomp, C. P. F. Terheggen, and J. J. de

Swart, Phys. Rev. C 49, 2950 (1994).
[6] V. G. J. Stoks, R. A. M. Klomp, M. C. M. Rentmeester, and

J. J. de Swart, Phys. Rev. C 48, 792 (1993).
[7] S. C. Pieper, V. R. Pandharipande, R. B. Wiringa, and J. Carlson,

Phys. Rev. C 64, 014001 (2001).
[8] B. S. Pudliner, V. R. Pandharipande, J. Carlson, S. C. Pieper,

and R. B. Wiringa, Phys. Rev. C 56, 1720 (1997).
[9] S. A. Coon, M. D. Scadron, P. C. McNamee, B. R. Barrett, D. W.

E. Blatt, and B. H. J. McKellar, Nucl. Phys. A 317, 242 (1979).
[10] M. R. Robilotta and H. T. Coelho, Nucl. Phys. A 460, 645

(1986).
[11] R. B. Wiringa, R. Schiavilla, S. C. Pieper, and J. Carlson, Phys.

Rev. C 89, 024305 (2014).

[12] R. B. Wiringa and S. C. Pieper, Phys. Rev. Lett. 89, 182501
(2002).

[13] M. Viviani, A. Kievsky, S. Rosati, E. A. George, and L. D.
Knutson, Phys. Rev. Lett. 86, 3739 (2001).

[14] T. C. Black, P. R. Huffman, D. L. Jacobson, W. M. Snow,
K. Schoen, M. Arif, H. Kaiser, S. K. Lamoreaux, and S. A.
Werner, Phys. Rev. Lett. 90, 192502 (2003).

[15] E. Epelbaum, A. Nogga, W. Glöckle, H. Kamada, Ulf-G.
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