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Neutron star properties in density-dependent relativistic mean field theory with
consideration of an isovector scalar meson

Sha Wang (��) and Hong Fei Zhang (���)*

School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, People’s Republic of China

Jian Ming Dong (���)
Research Center for Nuclear Science and Technology, Lanzhou University and Institute of Modern Physics of CAS,

Lanzhou 730000, People’s Republic of China
(Received 27 May 2014; revised manuscript received 19 September 2014; published 10 November 2014)

Based on the density-dependent relativistic mean field theory, the properties for nuclear matter and neutron
stars with the effective interaction DD-MEδ including the isovector scalar channel which disentangle the effects of
isovector scalar and isovector vector channels by fitting microscopic calculations. The influences of the isovector
scalar δ meson on properties of asymmetric nuclear matter at high densities are discussed in detail. The results
support that the isovector scalar channel can soften the equation of state through the effects on the nucleon
effective mass and the scalar σ field and impact the behavior of the nuclear matter symmetry energy. Because of
the influence on the symmetry energy by the δ meson, a larger proton fraction in neutron stars is predicted by the
DD-MEδ calculation, which strongly affects the cooling process of the star. The maximum masses of neutron
stars given by the DD-MEδ calculation is 1.97M⊙ which is in reasonable agreement with PSR J1614 − 2230
(1.97 ± 0.04 M⊙) and PSR J0348 + 0432 (2.01 ± 0.04 M⊙). Among all the selected interactions, DD-MEδ

gives the smallest radius range. The radius for the 1.4 solar mass neutron star calculated by DD-MEδ is in good
agreement with the prediction [Astrophys. J. Lett. 765, L5 (2013)] according to the resent observations.
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I. INTRODUCTION

Neutron stars [1], as the natural laboratories to test the
properties of hadronic matter under extreme conditions, have
been one of the hottest topics both in nuclear physics and
astrophysics since Landau first predicted the existence of
neutron stars in 1932 [2]. In the investigation of neutron
stars, searching for the proper equation of state (EOS) was
a long-sought goal and central task. It is known that EOS is
very important to describe the properties of neutron stars, for
example, EOSs generate unique mass radius (M-R) relations
for neutron stars. However, because the poorly constrained
many-body interaction at supranuclear densities, there still
exists considerable theoretical uncertainty on the EOS [3].
Thus precise and massive modern astronomical observations
are especially important in providing constraints for EOS
and M-R relation. In the year of 2010, a large pulsar mass
of (1.97 ± 0.04)M⊙ was measured using the Shapiro delay
for the binary millisecond pulsar J1614 − 2230 [4]. Recently,
another two-solar-mass pulsar J0348 + 0432 was determined
with high accuracy as 2.01 ± 0.04 solar masses [5]. These two
neutron stars are the most massive ones observed precisely by
now which demand theoretical models providing a sufficient
maximum mass.

In the past several years, there have been several attempts
to set constraints on the high-density EOS and M-R relation
according to the observations [6–9] or microscopic calcula-
tions [10]. Recently new constraints of the mass-radius relation
based on recent observations have been proposed [11], and

*zhanghongfei@lzu.edu.cn

the results imply that many models are inconsistent with the
observations.

During recent decades, many successes have been achieved
in describing nuclear properties from stable to unstable nuclei
in the relativistic energy density functional theory including the
relativistic mean field (RMF) and the relativistic Hartree-Fock
(RHF) approaches from the covariant structure of theory
itself [12–15]. At present, the widely used RMF approach
includes the isoscalar scalar channel (σ meson), the isoscalar
vector channel (ω meson), and the isovector vector channel
(ρ meson), but no isovector scalar channel because fitting
the experimental data based on finite nuclei properties does
not allow us to distinguish scalar and vector fields in the
isovector channels. However, for strongly isospin-asymmetric
matter at high densities in neutron stars, neglecting the
isovector scalar seems to be improper. In recent years, the
importance of the contribution to asymmetric nuclear matter
from the isovector scalar δ meson within the RMF model, was
stressed [16–18]. Later, researchers introduced the δ meson
in the nonlinear RMF model [19–21]. However, a common
problem in the widely used RMF is to disentangle the effects
of isovector scalar and isovector vector channels by means
of nuclear ground-state properties, unless a careful tuning is
performed based on selected microscopic calculations [22].
Recently, a new high-precision density functional DD-MEδ is
presented which includes the δ meson, with density-dependent
meson-nucleon couplings, and which to a large extent based
on microscopic ab initio calculations in nuclear matter [22].
By the way, although the modern relativistic Hartree-Fock and
Hartree-Fock-Bogoliubov models do not include the degree of
freedom associated with the δ meson, the Fock terms indeed
present substantial contributions to the isovector scalar channel
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that is taken into account by the δ field in the RMF scheme.
The direct evidence is that the Fierz transformation of the
Fock diagram of ρ-vector coupling results in the isovector
scalar component. Such contributions can also be deduced
from the localization of the Fock terms of the isovector vector
channel [23].

In this paper, the properties for nuclear matter and neutron
stars in the framework of the density-dependent relativistic
mean field theory with the interaction DD-MEδ are systemat-
ically compared to those with the interactions DD-ME2 [24],
TW99 [25], and PKDD [26] which neglect the δ meson. The
influences of the isovector scalar δ meson on properties of
asymmetric nuclear matter at high densities are discussed in
detail. The purpose of this work is to investigate the effect
of the isovector scalar channel on the EOS as well as the
properties of neutron stars. In Sec. II, the equation of state
for neutron star matter when considering the isovector scalar
meson δ is presented. Then the results and discussions are
given in Sec. III. Finally we give a brief summary in Sec. IV.

II. THEORETICAL FRAMEWORK

The effective Lagrangian density described nuclear matter
with the nucleon (ψ), two isoscalar mesons (scalar σ , vector
ω), and two isovector mesons (scalar δ, vector ρ) as degrees
of freedom can be written as

L =
∑
B
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− gργ
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where the Dirac spinor ψB denotes the hadron B with mass
mB and isospin τB . The σ , ω, ρ, and δ are the σ -meson field,
ω-meson field, ρ-meson field, and δ-meson field, respectively.
Their masses are denoted by mσ , mω, mρ , and mδ . The
corresponding coupling constants are gσ , gω, gρ , and gδ . The
field tensor 
μν and �Rμν are


μν = ∂μων − ∂νωμ, �Rμν = ∂μ �ρν − ∂ν �ρμ. (2)

The coupling constants of density-dependent RMF theory are
denoted by

gi(ρ) = gi(ρ0)fi(x) for i = σ,ω,ρ,δ, (3)

where ρ0 is the saturation density of symmetric nuclear matter
and x = ρ/ρ0. For the functions fi(x), we follow Ref. [22]:

fi(x) = ai

1 + bi(x + di)2

1 + ci(x + ei)2
. (4)

For a β-stable neutron star which consists of nucleons and
leptons λ (e− and μ−), the Lagrangian density is similar to
Eq. (1) except for adding a term for leptons.

The energy density and the pressure for neutron star matter
are, respectively,
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The structure equations of a static spherically symmetric
relativistic star are the Tolman-Oppenheimer-Volkov (TOV)
equations [27,28]:

dP

dr
= − [P (r) + ε(r)][M(r) + 4πr3P (r)]

r[r − 2M(r)]
, (7)

M(r) = 4π

∫ R

0
ε(r)r2dr, (8)

where ε (r), P (r) are the energy density and pressure of the
star at radius r , respectively, and M(r) is the total star mass
inside a sphere of radius r . Taking the boundary conditions,
P (R) = 0, M(0) = 0, one can calculate P (r) and M(r) taking
the central density ρ(0) as a single parameter. The point R
defines the radius of the star, and the corresponding M(R) is
the gravitational mass.

III. RESULTS AND DISCUSSION

In this paper, the properties of nuclear matter and neutron
stars are studied in density-dependent relativistic mean field
with the effective interactions DD-MEδ which takes the
δ meson into account. For comparison, the results calculated
by DDRMF with DD-ME2, TW99, and PKDD interactions
without the δ meson which have been studied systematically
in Refs. [29,30] are also discussed. Table I shows the bulk
quantities (i.e., the saturation density ρ0, the binding energy per
particle EB/A, the incompressibility K , the symmetry energy

TABLE I. The saturation properties of nuclear matter for different
effective interactions, including binding energy per particle EB/A

(MeV), incompressibility K (MeV), asymmetry energy coefficient
Esym (MeV), and the effective mass M∗/M .

ρ0(fm−3) EB/A K Esym M∗/M

DD-MEδ 0.152 −16.12 219.1 32.35 0.609
DD-ME2 0.152 −16.14 251.1 32.30 0.572
TW99 0.153 −16.25 240.2 32.77 0.555
PKDD 0.150 −16.27 262.2 36.86 0.570
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FIG. 1. (Color online) The binding energy per nucleon EB/A, as
a function of the nucleon density ρ for symmetric nuclear matter
(upper panel) and pure neutron matter (lower panel). The results are
calculated by DD-ME2, TW99, PKDD without the isovector scalar
meson δ and DD-MEδ with the δ meson.

Esym, and the effective mass M∗/M) of symmetric nuclear
matter at saturation point. It should be pointed out that the
parameter set DD-MEδ fitted by the properties of finite nuclei
and nuclear matter simultaneously around the saturation point
with DD-ME2 as a starting point [22]. From the table we can
see that the bulk properties of nuclear matter at saturation point
calculated by DD-MEδ are very similar to DD-ME2 except
for the incompressibility K . In all the interactions, DD-MEδ
provides the smallest value of K , which is consistent with the
empirical value K ≈ 230 MeV [31]. For the symmetry energy
Esym, PKDD obtains a larger value than the other interactions
which give almost the same values. For the effective mass
M∗/M , DD-MEδ gives the largest value and TW99 gives the
smallest one.

The equations of state calculated by DD-MEδ are shown
in Fig. 1 for symmetric nuclear matter (upper panel) and pure
neutron matter (lower panel). The results calculated by density-
dependent interactions without δ meson are also shown in the
figure. As shown in Fig. 1, there are significant differences
in the behaviors of the EOS in the high-density region for
both the symmetric and pure neutron nuclear matter. For the
symmetric nuclear matter in the upper panel of Fig. 1, among
the interactions without the δ meson, DD-ME2 provides the
hardest EOS and TW99 provides the softest. Meanwhile, the
interaction DD-MEδ with the isovector scalar channel, obtains
an even softer EOS than TW99. For the pure neutron matter

FIG. 2. (Color online) The contributions from different channels
to the EB/A as functions of the nucleon density ρ for the pure neutron
matter. The results calculated by DD-MEδ (solid black lines) and
DD-MEδ (dashed pink lines) but switching off the δ channel.

in the lower panel of Fig. 1, it gives the same results as the
situation for the symmetric nuclear matter, i.e., DD-MEδ still
provides the softest EOS, and the EOS given by TW99 is a
little stiffer than that by DD-MEδ.

To understand how the isovector scalar meson δ affects the
EOS for the nuclear matter, the results calculated by DD-MEδ
and DD-MEδ but switching off the isovector scalar channel
will be compared in the following. The expression of the
binding energy per nucleon EB/A in the nuclear matter is
similar to Eq. (5), and one can obtain the contributions from
different channels to the EB/A as

EB/A = EB,kin/A +
∑

φ

EB,φ/A, (9)

where φ = σ,ω,ρ, and δ. In Fig. 2, the contributions from
different channels to the EB/A calculated by DD-MEδ and
DD-MEδ but switching off the δ channel are shown as
functions of the nucleon density ρ for the pure neutron matter.
The total lines denote the binding energy per nucleon, and the
others denote the contributions from different channels in the
figure. Compared to the total EB/A values, it is shown that
the EOS becomes softer when the isovector scalar meson δ is
taken into account. One can easily find that the introduction
of the δ has no effect on the ω and ρ fields from the equations
of different meson fields. Thus, as shown in Fig. 2, the
contributions from ω and ρ parts are identical before and
after switching off the δ channel, while the ones from both
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FIG. 3. (Color online) Neutron and proton effective masses as a
function of the nucleon density with three different β.

the kinetic part and the σ part calculated by DD-MEδ are
smaller than the results by switching off the δ channel. For
DD-MEδ, the δ channel has an extra contribution compared
to the case of switching off the δ channel, however, such a
contribution is very much smaller than the reductions of the
contributions from the kinetic and the σ channel both affected
by the δ channel. As a consequence, the contained isovector
scalar δ channel can soften the EOS of nuclear matter.

When the isovector scalar δ meson is introduced, an inter-
esting and important result, the n,p effective-mass splitting in
asymmetric matter is obtained,

M∗
p = M − gσσ − gδδ0,3, (10)

M∗
n = M − gσσ + gδδ0,3. (11)

Figure 3 shows the proton and neutron effective masses
for three different β values, calculated by DD-MEδ with
increasing nuclear density. For the situation of β = 0, namely
the symmetric nuclear matter, the proton effective mass
obviously equals the neutron one and both of them become
smaller as the density is increasing, as is shown in the figure.
When the value of β deviates from 0, the effective mass
splitting between the proton and the neutron and the results
of β = 0.5 and β = 1.0 are also displayed in the figure. From
Fig. 3, we can also see that the proton effective mass is larger
than the neutron effective mass and the M∗

p − M∗
n values are

more and larger with the density increasing. For the widely
used versions without the isovector scalar channel in RMF,
the effective mass splitting vanishes. By the way, because the
contributions to the isovector scalar channel from the Fock
terms have an effect on the self-energies, it is conceivable
that RHF calculations can also present the effective mass
splitting. The result by the localization RHF is in agreement
with the microscopic Dirac-Brueckner-Hartree-Fock (DBHF)
result [32], which is used to provide directly the effective Dirac
masses for the DD-MEδ parameter fit, namely, the effective
mass splitting leading to the isovector scalar channel included
by the Fock terms in RHF is similar to that leading to the δ
meson in DD-MEδ.

FIG. 4. (Color online) The nuclear matter symmetry energy
Esym(MeV) as a function of the nucleon density ρ(fm−3).

In general, the energy per particle of asymmetric nuclear
matter E(ρb, β) can be expanded in the Taylor series with
respect to the asymmetry parameter β = (ρn − ρp)/(ρn + ρp),

E(ρ0,β) = E0(ρb) + β2Esym(ρb) + · · ·. (12)

The function E0(ρb) is the binding energy per particle in
symmetric nuclear matter. The symmetry energy Esym(ρb) is
denoted as

Esym(ρb) = 1

2

∂2E(ρb,β)

∂β2

∣∣∣∣
β=0

. (13)

The symmetry energy is an important quantity for illustrat-
ing the property of asymmetric nuclear matter. The value of the
symmetry energy at the symmetric nuclear matter saturation
density is known to be around 32 MeV. However, the density
dependence of the symmetry energy at the high-density region
is quite divergent [33–35].

Figure 4 shows the symmetry energy as a function of
the baryon density ρb with different effective interactions.
It is conceivable that the δ meson, as an isovector meson,
impacts the symmetry energy of nuclear matter. As shown in
Fig. 4, the symmetry energy behavior obtained by DD-MEδ is
obviously different from those by the interactions without the
δ meson. Among the calculations of the effective interactions
without the δ meson, PKDD exhibits a stiffer symmetry energy
behavior than DD-ME2 and TW99, both of which show similar
symmetry energy in the whole density region. The contribution
of the δ meson to the symmetry energy is negative essentially,
while to keep the symmetry energy at saturation density,
the enhanced rho coupling leads to stiffer density-dependent
behavior at the height density region [36]. The final result is
a strong density dependence of the symmetry energy under
the joint actions of the δ coupling and ρ coupling. The
different contributions to the symmetry energy are displayed in
Ref. [22]. By the way, the Fock terms in the RHF calculations
also enhance the density dependence of the symmetry energy
and the detailed investigation was shown in Ref. [30]. For the
RHF calculations, all the meson nucleon couplings present a
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FIG. 5. (Color online) Proton fractions x = ρp/(ρp + ρn) in neu-
tron star given by different effective interactions. The dotted line
labeled with xDU = 14.8% is the threshold for the direct Urca process
to occur.

significant contribution to the symmetry energy from the Fock
terms, which results in the enhancement.

It is known that the nuclear matter symmetry energy
is namely the energy required per particle to change the
symmetric nuclear matter into the pure neutron matter. Thus,
the stronger density dependence of the symmetry energy at
the high-density region means that it is more difficult for the
system to become asymmetric and it is easier for the neutrons
to β decay which gives rise to greater proton abundance.

We now turn to the properties of neutron stars. Figure 5
shows the proton fraction x as a function of nucleon density
ρ calculated by DD-MEδ in comparison to those effective
interactions neglecting the isovector scalar channel. As men-
tioned above, the curves for the proton fraction are similar
to the trends of the symmetry energy (see Figs. 4 and 5)
accounting for the influence of the symmetry energy on the
proton abundance. Because of the stiff symmetry energy, a
somewhat strong density dependence of the proton fraction is
obtained by PKDD. For the DD-MEδ, the curve of the proton
fraction still intersects with the one by PKDD, and gets stiffer
than that by DD-ME2. In Fig. 4, the density dependence of the
symmetry energy obtained by DD-ME2 and TW99 are similar
with each other in the entire density region, and this behavior
also demonstrates in Fig. 5 the proton fraction.

The proton fraction affects the cooling mechanism of
neutron stars directly, namely, it determines whether the most
efficient process of the neutron star cooling (the so-called
direct Urca process [37]) could take place or not. Direct Urca
(DU) processes n → p + e− + ν̄e and p + e− → n + νe lead
the star to cool rapidly by emitting thermal neutrinos. The
threshold of the proton fraction xDU for triggering the DU
process is constrained in the region of 11.1%–14.8% [38,39].
Because of the muon presence, the threshold x ≈ 14.8% is
more reasonable in the high-density region [39]. From Fig. 5,
it is found that the proton fraction given by DD-MEδ and
PKDD can exceed the threshold xDU and may be in favor

FIG. 6. (Color online) The pressure of neutron star matter as a
function of the energy density ε (MeV fm−3).

of undergoing the DU process, whereas the results given by
DD-ME2 and TW99 are below the threshold xDU and do not
support the occurrence of DU progress. The critical densities
ρDU for the DU process occurring obtained by DD-MEδ and
PKDD are 0.83 and 0.33, respectively. The critical mass MDU

and central density values ρDU(0) where the DU cooling
process becomes possible are marked by the filled squares
in Fig. 7.

Figure 6 shows the calculated pressure of neutron star
matter as a function of the energy density ε (MeV fm−3). The
results for the neutron star matter are the same as those for
the nuclear matter, of which the EOS is obviously softened by
DD-MEδ when considering the δ meson. It is known that the
isovector scalar meson δ contributes an attractive field which
reduces the system repulsion, and thus the inclusion of the δ
meson will lead to a larger proton fraction, and consequently
cause a smaller symmetry repulsion. EOS, as the input of the
TOV equation, significantly affects the mass-radius relation
of the neutron stars. A stronger density dependence of the
pressure at high densities would deduce a larger maximum
mass for neutron stars that can be sustained against collapse.
By the way, because the relativistic mean field theory is not
suitable to be used when the density is below 0.09 fm−3, the
BPS [40] and BBP [41] models are chosen to provide the
proper EOS.

Figure 7 displays the neutron star masses as a function
of the central density ρ(0) of the star, with several effective
interactions mentioned above. From Fig. 7, it can be seen
that DD-MEδ exhibits the smallest maximum mass at the
largest central density ρmax(0) = 1.20 fm−3. Table II shows
the maximum mass limits Mmax and the corresponding central
densities ρmax(0) extracted from Fig. 7.

The filled squares denote the critical mass MDU and
central density values ρDU(0) where the DU cooling process
becomes possible. The critical masses MDU are 1.86 M⊙ and
1.28 M⊙ for DD-MEδ and PKDD, respectively. According to
the analysis in Refs. [39,42,43], if the DU process is taken as
a possible mechanism for neutron star cooling, an acceptable
EOS would not allow it to occur in typical neutron stars which
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FIG. 7. (Color online) Neutron star mass as a function of the
central density for different effective interactions. The filled squares
mark the critical mass MDU and central density values ρDU(0) where
the DU cooling process becomes possible. The mass region of typical
neutron stars is between 1.0M⊙ and 1.5M⊙.

have masses in the range of 1.0 M⊙–1.5 M⊙. From Fig. 7, it is
obvious that the mass limit MDU given by PKDD is too small
to satisfy the principle that the DU process shall not occur in
typical neutron stars. In contrast, DD-MEδ gives a mass limit
MDU above 1.5 M⊙, perfectly supporting the DU process. In
conclusion, the density dependence of the symmetry energy
is too strong for PKDD and too weak for DD-ME2, TW99 to
support the DU process, while only the effective interaction
DD-MEδ provides a proper symmetry energy behavior for the
DU process constraint.

Figure 8 shows the calculated mass-radius relations of
neutron stars. Consistent with the EOSs in Fig. 6, the maximum
mass of the neutron star and the corresponding radius given
by DD-MEδ are the smallest, and those obtained by DD-ME2
are the largest. The results for TW99 are similar to DD-MEδ
but its calculations for both mass and radius are a little larger
than DD-MEδ.

It is usually considered that the radius of the neutron star is
sensitive to the density dependence of the symmetry energy,
and the stiffer symmetry energy is related to a larger size
of the neutron star [34,44,45]. Reference [46] displays the
correlation coefficients between the radius of a 1.4 M⊙ neutron
star R1.4 and slope of the symmetry energy L as well as the

TABLE II. Maximum mass Mmax(M⊙), and the corresponding
central densities ρmax(0)(fm−3) and radii R(M⊙)(km), and the radii
(km) for 1.4M⊙ neutron stars.

DD-MEδ DD-ME2 TW99 PKDD

Mmax 1.97 2.50 2.09 2.34
ρmax(0) 1.20 0.82 1.10 0.89
R(Mmax) 10.2 12.0 10.6 11.8
R(1.4M⊙) 11.9 13.1 12.3 13.6

FIG. 8. (Color online) Mass radius of neutron stars calculated by
the interactions without the δ meson and the interaction DD-MEδ

with the δ meson. The two shaded areas are 68% and 95% confidence
contours extracted from the analysis of Ref. [11].

symmetry energy. But R1.4 cannot be uniquely constrained by
the symmetry energy, and actually the radius R1.4 is extremely
sensitive to the equation of state at high density [44], which
can be clearly found in Fig. 8. Although DD-MEδ provides
the strong symmetry energy behavior, the calculated radius of
the neutron stars still remains somewhat small owing to the
soft EOS.

The shadow regions in Fig. 8 show the 68% and 95%
confidence contours for the mass-radius relation predicted
by Steiner [11]. This reference shows that the radius of a
1.4 solar mass neutron star lies between 11.2 and 12.3 km.
As shown in Fig. 8, the mass-radius relation for the neutron
stars given by DD-MEδ with the δ meson totally covers the
constraints. Among the interactions without the δ meson,
because of a little stiffer EOS at the density region, DD-
ME2 and PKDD hardly cover the constraints, while TW99
fulfills the constraints. Table II shows the maximum mass
limits Mmax, the corresponding radii R(Mmax), and the radii
R1.4 for 1.4M⊙ extracted from Fig. 8. It is shown that the
maximum mass calculated by DD-MEδ is exactly the same as
the heaviest neutron stars observed currently which are PSR
J1614 − 2230 with 1.97 ± 0.04 M⊙ [4] and PSR J0348 + 0432
with 2.01 ± 0.04 M⊙ [5], respectively. The radius for the 1.4
solar mass neutron star obtained by DD-MEδ and TW99 are
consistent with the prediction in Ref. [11], while the results
for DD-ME2 and PKDD are not. The consistency between
the maximum mass and the radius of the neutron star with
the recent observations reflects that the EOS and the density
dependence of the symmetry energy given by DD-MEδ seem
proper to describe the properties of neutron stars.

IV. SUMMARY

In this paper, we studied the general properties of nuclear
matter and neutron stars based on the density-dependent
relativistic mean field theory with the interaction DD-MEδ.
It is shown that the inclusion of the isovector scalar meson
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δ, obviously affects the symmetry energy behavior of the
nuclear matter, which is a stronger density dependence of
the symmetry energy obtained by DD-MEδ. Therefore, the
proton fraction x = ρp/(ρp + ρn) of the neutron star is also
enhanced owing to introducing the δ meson, which affects
essentially the cooling process of the star. For the DU process
to occur, DD-MEδ gives the critical density ρDU = 0.83 fm−3

and the critical mass MDU = 1.86M⊙; DD-ME2 and TW99
do not support the DU progress occurring in the neutron star;
PKDD can give the proton fraction exceeding the threshold
of the proton fraction xDU for the DU process occurrence,
but gives the critical mass MDU = 1.28M⊙, which violates
the assumption that the DU process shall not occur in typical
neutron stars. In a word, DD-MEδ provides a proper symmetry
energy behavior for the DU process constraint.

By comparing with the results calculated by DD-MEδ but
switching off the δ channel, it is concluded that the isovector
scalar channel softens the EOS for the nuclear matter owing
to the reduction of the contributions from the kinetic and the
σ parts. It is shown that DD-MEδ provides the softest EOS for
neutron star matter in the selected effective interactions, thus

leading to the largest central densities of the neutron stars.
Based on this EOS, DD-MEδ presents the smaller neutron
star mass and radius. In all the selected interactions, DD-MEδ
gives a quite small radius which is in good agreement with
the recent observations according to Ref. [11], while the
DD-ME2 and PKDD are not. The maximum mass given by
DD-MEδ also agrees with the two heaviest neutron stars
observed currently. In conclusion, the perfect consistency
between the maximum mass and the radius of the neutron star
with the recent observations reflects that the EOS predicted
by DD-MEδ is suitable to describe the properties of neutron
stars.
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[24] G. A. Lalazissis, T. Nikšić, D. Vretenar, and P. Ring, Phys. Rev.
C 71, 024312 (2005).

[25] S. Typel and H. Wolter, Nucl. Phys. A 656, 331 (1999).
[26] W. Long, J. Meng, N. Van Giai, and S.-G. Zhou, Phys. Rev. C

69, 034319 (2004).
[27] R. C. Tolman, Phys. Rev. 55, 364 (1939).
[28] J. R. Oppenheimer and G. M. Volkoff, Phys. Rev. 55, 374 (1939).
[29] S. F. Ban, J. Li, S. Q. Zhang, H. Y. Jia, J. P. Sang, and J. Meng,

Phys. Rev. C 69, 045805 (2004).
[30] B. Y. Sun, W. H. Long, J. Meng, and U. Lombardo, Phys. Rev.

C 78, 065805 (2008).
[31] J. Piekarewicz, Phys. Rev. C 76, 031301 (2007).
[32] E. N. E. van Dalen, C. Fuchs, and A. Faessler, Eur. Phys. J. A

31, 29 (2007).
[33] V. Baran, M. Colonna, V. Greco, and M. Di Toro, Phys. Rep.

410, 335 (2005).
[34] A. W. Steiner, M. Prakash, J. M. Lattimer, and P. J. Ellis, Phys.

Rep. 411, 325 (2005).
[35] B.-A. Li, L.-W. Chen, and C. M. Ko, Phys. Rep. 464, 113 (2008).
[36] B. Liu, M. Di Toro, V. Greco, C. W. Shen, E. G. Zhao, and

B. X. Sun, Phys. Rev. C 75, 048801 (2007).
[37] C. Pethick, Rev. Mod. Phys. 64, 1133 (1992).
[38] J. M. Lattimer, C. J. Pethick, M. Prakash, and P. Haensel, Phys.

Rev. Lett. 66, 2701 (1991).
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