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Antistrange meson-baryon interaction in hot and dense nuclear matter
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We present a study of in-medium cross sections and (off-shell) transition rates for the most relevant binary
reactions for strange pseudoscalar meson production close to threshold in heavy-ion collisions at energies
available at the Facility for Antiproton and Ion Research. Our results rely on a chiral unitary approach in
coupled channels which incorporates the s and p waves of the kaon-nucleon interaction. The formalism, which
is modified in the hot and dense medium to account for Pauli blocking effects, mean-field binding on baryons,
and pion and kaon self-energies, has been improved to implement unitarization and self-consistency for both
the s- and the p-wave interactions at finite temperature and density. This gives access to in-medium amplitudes
in several elastic and inelastic coupled channels with strangeness content S = −1. The obtained total cross
sections mostly reflect the fate of the �(1405) resonance, which melts in the nuclear environment, whereas the
off-shell transition probabilities are also sensitive to the in-medium properties of the hyperons excited in the
p-wave amplitudes [�, �, and �∗(1385)]. The single-particle potentials of these hyperons at finite momentum,
density, and temperature are also discussed in connection with the pertinent scattering amplitudes. Our results
are the basis for future implementations in microscopic transport approaches accounting for off-shell dynamics
of strangeness production in nucleus-nucleus collisions.
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I. INTRODUCTION

Strongly interacting matter under extreme conditions of
temperature and density has been a matter of interest over
the past decades, related to the understanding of the strong
interaction [1], as well as the analysis of compact stars.
In particular, strange pseudoscalar mesons in matter have
been thoroughly investigated in exotic atoms [2], heavy-ion
collisions (HICs) [3–11], and neutron stars [12].

The phenomenology of kaonic atoms [2] requires an
attractive potential for K̄ mesons, whereas the K̄N scattering
amplitude in vacuum is repulsive at low energies owing to the
presence of the �(1405) resonance below the K̄N threshold.
Indeed, this resonance has been thoroughly analyzed in
photon-induced reactions by the CLAS collaboration [13] and
in proton-proton reactions by the ANKE experiment [14] and
more recently by the HADES at GSI [15]. The onset of an
attractive K̄N interaction at low densities is a consequence
of an upper shift of the �(1405) resonance induced by
Pauli blocking on the intermediate nucleon states [16–19].
Additional medium effects such as the self-energy of mesons
in related coupled channels and the binding of hyperons in the
nuclear environment bring a smoothened �(1405) back to its
vacuum position [20], while keeping the attractive character
of the K̄N interaction in matter.

Unitarized chiral coupled-channel approaches [17–
19,21,22] with a self-consistent evaluation of the kaon self-
energy [19,20,23–25] have proven to be very successful in
describing the K̄ meson interaction in matter. An attractive
potential of about 40–60 MeV at normal nuclear-matter density
is obtained when self-consistency is implemented; it is rather
shallow as compared to relativistic mean-field calculations

[26] or phenomenological analysis of kaonic atom data
with density-dependent potentials including nonlinearities
[2,27,28]. Yet, this shallow potential is able to reproduce the
data from kaonic atoms [29,30].

The K̄ meson interaction with nucleons has also been
addressed recently in connection with the possible formation
of deeply bound kaonic states after the prediction of narrow
strongly bound states in few-body systems [31–33]. This
analysis was strongly criticized [34] owing to the unrealistic
treatment of the K̄N interaction. Recent improved calculations
using different few-body methods with diverse K̄N input
[35–44] predict few-nucleon kaonic states with large widths,
although the predicted binding energies and widths differ sub-
stantially from one model to the other. Thus, the experimental
quest for such deeply bound kaonic states is an active field
of research [45–51], which will allow to further constrain the
K̄N interaction in the near future.

Moreover, the in-medium modification of kaon-antikaon
properties has been explored experimentally close to threshold
in HICs at energies available at the GSI heavy ion synchrotron
[7–9]. With the help of microscopic transport models [3–
6,10,52,53], the creation and transport of K and K̄ has
been studied revealing a complicated multiple interaction
scenario of the strange particles with hadronic matter whose
consequences show up in the measured spectra and kaon
flow characteristics. The strangeness production in HICs
is very different from that in elementary interactions as
the excitation functions for kaons and antikaons show. The
comparison of transport-model calculations with experimental
results (such as production cross sections, energy and polar
angular distributions, azimuthal anisotropy coefficients v1,v2,
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etc.) indicate that in matter the kaons are affected by a
shallow repulsive potential, whereas the antikaon dynamics
are influenced by a much stronger attractive potential.

For kaons the spectral function is very narrow and therefore
it behaves almost as a good quasiparticle. For antikaons
the situation is much more uncertain. This is attributable to
three reasons. (a) They have a broad spectral function owing
to strong interactions with the baryons. (b) The simple t ρ
approximation for the antikaon optical potential does not
work in the I = 0 channel because this scattering amplitude
is dominated by the �(1405) resonance and is repulsive in
vacuum. (c) The measured excitation function of the antikaon
yield close to threshold energies confirms that the πY → K̄N
reaction is the dominant channel for antikaon production in
HICs [3] because the hyperons are more abundantly produced
together with kaons. This cross section is expected to be
substantially modified in the hot and dense medium. For
all these reasons it is very important to incorporate a self-
consistent treatment of the K̄ self-energy and the K̄ scattering
amplitudes in transport calculations.

The first transport calculations for antikaon observables
in nuclear matter were performed assuming that the finite
width of the antikaon spectral function might be neglected
[3,5,52,54]. These calculations revealed the strangeness ex-
change reaction as the dominant production channel and
the existence of an attractive antikaon optical potential.
Some years later antikaon production was studied using
off-shell dynamics with in-medium spectral functions in the
Hadron-String-Dynamics transport model [53] employing the
Jülich meson-exchange model [23,55] as the effective K̄N
interaction in matter. Multiplicity ratios involving strange
mesons coming from HICs data were analyzed in [56].

During the past decade several conclusions on the produc-
tion mechanisms for strangeness have been achieved by the
analysis of experimental data in conjunction with microscopic
transport approaches, i.e., the production mechanisms of
strangeness, the different freeze-out conditions exhibited by
K+ and K− mesons, and the use of K+ as a probe of the
nuclear-matter equation of state at high baryon densities.
Still, the analysis of all experimental antikaon observables
has not allowed so far for a consensus on the antikaon cross
sections and optical potential (cf. the recent review [10]). For
example, recent experimental data on the v1,v2 flow of strange
mesons [11] show a sensitivity to the details of the in-medium
meson-baryon interaction, leaving room for a more elaborate
description within hadronic models.

A model for the K̄N interaction at finite density and
zero temperature has been recently developed within a chiral
unitarity approach in coupled channels by incorporating the
s and p waves of the kaon-nucleon interaction in a self-
consistent manner [24]. Finite-temperature effects have been
also implemented [57], although only a full self-consistent
solution for s- wave effective K̄N interaction was reached as
the p-wave contribution was treated by means of hyperon-
nucleon insertions. In this work we aim at improving on
the chiral effective scheme in dense matter developed in
Refs. [24,57] as we incorporate the full self-consistency in s
and p waves at finite density and temperature. In this way, we
are able to generate in-medium meson-baryon cross sections

(amplitudes) at finite temperature as well as to determine
the single-particle properties of hyperons, such as �(1115),
�(1195), and �∗(1385), at finite momentum, density, and
temperature. These results will be used to analyze the antikaon
and hyperon production near threshold in HICs in a subsequent
publication [58].

This paper is organized as follows. In Sec. II we present the
improved model for the S = −1 meson-baryon amplitudes
in hot nuclear matter. In Sec. III the S = −1 in-medium
amplitudes and the single-particle properties of the �, �,
and �∗(1385) at finite density, temperature, and momentum
are studied, whereas in Sec. IV we show the results for the
in-medium cross sections and transition amplitudes. We draw
our summary, conclusions and outlook in Sec. V.

II. CHIRAL UNITARIZED MODEL FOR S = −1
MESON-BARYON AMPLITUDES IN HOT

NUCLEAR MATTER

In the present work we build upon the recent results of
Refs. [24,57], where the properties of strange mesons in
nuclear matter at finite temperature were studied within a
self-consistent coupled-channel approach based on the SU(3)
meson-baryon chiral Lagrangian.

In Ref. [59] the p-wave amplitude in vacuum was added to
the s-wave contribution coming from the Weinberg-Tomozawa
term [60]. The p-wave scattering was generated by the
pole terms of the octet �(1115), �(1195), and the decuplet
�∗(1385) in s-channel exchange [59]. A full self-consistent
treatment of the in-medium interaction at zero temperature
in s and p waves was performed in a later work [24]. In
addition, nuclear short-range correlations were incorporated
in the p-wave amplitudes in line with the mechanisms that
drive the nucleon-nucleon and nucleon-hyperon interactions in
Ref. [24], thus improving the formalism developed in Ref. [20].

The effect of finite temperature was taken into account
in Ref. [57] by recalculating all the relevant meson-baryon
propagators and self-energies within the imaginary time
(Matsubara) formalism, thus extending the applicability of the
model to the experimental conditions of intermediate energy
HICs [Facility for Antiproton and Ion Research (FAIR)].
Still, the p-wave self-energy of kaons and antikaons was
calculated at the level of single hyperon-hole insertions and not
within the present unitarized and self-consistent scheme. Thus,
although we were able to obtain the p-wave self-energy, which
was evaluated in terms of finite-temperature hyperon-hole
Lindhard functions including baryonic mean-field potentials,
a drawback of this calculation was that the in-medium p-wave
amplitudes for K̄N → K̄N and related (off-diagonal) coupled
channels were not accessible at finite temperature.

With the focus on the implementation of in-medium
hadronic scattering amplitudes in microscopic transport sim-
ulations, we have improved our previous calculations in
Ref. [24] by adding the unitarization of the K̄N p-wave
interaction and keeping the finite-temperature formalism of
Ref. [57] for the scattering amplitudes and the meson self-
energies. This improvement not only generalizes the results of
Ref. [24] to hot and dense matter, but additionally gives access
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to full off-shell in-medium scattering amplitudes in the SU(3)
set of coupled channels.

Moreover, the improved model renders an additional
output, namely the in-medium single-particle properties of
the hyperons exchanged in the p-wave amplitudes, which are
consistently generated within the same approach. Previous
results in cold nuclear matter were advanced in Ref. [24] for the
mass shift and width of these states at normal matter density,
ρ0 = 0.17 fm−3. We generalize and extend those results
by providing the density-, temperature-, and momentum-
dependent single-particle potentials for the �(1115), �(1195),
and �∗(1385), which we obtain by analyzing the poles in the
scattering amplitudes; cf. Sec. III.

The dynamics of strange meson-baryon scattering as can be
extracted from our scattering amplitudes is best implemented
within transport models in terms of in-medium cross sections
or as off-shell reaction rates when the propagation of unstable
particles is taken into account [10]. We explore both scenarios
and for the first time we calculate in our model the total
cross section of several K̄N two-body reactions at finite
temperature and nuclear density as well as the off-shell
transition probabilities for several processes which play a
key role in accessing the near subthreshold region in antikaon
production dynamics (cf. Sec. IV).

A. S = −1 meson-baryon amplitudes in vacuum

The extensive details of the formalism for K̄N scattering
and related channels in meson-baryon chiral perturbation
theory can be found in Refs. [21,59–66]. Here we provide
a brief summary of the leading-order s- and p-wave scatter-
ing amplitudes in vacuum and the unitarization in coupled
channels.

The lowest-order chiral Lagrangian which couples the octet
of light pseudoscalar mesons to the octet of 1/2+ baryons is
given by

L(B)
1 = 〈B̄iγ μ∇μB〉 − M〈B̄B〉

+ 1
2D〈B̄γ μγ5{uμ,B}〉 + 1

2F 〈B̄γ μγ5[uμ,B]〉, (1)

where the symbol 〈·〉 denotes the trace of SU(3) flavor matrices,
M is the baryon mass, and ∇μ denotes the covariant derivative
coupling the baryon fields to the pseudoscalar meson vector
current �μ,

∇μB = ∂μB + [�μ,B],
(2)

�μ = 1
2 (u†∂μu + u ∂μu†).

The pseudoscalar (Goldstone) bosons are introduced within
the nonlinear realization of chiral symmetry in exponential
parametrization, U = u2 = exp(i

√
2	/f ), and f is the meson

decay constant. The two last terms in Eq. (1) contain the
coupling of the baryon fields to the meson axial vector current
uμ, with

uμ = iu†∂μUu† = i(u†∂μu − u∂μu†). (3)

We note that in the SU(2) sector only the sum D + F
is relevant and corresponds to the nucleon axial vector
coupling. The πNN interaction strength relates to the former
via the Goldberger-Treiman relation, gπNN/2MN = (D +

F )/2f . The SU(3) meson and baryon field matrices are
standard in notation and given by

	 =

⎛
⎜⎝

1√
2
π0 + 1√

6
η π+ K+

π− − 1√
2
π0 + 1√

6
η K0

K− K̄0 − 2√
6
η

⎞
⎟⎠ , (4)

B =

⎛
⎜⎝

1√
2
�0 + 1√

6
� �+ p

�− − 1√
2
�0 + 1√

6
� n

�− �0 − 2√
6
�

⎞
⎟⎠ . (5)

Let us focus first on the s-wave meson-baryon interaction.
Keeping at the level of two meson fields, the covariant
derivative term in Eq. (1) provides the following interaction
Lagrangian,

L(B)
1

.=
〈
B̄iγ μ 1

4f 2
[(	∂μ	 − ∂μ		)B

−B(	∂μ	 − ∂μ		)]

〉
, (6)

from which one can derive the meson-baryon (tree-level)
transition amplitudes as

Vij = −Cij

1

4f 2
ū(p′)γ μu(p)(kμ + k′

μ), (7)

where k, k′ (p, p′) are the initial and final meson (baryon)
momenta, respectively, and the coefficients Cij (i, j indicate
the particular meson-baryon channel) form a symmetric matrix
and can be found explicitly in Ref. [60]. For low-energy
scattering (i.e., neglecting corrections of order p/M), the
following expression for the s-wave scattering amplitude is
obtained,

V s
ij = −Cij

1

4f 2
(2

√
s − MBi

− MBj
)

×
(

MBi
+ Ei

2 MBi

)1/2 (
MBj

+ Ej

2 MBj

)1/2

	 −Cij

1

4f 2

(
k0
i + k0

j

)
, (8)

where
√

s is the center-of-mass (c.m.) energy, MBi(j ) and Ei(j )

are the mass and energy of the baryon in the i(j ) channel,
respectively, and the second equation is satisfied to a good
approximation for practical purposes. Note that in the previous
expressions the spin structure is omitted for simplicity of
notation and a χ

†
s · · ·χr spinor product has to be understood.

The meson decay constant f is taken as an average value
f = 1.123fπ [67], as is customary in meson-baryon studies
within the strangeness −1 sector. The channels included in our
study are K−p, K̄0n, π0�, π0�0, η�, η�0, π+�−, π−�+,
K+�−, and K0�0.

Unitarization along the right-hand cut of the leading-order
(tree-level) amplitudes in a coupled-channel approach has
been thoroughly established as the method to extend the
applicability of the effective theory to higher energies and,
in particular, to account for the presence of resonant states,
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such as the s-wave �(1405). Formally, the unitarized solution
is obtained by iteration of the leading-order amplitude in
a Bethe-Salpeter equation in coupled channels (in matrix
notation),

T = V + V GT , (9)

where V is the s-wave potential discussed above and the line
indicates the phase-space integral over intermediate meson-
baryon states in the V GT term. The set of coupled integral
equations involved in Eq. (9) is notably simplified within the
chiral effective theory because both the potential V and the

resummed amplitude T can be factorized on shell, and thus the
solution proceeds by algebraic inversion, T = [1 − V G]−1V .
For s-wave amplitudes it has been shown that the off-shell parts
in the integral term of the equation lead to structures that can be
renormalized by higher-order counterterms and are effectively
accounted for by using physical masses and coupling constants
[60]. A more general proof of the on-shell factorization in
absence of a left-hand cut was given in Refs. [61,68] based
on the N/D method and dispersion relations. The quantity
G is a diagonal matrix accounting for the meson-baryon loop
function,

Gl(
√

s) = i

∫
d4q

(2 π )4

Ml

El( 
P − 
q )

1√
s − q0 − El( 
P − 
q ) + iε

1

q2
0 − 
q 2 − m2

l + iε
, (10)

with (P 0, 
P ) being the total four momentum of the meson-baryon pair and s = (P 0)2 − 
P 2. Note that we work with a
nonrelativistic reduction of baryon propagators (leading order in M−1

B ) in consistency with the approximations done in Eq. (8),
and therefore we neglect contributions from negative-energy poles (we keep, however, full relativistic kinematics for the baryon
dispersion relation). The loop function is divergent and needs to be regularized. This can be done by adopting either a cutoff
method or dimensional regularization. Both schemes provide equivalent results as the pertinent regularization parameters (cutoff
momentum, qmax, and subtraction constant, aMB) can be related at a given energy scale [69]. For practical purposes the cutoff
method is more convenient and transparent when dealing with particles in the medium. Within this method, and taking advantage
of Lorentz invariance to calculate in the c.m. frame, the loop function reads

Gl(
√

s) = i

∫
d4q

(2π )4

Ml

El(−
q )

1√
s − q0 − El(−
q ) + iε

1

q2 − m2
l + iε

=
∫

|
q |<qmax

d3q

(2π )3

1

2ωl(
q )

Ml

El(−
q )

1√
s − ωl(
q ) − El(−
q ) + iε

, (11)

with ωl and El being the energy of the meson (baryon) in the intermediate state in the c.m. frame, respectively, and qmax =
630 MeV, which has been fixed in this scheme to reproduce the �(1405) properties and several threshold branching ratios [60].

The main contribution to the p wave comes from the � and � pole terms, which are obtained from the D and F terms
of the lowest-order meson-baryon chiral Lagrangian [59]. The �∗(1385), belonging to the baryon decuplet, is also accounted
for explicitly in our approach. The coupling of the �∗ to the K̄N system and other channels was elaborated in [70] according
to quark-model SU(6) symmetry. Owing to its spin structure, the p-wave terms from the chiral Lagrangian contribute to both
the J = 1/2 and J = 3/2 p-wave meson-baryon amplitudes, with J the total angular momentum. To obtain the leading-order
amplitudes for J = 1/2,3/2, we proceed as follows. The general expression for the partial-wave expansion of the scattering
amplitude of a spin-0 meson and a spin- 1

2 baryon reads

f (
q ′,
q) =
∞∑

L=0

{(L + 1)fL+ + LfL−}PL(cos θ ) − i 
σ · (q̂ ′ × q̂)
∞∑

L=0

{fL+ − fL−}P ′
L(cos θ ), (12)

where 
q (
q ′) is the three momentum of the incoming (outgoing) meson and θ = ∠(
q,
q ′). In the previous expression the separation
into spin-nonflip and spin-flip parts is manifest and each partial-wave amplitude fL± corresponds to orbital angular momentum
L and total angular momentum J = L ± 1/2. In particular, for L = 1 (p-wave interaction) one writes in a more usual notation

V p(
q ′,
q ) = (2L + 1)[f (
√

s) q̂ ′ · q̂ − ig(
√

s) (q̂ ′ × q̂) · 
σ ], (13)

where two amplitudes at tree level, f tree
− (L = 1, J = 1/2) and f tree

+ (L = 1, J = 3/2), can be defined as

f tree
+ = f + g, f tree

− = f − 2g, (14)

with

fij (
√

s)= 1

3

⎧⎨
⎩−Cij

1

4f 2
ai aj

(
1

bi

+ 1

bj

)
+

D�
i D�

j

(
1 + q0

i

Mi

)(
1 + q0

j

Mj

)
√

s − M̃�

+
D�

i D�
j

(
1 + q0

i

Mi

)(
1 + q0

j

Mj

)
√

s − M̃�

+ 2

3

D�∗
i D�∗

j√
s − M̃∗

�

⎫⎬
⎭ qiqj , (15)

gij (
√

s)= 1

3

⎧⎨
⎩Cij

1

4f 2
ai aj

(
1

bi

+ 1

bj

)
−

D�
i D�

j

(
1 + q0

i

Mi

)(
1 + q0

j

Mj

)
√

s − M̃�

−
D�

i D�
j

(
1 + q0

i

Mi

)(
1 + q0

j

Mj

)
√

s − M̃�

+ 1

3

D�∗
i D�∗

j√
s − M̃∗

�

⎫⎬
⎭ qiqj , (16)
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where i,j are channel indices and qi(j ) ≡ |
qi(j )| here. The
first term in both fij and gij comes from the small p-wave
component in the meson-baryon amplitudes from the lowest-
order chiral Lagrangian in Eq. (6) [24], with

ai =
√

Ei + Mi

2Mi

, bi = Ei + Mi, Ei =
√

M 2
i + 
qi

2,

(17)

given in the c.m. frame. Moreover, the couplings of the
hyperons excited in the p-wave amplitude to a given meson-
baryon pair in channel i, DY

i , read

D�
i = c

D,�
i

√
20

3

D

2f
− c

F,�
i

√
12

F

2f
,

D�
i = c

D,�
i

√
20

3

D

2f
− c

F,�
i

√
12

F

2f
, (18)

D�∗
i = c

S,�∗
i

12

5

D + F

2f
.

The constants cD , cF , cS are given by the pertinent SU(3)
Clebsch-Gordan coefficients and can be found in Table I
of Ref. [59], whereas the leading-order (vector and axial
vector) meson-baryon chiral couplings D and F are chosen as
D = 0.85 and F = 0.52. The masses M̃�, M̃� , M̃�∗ are bare
masses of the hyperons (M̃� = 1030 MeV, M̃� = 1120 MeV,
M̃�∗ = 1371 MeV), which turn into physical masses upon
unitarization.

Unitarization proceeds in a similar way as described for the
s-wave contribution. The on-shell factorization for p waves in
meson-baryon scattering is proven along the same lines as in
meson-meson scattering [71]. Using Eq. (9), one obtains

f+ = [1 − f tree
+ G]−1f tree

+ ,
(19)

f− = [1 − f tree
− G]−1f tree

− ,

where the f ± amplitudes decouple within the Bethe-Salpeter
equation and thus are unitarized independently. The �∗ pole
for I = 1 is contained in the f+ amplitude, while the f−
amplitude includes the � and � poles for I = 0 and I = 1,
respectively [cf. Eqs. (14)–(16)].

Note that the amplitudes f tree
+ , f tree

− in the diagonal meson-
baryon channels contain the factor 
q 2, with 
q being the
on-shell c.m. momentum of the meson in this channel. For
transition matrix elements from channel i to channel j the
corresponding factor is qiqj , where the energy and momentum
of the meson in a certain channel are given by the expressions

Ei = s + m2
i − M2

i

2
√

s
, qi =

√
E2

i − m2
i , (20)

respectively, which also provide the analytical extrapolation
below the threshold of the channel, where qi becomes purely
imaginary.

B. S = −1 meson-baryon amplitudes in hot nuclear matter

We next discuss how the model is modified to account for
medium effects in hot and dense nuclear matter. To obtain the

effective s- and p-wave K̄N amplitudes (and related ones) in
hot and dense matter, the meson-baryon loop functions G(

√
s)

have to be calculated at finite temperature and baryonic density,
accounting for the in-medium propagators of the particles in
the intermediate states.

One of the main sources of density and temperature depen-
dence comes from the Pauli principle. This is implemented by
replacing the free nucleon propagator in the loop function
by the corresponding in-medium one. The other essential
source is related to the fact that all mesons and baryons in
the intermediate loops interact with the nucleons of the Fermi
sea and their properties are modified with respect to those in
vacuum.

All these changes are straightforwardly implemented within
the imaginary time formalism (IFT), as extensively discussed
in Ref. [57]. Applying the (finite-temperature) Feynman rules
in this approach, the meson-baryon propagator reads [57]

GMB (Wm, 
P ; T )=−T

∫
d3q

(2π )3

∑
n

DB(Wm − ωn, 
P − 
q; T )

×DM (ωn,
q; T ), (21)

where T is the temperature, 
P is the external total three-
momentum, 
q is the relative momentum, and Wm is an external
fermionic frequency, iWm = i(2m + 1)πT + μB , with μB

being the baryonic chemical potential. The baryon and meson
propagators within the Matsubara sum are given by

DB(wn, 
p; T ) = [iwn − EB( 
p,T )]−1,

DM (ωn,
q; T ) = [
(iωn)2 − 
q 2 − m2

M − �M (ωn,
q; T )
]−1

,

(22)

with frequencies iwn = i(2n + 1)πT + μB (fermionic) and
iωn = i2πnT (bosonic). EB stands for the single-particle
baryon energy and �M denotes the pseudoscalar meson
self-energy, which we discuss in more detail below. The sum
over the index n is not straightforward because the meson
self-energy depends on n in a nontrivial way. This complication
is circumvented by rewriting the meson propagator, DM , in the
spectral (Lehmann) representation, i.e.,

DM (ωn,
q; T ) =
∫ ∞

0
dω

SM (ω,
q; T )

iωn − ω

−
∫ ∞

0
dω

SM̄ (ω,
q; T )

iωn + ω
, (23)

where SM and SM̄ stand for the spectral functions of the
meson and its corresponding antiparticle. The relation between
the meson spectral function and the propagator is evident by
performing the analytical continuation from the Matsubara fre-
quencies onto the real energy axis [DM (ω,
q; T ) = DM (iωn →
ω + iε,
q; T )],

SM (ω,
q; T ) = − 1

π
Im DM (ω,
q; T )

= − 1

π

Im �M (ω,
q; T )∣∣ω2 − 
q 2 − m2
M − �M (ω,
q; T )

∣∣2 . (24)
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Replacing Eq. (23) in Eq. (21), one has

GMB(Wm, 
P ; T ) = −T

∫
d3q

(2π )3

∑
n

1

iWm − iωn − EB( 
P − 
q,T )

∫ ∞

0
dω

[
SM (ω,
q; T )

iωn − ω
− SM̄ (ω,
q; T )

iωn + ω

]
. (25)

In this form the analytical structure of the meson-baryon loop is explicit and the Matsubara sums can be solved by using standard
complex analysis techniques, leading to

GMB (Wm, 
P ; T )=
∫

d3q

(2π )3

∫ ∞

0
dω

[
SM (ω,
q; T )

1 − nB( 
P − 
q,T ) + f (ω,T )

iWm − ω − EB( 
P − 
q,T )
+ SM̄ (ω,
q; T )

nB( 
P − 
q,T ) + f (ω,T )

iWm + ω − EB( 
P − 
q,T )

]
. (26)

The properties of baryons in hot dense matter are implemented in the meson-baryon propagator in a twofold manner. On the
one hand, Pauli blocking is taken into account by considering the term 1-nB( 
P − 
q,T ), where nB( 
p,T ) = {1 + exp[EB( 
p,T ) −
μB]/T )}−1 is the baryon Fermi-Dirac distribution. The single-particle baryon energy EB contains the medium binding effects
obtained within a temperature-dependent Walecka-type σ − ω model (see Ref. [72]). These binding effects are thus also present
in the energy denominators.

The medium modifications on mesons, such as pions and antikaons, are incorporated in the meson-baryon loop by means of
the inclusion of the meson Bose-Einstein distribution at finite temperature, f (ω,T ) = [exp(ω/T ) − 1]−1, as well as the meson
and its corresponding antiparticle spectral functions, SM (ω,
q; T ) and SM̄ (ω,
q; T ), defined above. We consider in this work the
dressing of pion and kaon propagators as they participate in the most relevant channels driving the meson-baryon interaction and
the dynamical generation of the �(1405). For pions, we refer to Ref. [57] for a detailed calculation of the pion self-energy at
finite temperature within the ITF in the ph − �h model, including relativistic kinematics as well as full analyticity and crossing
properties. For antikaons, the self-energy receives contributions of comparable size from both s- and p-wave interactions with
the baryons in the medium. We refer the reader to the end of this section for details about its calculation.

The expression of Eq. (26) can be analytically continued onto the real energy axis, GMB(P0 + iε , 
P ; T ) = GMB(iWm →
P0 + iε , 
P ; T ), where P = (P0, 
P ) is the total two-particle momentum. Here we provide the detailed expressions for the
in-medium loop functions on the real energy axis, where some simplifications are applicable for practical purposes.

For K̄N states one has

GK̄N (P0 + iε, 
P ; T ) =
∫

d3q

(2π )3

MN

EN ( 
P − 
q,T )

[∫ ∞

0
dωSK̄ (ω,
q; T )

1 − nN ( 
P − 
q,T )

P0 + iε − ω − EN ( 
P − 
q,T )

+
∫ ∞

0
dωSK (ω,
q; T )

nN ( 
P − 
q,T )

P0 + iε + ω − EN ( 
P − 
q,T )

]
, (27)

with 
q being the meson three momentum.1 The second term in the K̄N loop function typically provides a small, real contribution
for the studied energy range in P0. Here one can replace SK (ω,
q; T ) with a free-space δ function, which simplifies numerical
computations. The latter is a sensible approximation because the K spectral function in the medium still peaks at the quasiparticle
energy and the latter does not differ much from the energy in vacuum [57]. In addition, one finds that the kaon distribution
function can be safely neglected at the temperatures of interest (we expect Bose enhancement to be relevant only for pions at
T = 0–150 MeV [57]).

In the case of π� or π� states one gets

GπY (P0 + iε, 
P ; T ) =
∫

d3q

(2π )3

MY

EY ( 
P − 
q,T )

∫ ∞

0
dωSπ (ω,
q,T )

[
1 + f (ω,T )

P0 + iε − ω − EY ( 
P − 
q,T )

+ f (ω,T )

P0 + iε + ω − EY ( 
P − 
q,T )

]
. (28)

The πY loop function incorporates the 1 + f (ω,T ) enhancement factor which accounts for the contribution from thermal pions
at finite temperature. In this case, we have neglected the fermion distribution for the participating hyperons, which is a reasonable
approximation for the range of temperatures and baryonic chemical potentials.

Finally, for η�, η�, and K� intermediate states, we simply consider the meson propagator in vacuum and include only the
effective baryon energies modified by the mean-field binding potential for � and � hyperons, i.e.,

Gi(P0 + iε, 
P ; T ) =
∫

d3q

(2π )3

1

2ωi(
q )

Mi

Ei( 
P − 
q,T )

1

P0 + iε − ωi(
q ) − Ei( 
P − 
q,T )
. (29)

This approximation is justified as the latter channels are less relevant in the unitarization procedure [60].

1We note the additional factor MB/EB with respect to Eq. (26) to keep consistency with the normalization of the baryon propagator in free
space.
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To compute the in-medium s- and p-wave amplitudes of
K̄N at finite temperature, one needs to solve Eq. (9) in
matter. The on-shell factorization of the amplitudes in the
Bethe-Salpeter equation can be maintained in the case of the in-
medium calculation for s-wave scattering [24]. The amplitudes
in the p-wave, however, require a slightly different treatment
because the on-shell factorization is not exactly reproduced
in the medium due to remaining tadpole contributions [24].
As shown in Ref. [24], the formal algebraic solution of
the Bethe-Salpeter equation with on-shell amplitudes can
be kept for the p waves with a simple modification of the
meson-baryon loop function, modulo some small tadpole
corrections. Summarizing the results in Ref. [24], if we denote
by GL

i (P 0, 
P ; T ) the in-medium meson-baryon propagator for
s- (L = 0) and p-wave (L = 1) scattering (and i labels a
specific MB channel), one has

G
(s)
i (P 0, 
P ; T ) = Gi(P0 + iε , 
P ; T ),

G
(p)
i (P 0, 
P ; T ) = Gi(s) + 1


q 2
on

[G̃i(P0 + iε , 
P ; T ) − G̃i(s)],

(30)

where the G̃ functions carry an extra 
q 2 factor in the integrand,
corresponding to the off-shell p-wave vertex.

As discussed in Ref. [24], nuclear short-range correlations
have to be taken into account when dealing with p-wave
amplitudes to account for the fact that the nucleon-nucleon
(hyperon-nucleon) interaction is not only driven by one-pion
(one-kaon) exchange. These correlations arise when the π
(K̄) in the meson-baryon loops are dressed in the medium and
develop NN−1 (YN−1) excitations. The short-range part of the
interaction is mimicked by phenomenological Landau-Migdal
contact vertices (NY -NY ′) and is technically implemented
by replacing the propagator of the exchanged pion (kaon)
in Eq. (22) with a correlated interaction which performs
the Dyson resummation of the irreducible meson self-energy
modified by successive iterations of the contact interaction [cf.
Eqs. (30)–(35) in Ref. [24] for detailed expressions].

Once the in-medium K̄N amplitudes at finite temperature
are obtained, we can compute the K̄ self-energy in either s or
p wave by integrating the effective interaction TK̄N over the
nucleon Fermi distribution at a given temperature, i.e.,

�L
K̄

(q0,
q; T ) = 4
∫

d3p

(2π )3
nN ( 
p,T ) T̄ L

K̄N
(P0, 
P ; T ), (31)

where P0 = q0 + EN ( 
p,T ) and 
P = 
q + 
p are the total
energy and momentum of the K̄N pair in the nuclear medium
rest frame, q stands for the momentum of the K̄ meson also
in this frame, and T̄ indicates the spin and isospin averaged
scattering amplitude for a given partial wave. We also provide
for convenience Eq. (31) rewritten in the basis of physical
states for antikaons,

�L
K− (q0,
q; T ) = 2

∫
d3p

(2π )3

[
np( 
p,T ) T L

K−p(P0, 
P ; T )

+ nn( 
p,T ) T L
K−n(P0, 
P ; T )

]
, (32)

where the L = 1 amplitude is defined as in Eq. (13) and reads
here T L=1 = 3 [f− + 2f+], with f± given in Eqs. (14)–(16)

and (19). A similar expression is obtained for K̄0 and we
recall that �K− = �K̄0 ≡ �K̄ in symmetric nuclear matter.
The antikaon self-energy must be determined self-consistently
because it is obtained from the in-medium amplitude, T L

K̄N
,

which requires the evaluation of the K̄N loop function, GL
K̄N

,
and the latter itself is a function of �K̄ (q0,
q; T ) through the
antikaon spectral function; cf. Eqs. (24) and (27). Note that
Eq. (31) corresponds to a naive generalization of the zero-
temperature result, as discussed in Ref. [57]. For completeness
we provide a detailed derivation of the finite-temperature
antikaon self-energy in terms of the K̄N T matrix in the
Appendix.

III. RESULTS FOR S = −1 MESON-BARYON
AMPLITUDES AND HYPERON SINGLE-PARTICLE

PROPERTIES IN MATTER

We discuss in the following our results for the scattering
amplitudes in the isospin channels I = 0,1 and s and p waves
at finite nuclear density and temperature. This information is
accessible owing to the extension of our model to account
for unitarized amplitudes in both s and p waves and different
isospin and JP channels. The final goal is to study the excited
hyperon resonances and assess how the nuclear environment
influences their properties.

In Fig. 1 we depict the imaginary part of the K̄N → K̄N
scattering amplitude in the isoscalar channel with JP = 1/2+
for L = 0 [�(1405) channel, left panel] and L = 1 [�(1115)
channel, right panel]. We show two different values of the
meson-baryon total momentum (top and bottom panels).2

We reproduce our previous results for the �(1405) at nu-
clear saturation density and zero temperature [24,57]. This
resonance strongly dilutes in the nuclear medium mostly
owing to the pion-related decay channels such as �(1405) →
�NN−1,�NN−1 and similarly with �N−1 components,
whereas the peak of the distribution (from here on, the quasi-
particle energy) remains slightly above its vacuum position for
normal nuclear-matter density, ρ0. At ρ = 2ρ0 the distribution
is substantially broader and appreciably shifted to higher
energies. The effect of the temperature is twofold. First, it
further broadens the resonance as a result of the smearing
of the Fermi surface, which increases the available phase
space for in-medium decays. Second, the attractive baryonic
potentials entering the quasiparticle energies of nucleons and
hyperons in the meson-baryon loops become shallower with
increasing the temperature, implying that all meson-baryon
thresholds are shifted to higher energies with respect to the
T = 0 case. This can be easily appreciated in Fig. 1 (left),
where at T = 100 MeV the �(1405) is dynamically generated
at a slightly higher

√
s and the kink corresponding to the

opening of the in-medium π� channel, which remains below
the range in the plot at T = 0, is visible at the low-energy tail
of the resonance at finite temperature.

The �(1115) exhibits attraction in the nuclear medium,
which in our approach amounts to about −48 MeV at normal

2We note here that our results are available in a full (P 0,P ) grid.
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FIG. 1. (Color online) Imaginary part of the K̄N scattering amplitude in vacuum and in the medium for specific resonant channels. (Left)
I = 0, L = 0, and J = 1/2 amplitude [�(1405) channel]. (Right) I = 0, L = 1, and J = 1/2 amplitude [�(1115) channel].

nuclear-matter density, and is essentially dominated by the
pion-mediated �N → �N transition incorporated in our
approach by the dressing of pions and the implementation
of short-range correlations (the lack of the latter leads to
unphysically larger attractive shifts by roughly a factor ∼2).
We note that the apparent width of the resonance at P =
0 and zero temperature is simply a numerical artifact to
solve the matrix inversion problem, whereas at finite total
momentum the resonance acquires a physical finite width from
intermediate �NN−1 excited states. At finite temperature,
however, the broadened Fermi distribution of nucleons makes
it possible to accommodate such excitations even at P = 0,
and the �(1115) develops a finite decay width as can be
seen in the right panel of Fig. 1 for the T = 100 MeV
case, whereas the attraction on the quasiparticle energy is
slightly reduced. The attractive shift at T = 0 found here for
the �(1115) overestimates previous determinations within the
same model in Ref. [24] and meson-exchange models [73–77],
which estimate an attraction for the � in nuclear matter
of about −30 MeV at ρ = ρ0, as required by hypernuclear
spectroscopy [78]. Our larger shift is partly attributable to the
input baryonic mean-field potential for the hyperons (� and
�), which are estimated from those of the nucleon within
a σ -ω model at finite density and temperature by means of
simple quark-model counting rules. The model leads to an
attractive binding for both hyperons of approximately −50
MeV at ρ = ρ0. We have used this model as it incorporates
the temperature dependence of the baryonic potentials and also
to compare the present results to our previous calculation [57],
where p-wave unitarization at finite density and temperature
was missing. The hyperon binding potential can be readily
improved by modifying the scalar (σYY ) and vector (ωYY )
couplings (gσ/ωYY = α gσ/ωNN with α = 2/3 within the strict
quark counting scheme) so as to satisfy the phenomenological
requirement U�(ρ0) 	 −30 MeV. We find, however, that such
modifications barely affect the � and � mass shifts obtained

from the p-wave amplitudes, indicating that the effect of the
input baryonic potentials saturates to some extent within our
self-consistent calculation. On top of this, the impact of these
variations is marginal on the position and shape of the �(1405)
resonance. Therefore, although the binding potentials certainly
influence the eventual nuclear potential of the hyperons in the
p waves, one can say that it is not the leading effect in our
calculation. As discussed before, the former test corroborates
that the attractive potentials that the � and � develop at finite
density are mostly attributable to the pion-mediated coupled
channels, when the pion is also dressed in the medium and
short-range correlations within vertices related to the NN
and NY interaction are simultaneously implemented [24].
The strength of these mechanisms depends on a reduced
set of parameters, namely the baryonic form factor of the
pion (with scale parameter �π ), accounting for the finite size
of πNN , πN� vertices, and the Landau-Migdal parameter,
g′, controlling the size of short-range correlations. We have
checked that by varying these parameters within realistic
ranges (�π 	 0.8–1 GeV, g′ 	 0.6–0.8) one can accommo-
date the value of U�(ρ0) 	 −30 MeV. This can be achieved by
using a softer hadronic pion form factor, with �π 	 0.8 GeV
and g′ 	 0.6. For this set of parameters the nuclear potential
for the � is reduced to approximately −25 MeV at ρ0 (note
that the � is even more sensitive to the pion properties owing
to the in-medium open channels �N → �N,�N ). The need
for a softer pion form factor in our calculation, as compared
to previous studies within similar models in cold nuclear
matter, can be justified as follows: Within heavy-ion studies,
nonrelativistic approximations typically performed to simplify
the calculation of NN−1, �N−1, YN−1 excitation functions
(Lindhard-Migdal functions) are not suitable because the
meson-baryon pair scans a larger set of states in momentum
space. The use of fully relativistic kinematics in the baryon
propagators [57] results in meson self-energies with slower
high-energy and momentum behavior, leading to stronger
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FIG. 2. (Color online) Same as in Fig. 1 for the isovector hyperon channels. (Left) I = 1, L = 1, and J = 1/2 K̄N amplitude [�(1195)
channel]. (Right) I = 1, L = 1, and J = 3/2 π� amplitude [�∗(1385) channel].

effects from the in-medium pion dressing. The use of a slightly
softer hadronic form factor for the pion self-energy is enough
to compensate this extra strength from pion-related coupled
channels.

Our results for the isovector hyperons are shown in Fig. 2.
The left panel corresponds to the K̄N → K̄N p-wave ampli-
tude for JP = 1/2+, where the �(1195) is excited, whereas the
right panel shows the JP = 3/2+ component of the p-wave
π� → π� amplitude, dominated by the �∗(1385). The �
acquires an attractive shift of about −40 MeV at normal
matter density, about 5 MeV larger than in Ref. [24] and
again mostly attributable to the pion-mediated YN interaction.
Its decay width at P = 0 originates from the �N → �N
transition, readily incorporated in the model through the
dressing of pions and kaons. At T = 100 MeV, the �
attraction is reduced by about 1/3 of the value at zero tem-
perature. The � also becomes narrower, which seems coun-
terintuitive given the expected enhancement of phase space
from a broader nucleon distribution at finite temperature.
However, one should keep in mind that the baryons in
all intermediate states also become heavier with increasing
temperature and that the mass difference between the � and
� hyperons becomes smaller with temperature. Given the
relatively small energies available for � → �NN−1 decays
the latter effect dominates and the � width is reduced. At
ρ = 2ρ0, the � profile displays a kink at ∼1140 MeV and
peaks below this energy. This is attributable to the large
attraction which shifts the � state below the in-medium π�
threshold, and consequently the hyperon in-medium width
is reduced. This effect would have been smeared out if we
had performed a self-consistent calculation for the hyperon
single-particle potential in dense matter. Our present results
regarding the � self-energy in the medium are comparable
to former determinations [79,80] in cold nuclear matter. Other
approaches based on phenomenological potentials constrained
by �-atom data conclude that the � experiences repulsion
at short distances, while the potential turns attractive at large
distances [81,82]. It is worth mentioning the model calculation

of Ref. [83], based on the meson-baryon chiral Lagrangian
and accounting for long-range dynamics (pion and kaon
exchange mechanisms), which finds a net repulsive potential
of about 60 MeV at nuclear-matter density. The theoretical
status of the � potential seems to be far from being settled,
whereas the only experimental evidence is that � atoms
require an attraction at the relatively large distances that are
probed in these experiments. The study of inclusive spectra
in (π−,K+) �-production reactions provides complementary
information. In Refs. [84–86] these spectra have been analyzed
within the distorted wave approximation for pions and kaons
(see also Ref. [87], where the equivalent Green’s function
method is used) with the conclusion of a repulsive �-nucleus
potential at central densities. These results, however, should
be pondered with care because the method employed may
not be appropriate for inclusive reactions (where one sums
over all possible nuclear final states), as the distorted wave
approximation removes K and π quasielastic and absorption
events from the flux, whereas the resulting final state still
contains the particles of interest. Presumably, this method
forces a repulsive �-nucleus potential to prevent the �
hyperon from being too close to the nucleus (and scan larger
densities), as the distorted pion and kaon waves would then
remove too many events from the flux. Summarizing, in
our understanding the experimental situation concerning the
� potential is also unresolved and, again, the only robust
information that can be presently extracted is that the �
potential is attractive at the small densities probed in atom
production.

The �∗(1385) has a finite decay width in vacuum from
π� and π� decays, which is correctly accounted for in our
model. At finite nuclear density, the opening of additional
decay channels related to the pion and kaon dressing (thus,
�∗ → �NN−1,�NN−1) and the p-wave character of the
interaction enhances considerably the �∗ width, which evolves
from 35 MeV in vacuum to close to 100 MeV at ρ = ρ0.
This value has to be compared to 80 MeV as obtained in
Refs. [24,88]; the larger value in our case is related to the
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more attractive potentials acting on the � and � hyperons
as well as the increase of the �∗ mass with density. Indeed,
the attractive �∗ mass shift of 10 MeV at ρ = ρ0 turns into
repulsion at larger densities. At two times normal matter
density the resonance is so broad that it starts to be meaningless
to define a quasiparticle energy or a mass shift. The effect of
the temperature in this case is moderate owing to the important
phase space already available at zero temperature. Owing to
the baryons picking up larger quasiparticle energies and the
slight reduction of the �∗ mass, the �∗ width is actually
mildly reduced at ρ = ρ0 and T = 100 MeV as compared
to the zero-temperature case.

It is pertinent to make a comparison of our results with
similar approaches, particularly that in Ref. [25] by Lutz et al.,
where a self-consistent and covariant many-body approach
based on the chiral SU(3) Lagrangian is employed to study
antikaon dynamics in dense nuclear matter at zero temperature.
The most relevant differences can be summarized as follows.
(a) The angular integration in the meson-baryon loop function
[cf. Eq. (26)] is approximated in our calculation by an
average over the Fermi distribution, whereas in Ref. [25] it
is also evaluated explicitly. (b) We incorporate density and
temperature-dependent scalar and vector mean-field potentials
for the nucleon and the ground-state hyperons, whereas in
Ref. [25] this is only implemented for the nucleon. (c) The
interaction of the hyperons with the K̄N system in the p-wave
amplitudes is modified by short-range correlations in our
approach, in consistency with the phenomenology of nucleon-
nucleon and hyperon-nucleon interactions, which requires a
treatment of short distances beyond the one-pion and one-kaon
exchange mechanisms. The effect of the angular average has
been analyzed in Ref. [25] and the authors conclude that the
impact of this approximation is marginal for the antikaon
spectral function, as previously stated in Ref. [20], whereas
it becomes more important for the contribution of d-wave
interactions, driven by the excitation of the �(1520) (not
accounted for in our model). Still, some differences are found
when comparing the scattering amplitudes in the p wave and
the in-medium excitation energy of the �, �, and �∗, which,
disregarding the effect of the angular average, can only be
ascribed to the different strength of the p-wave interaction in
both approaches (short range phenomena are not implemented
in the calculation of Lutz et al.) Overall, the size of the
attraction experienced by the � and � in Ref. [25] is larger
than in our case (by roughly factor 1.5–2), a feature that we can
also reproduce if short-range interactions are switched off. The
discrepancy with the mass shift of the �∗(1385) is even more
dramatic, of the order of a factor ∼4. Incidentally, a narrow
soft mode associated with a highly collective �N−1 excitation
is observed by the authors of Ref. [25] in the low-energy tail of

the K̄ spectral function. Such a peaky structure is not present in
our previous results [24] and thus one can infer that short-range
correlations in the K̄N interaction are taming the strength of
this low-energy mode. The emergence of a low-energy tail
in the K̄ spectral function owing to many-body correlations
is an important phenomenon with direct connection with the
possibility of formation of kaon condensates in dense matter
(e.g., in compact stars). Populated by YN−1 excitations in the
p wave and enhanced at finite temperature as discussed in
Ref. [57], such soft modes in the K̄ spectral function are likely
to increase the reactivity of the φ meson at energies available at
FAIR by “stimulated” φ → K̄K decay and diffusion processes
(e.g., φK̄ → K̄), because Bose enhancement is more effective
on the light modes of the system [89].

Apart from the temperature and density dependence of the
scattering amplitudes and the corresponding behavior of the
hyperons in matter, an additional output of our model is the mo-
mentum dependence of nuclear optical potentials. This is
important to have a comprehensive description of medium
effects on all the hadrons involved in strangeness production
near threshold. Moreover, hadronic medium effects can only
be implemented by means of the quasiparticle prescription in a
certain class of transport models such as the Isospin Quantum
Molecular Dynamics approach (see Ref. [10] and references
therein), where the physical states are implemented according
to on-shell kinematics.

Particularly for the �, �, and �∗ hyperons, which essen-
tially keep a quasiparticle nature in the medium [with some
caveats with the �∗(1385), largely broadened in the medium],
we can determine the hyperon optical potential by analyzing
the momentum evolution of the resonance pole in the scattering
amplitudes. On one hand, the real part of the optical potential
can be obtained by subtracting the free hyperon dispersion
relation from the in-medium quasiparticle energy, εY (P ),

Re UY (P ) = εY (P ) −
√

M2
Y + 
P 2. (33)

On the other hand, a suitable combination of the amplitude
residue at the resonance pole and the imaginary part of
the amplitude evaluated at the quasiparticle energy makes it
possible to calculate the acquired width in the medium (total
width including the vacuum one in the case of the �∗),

Im UY (P ) = Im Tij [εY (P )]/m, (34)

with m being the slope of Re Tij at the resonance pole. We note
that this definition is equivalent to the more general definition
of the hyperon self-energy, �Y , as elaborated in Ref. [88].
Our p-wave amplitudes are driven by the spectral function (or,
equivalently, the propagator) of the hyperons, which reads

SY (P 0, 
P ) = − 1

π

MY

EY ( 
P )

Im �Y (P 0, 
P )

[P 0 − EY ( 
P ) − Re �Y (P 0, 
P )]2 + [Im �Y (P 0, 
P )]2
. (35)

The optical potential defined above corresponds to the hyperon
self-energy evaluated at the quasiparticle energy for a given
momentum.

Following this method we provide in Fig. 3 the momentum-
dependent nuclear optical potentials for the �(1115), �(1195),
and �∗(1385) hyperons for several densities and temperatures.
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FIG. 3. (Color online) Momentum dependence of the nuclear optical potential for the �(1115), �(1195), and �∗(1385) hyperons at finite
nuclear density and temperature. (Top) Real part; (bottom) imaginary part.

The evolution of the optical potentials with nuclear density and
temperature can be easily traced back to the shape and position
of the hyperon peaks in the isospin amplitudes previously
discussed.

The real (imaginary) part of the optical potential is
displayed in the top (bottom) panel of Fig. 3. At normal
nuclear-matter density, the �, �, and �∗ acquire attractive
potentials of −48, −40, and −10 MeV, respectively, at rest
in the nuclear-matter rest frame. At densities beyond ρ0, the
attraction on the � and � is enhanced, whereas the potential
for the �∗ turns from attractive to repulsive between ρ0

and 2ρ0. The momentum dependence is rather smooth in
all three cases: The potentials monotonically increase (thus,
the attraction being reduced). For the �∗, which experiences
a rather small binding, the potential turns from attractive to
repulsive at about 500 MeV/c momentum. The temperature
mildly reduces the size of the potential for the � and �
hyperons, in line with the input baryonic binding potentials
implemented in the intermediate hyperon propagators. For

the �∗ the optical potential is tied to medium effects on the
main decay channels already existing in vacuum, as already
discussed, where typically large cancellations between real
parts in the self-energy (from different channel contributions)
lead to only moderate shifts of the resonance mass [88]. We
obtain in this case that the real part of the �∗ potential is
slightly larger in magnitude (more attractive) at ρ = ρ0 and
T = 100 MeV as compared to the zero-temperature case.

The imaginary part of the optical potential is attributable
to the opening of in-medium decay or absorption channels
involving the interactions with nucleons. Both the � and the �
evolve from being stable states in vacuum to having relatively
small decay widths, below 20 MeV for the range of density,
temperature, and momentum studied here. We recall again
that the � can only decay through the excitation of NN−1

components, which require a finite hyperon momentum at zero
temperature. Whereas one may expect larger widths for � and
� at ρ = 2ρ0 as compared to ρ = ρ0, the enhancement of the
available states with density is compensated by the shift in
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mass of the hyperons, leading to a small reduction in the width
for both JP = 1/2+ baryons at low momentum. We recall that
for large densities, self-consistency for the hyperon single-
particle potential might be required. Moreover, the value of the
hyperon width at the quasiparticle energy (as obtained from
Im UY ) may differ from the one developed by the (off-shell)
spectral function, particularly when the energy dependence
of the self-energy is substantial, as is the case for p-wave
interactions. The density evolution of the width for the �∗
essentially reflects the enhancement of in-medium phase space
of its decay channels. At ρ = ρ0 and T = 100 MeV, however,
we find a small decrease of the width with respect to the
T = 0 case, which is traced back to the baryons in the final
state, becoming heavier with increasing temperature.

IV. IN-MEDIUM TRANSITION PROBABILITIES
AND CROSS SECTIONS

The dynamics of the K̄N system and its related coupled
channels in the hot and dense medium is encoded in the
S = −1 meson-baryon scattering amplitudes. With the focus
on the implementation, in transport simulations, of strangeness
dynamics in HICs at conditions available at FAIR we present
our analysis in terms of transition probabilities and cross
sections for different binary reactions. These results are
complementary to the K̄ spectral functions and nuclear optical
potentials provided in Ref. [57] and, altogether, permit a
systematic accounting of medium effects in the S = −1 sector,
not only within the relevant binary reactions but also regarding
the production and propagation of light strange hadrons.

In general, the calculation of dynamical quantities in
transport theory will require an appropriate folding of reaction
rates or transition probabilities with the spectral functions of
the particles in the initial and final states. Such is the case of
the model in Ref. [53], which is based on a gradient expansion
of the Kadanoff-Baym equation and accounts for the transport
of off-shell particles. The transition probability for a given
reaction, P(s), is determined as the angular integrated average
squared amplitude (including all partial waves) and can be
defined fully off-shell as a function of the total energy P 0 and
momentum 
P of the meson-baryon pair. For the process i → j
(where i,j denote meson-baryon channels) one has

Pij (P 0, 
P ; ρ,T ) =
∫ +1

−1
du

{∣∣f (s)
ij + (2f +

ij + f −
ij ) u

∣∣2
+ |f +

ij − f −
ij |2 (1 − u2)

}
, (36)

where f (s) = T L=0, f ± is given in Eqs. (14)–(16) in terms
of suitable combinations of spin-flip and spin-nonflip p-wave
amplitude, and θ is the scattering angle in the c.m. frame of
the meson-baryon pair.

We note that, modulo kinematical factors related to flux
of the incoming and outgoing particles, the former expression
recalls that of the total cross section for a binary process in vac-
uum. The definition of an in-medium cross section, however, is
more complex and requires both the knowledge of the pertinent
scattering amplitudes at finite temperature and density and a
suitable generalization of the corresponding flux factors. Tak-
ing into account that the hadrons in the initial and final states do

need not be on the mass shell (as they could develop a broad
spectral function in the medium), there is not a unique and
simple way to implement such definition in the medium and re-
quires the choice of an on-shell reduction scheme [10,53]. Still,
medium effects for strange reactions are best implemented
in terms of in-medium cross sections (and pertinent nuclear
optical potential) in transport models which rely on the narrow
test quasiparticle approach [10], and thus we deem pertinent to
provide also in-medium cross sections from our meson-baryon
scattering amplitudes, which we discuss in the second half
of this section. The differential cross section for the process
i → j (where i,j denote meson-baryon channels) reads

dσij

d�
= 1

16π2

MiMj

s

q̃j

q̃i

{∣∣f (s)
ij + (2f +

ij + f −
ij ) cos θ

∣∣2
+ |f +

ij − f −
ij |2 sin2 θ

}
, (37)

with q̃i the c.m. three-momentum of meson-baryon pair i.
The total cross section follows as

σtot =
∫

d�
dσij

d�
= 2π

∫ 1

−1
du

dσij

d�
(u), (38)

with u ≡ cos θ .
We discuss next the transition probability for several K−p

reactions. From here on we denote these rates as P(s), keeping
in mind that in our model they actually depend separately on
the total energy P 0 and momentum 
P of the meson-baryon
pair. In the following discussion, we present selected results
for P(s) at zero total momentum, P = 0, as a function of
s1/2 = P 0 for several nuclear densities and temperatures.

In Fig. 4 we depict the transition probability for the K−p
elastic reaction and the K−p → π0�0 strangeness exchange
reaction. The K−p state is an admixture of I = 0,1 and
therefore the two isoscalar � resonances and the isovector
�(1195) show up according to the results discussed in Sec. III.
The �∗(1385) couples weakly to the K̄N system and cannot
be resolved in the K−p elastic case. The K−p → π0�0

reaction selects the I = 0 component of the K̄N amplitude
and consequently only the isoscalar hyperons are present
in the right panel of Fig. 4. The resonance profiles exhibit
the temperature and density evolution as discussed for the
amplitudes in Sec. III. The structure of the �(1405) is
practically washed out and only some remnants are visible at
normal matter density. The effect of temperature is particularly
appreciable as a broadening of the p-wave resonances as
compared to the vacuum case (recall that in vacuum the � and
� are stable and their apparent width is a numerical artifact).

Next we show in Fig. 5 the transition probability for the pure
isovector processes π0� → K−p and π0� → π0�, where in
this case only the � resonances populate the spectrum. The
�∗(1385) couples strongly to π� and more weakly to π� and
K̄N states. The latter channel is actually closed in vacuum.
However, at finite nuclear density the K̄N threshold is lowered
because of the attractive potentials acting on the meson and the
baryon. Because of the opening of this channel (and related
in-medium processes accounted for in the K̄ self-energy) one
observes that the �∗ shape is distorted by the in-medium K̄N
threshold and its signal practically disappears in the π0� →
K−p reaction. In the diagonal process π0� → π0�, one can
appreciate the large in-medium width of the �∗ induced by
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FIG. 4. (Color online) In-medium transition probability P(s) at zero total three-momentum for the elastic K−p (left) and the inelastic
K−p → π 0�0 (right) reactions. The peaks associated to the �(1115), �(1195), and �(1405) resonances are clearly visible in the vacuum
case.

the one- and two-body mechanisms incorporated through the
dressing of pions and kaons, as well as the small changes in
the position of the resonance.

In the following we present results for the in-medium cross
sections of the K−p elastic and inelastic binary reactions,
which we compare with the vacuum ones. The simplest way
to estimate the in-medium cross section for these processes
is to replace in Eq. (37) the amplitudes in vacuum with their
in-medium counterparts. The results are shown in Fig. 6, with
a solid line (on-shell prescription), and in Fig. 7 for the elastic
case and several inelastic channels involving strangeness
exchange (thick lines) at different temperature and density.
As a common feature we observe that the rapid fall of the

cross section close to threshold is softened and the strength
is distributed over a wide range of energies, as expected
from the melting of the �(1405) resonance in matter at
finite temperature. Typically, the in-medium cross section
overshoots the vacuum one at finite momentum (this happens,
e.g., in elastic K−p for K− momenta in the laboratory
�300 MeV/c).

As discussed at the beginning of this section, some caveats
emerge from the definition of the in-medium cross section
in the on-shell prescription. First, in vacuum the incident
kaon momentum in the laboratory frame determines the total
energy and momentum of the K−p pair and thus the c.m.
energy,

√
s. Then the evaluation of the scattering amplitude is
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straightforward because it only depends on s (in general on
the invariants s, t , and u) in vacuum. However, in the nuclear
medium, the Lorentz covariance is broken and the (off-shell)
scattering amplitudes depend explicitly on P 0 and 
P . In the
nuclear-matter rest frame and neglecting the Fermi motion
of the initial nucleon one has 
P = 
q and P 0 = q0 + MN ,
where q0 is the off-shell energy of the incoming antikaon.
Since there is not a unique relation between q0 and 
q the
probability for this reaction to occur should be folded with the
spectral function of the antikaon. Otherwise, the information
about the in-medium properties of the strange mesons, encoded
in the meson self-energies, is not taken into account. Note,
for instance, that the K̄ is attracted by −45 MeV at ρ = ρ0

and therefore the total energy of the K̄N pair at a given
laboratory momentum is lower than within the free on-shell
prescription (P 0 =

√
m2

K + 
q 2 + MN ), thus giving access to
the energy region below the nominal K̄N threshold in vacuum.
An educated estimation of these effects on the effective cross
section for K̄N scattering in the nuclear medium can be
addressed as follows. An incident antikaon with momentum 
q
in the nuclear-matter rest frame will have an energy distribution
which we can approximate by the narrow quasiparticle energy,
q0 	 ω(q) + UK̄ (q) with UK̄ = �K̄/2mK the K̄ nuclear
optical potential and ω(q) =

√
m2

K + 
q 2 (the former provides
a good approximation to the exact dispersion relation for the
present purpose). Then the total energy and momentum of the
meson-baryon pair is given by

P 0 = ω(q) + UK̄ (q) + M∗
N + �v

N,
(39)

P = q,

where the nucleon energy is also modified by the correspond-
ing scalar (�s

N ) and vector (�v
N ) mean-field potentials (M∗

N

contains the scalar part, M∗
N = MN − �s

N ) and where we have
assumed for simplicity that the initial nucleon is at rest. It
is clear from the equations above that the effective squared
invariant energy s∗ = (P 0)2 − P 2 is lower than its value in
vacuum owing to the attractive potentials acting on both the K̄
and the nucleon. Of course, in the nuclear-matter rest frame the
initial nucleon is not at rest but vibrates with Fermi motion. To
estimate the effect of the Fermi motion of the initial nucleon,
we obtain the angular average over the nucleon distribution,
which amounts to modifying Eq. (39) as follows,

M∗
N →

√
(M∗

N )2 + 3

5
p2

F (ρ),
(40)

P = q → P =
√

q2 + 3

5
p2

F (ρ),

with pF (ρ) such that ρ = 2p3
F /3π2. Similarly, the c.m.

incoming and outgoing momenta q̃ and q̃ ′ in Eq. (37) are
modified to take into account the meson-baryon binding. The
effect of these corrections is analyzed in Fig. 6 for the K−p
elastic and K−p → K̄0n reactions at normal nuclear-matter
density and zero temperature. In these particular channels
the binding on the initial and final states is the same and
thus the modification of the kinematical factors in the cross
section simply reflects the reduction of s∗ with respect to
the vacuum case, which induces a moderate increase in
the cross section (cf. compare curves labeled with “on-shell
prescription” and “in-medium flux only,” where in the latter
only the kinematical factors 1

s
q̃j /q̃i are modified). When

the amplitudes are evaluated at total energy and momentum
accounting for the nuclear potentials [cf. Eq. (39) and curves
labeled with “in-med flux + energy”] we find that the strength
is substantially redistributed to higher laboratory momenta.
This results from the fact that, owing to the nuclear binding
in the initial state, the energy required to excite the �(1405)
can only be reached at a finite momentum of the incident
antikaon. Finally, the Fermi motion of the initial nucleon
(cf. curves “in-med flux + energy + Fermi”) only enhances
moderately the cross section at small incident momentum in
the elastic channel, whereas for K−p → K̄0n the threshold is
shifted to lower energies and this channel is open even below
the K̄0n vacuum threshold (with relative momentum of the
meson-baryon pair in the c.m. frame of about 100 MeV/c).
We refer to the dash-dotted lines in Fig. 7 for an estimation of
these modifications in the inelastic K−p reactions.

V. SUMMARY, CONCLUSIONS, AND OUTLOOK

We have extended our model for S = −1 meson-baryon
interaction in hot and dense nuclear matter by incorporating
the p-wave amplitudes within the unitarized self-consistent
scheme that was already built in for the s wave. This
has allowed us to compute scattering amplitudes for binary
kaon-nucleon reactions in different diagonal and off-diagonal
coupled channels, for isospin I = 0,1 and total spin J =
1/2,3/2.

The isoscalar, s-wave K̄N amplitude is dominated by
the excitation of the �(1405) right below threshold, which
acquires its physical width dominantly from the decay into π�
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FIG. 7. (Color online) Total K−p cross sections with in-medium amplitudes including s and p waves for several coupled channels.

states. When the nuclear medium is switched on, the resonance
is practically washed out and its strength spread out over
energy, as a consequence of the in-medium decay mechanisms
incorporated through the self-consistent dressing of mesons
[e.g., �(1405) → π (YN−1)N,π (NN−1)�,π (�N−1)�].

The p-wave amplitude reflects the excitation of the � and
� hyperons (in isospin 0 and 1, respectively) in the spin- 1

2
channel and the �∗(1385) with spin- 3

2 . At finite nuclear den-
sities, both the � and the � experience an attractive potential
of roughly −50 and −40 MeV at normal matter density and
zero temperature, consistently with the input mean-field of
the σ -ω model employed to account for medium effects in the
baryon propagators of intermediate meson-baryon states. Both
hyperons acquire a finite decay width, reflecting the probability
to be absorbed by the nuclear medium or have quasielastic
scattering processes at finite density and temperature. The �∗
develops a much smaller attractive potential of about −10 MeV
at ρ = ρ0 and zero temperature which turns even to a small

repulsion for increasing densities. Its decay width is notably
enhanced by a factor three at normal density mostly owing to
the dressing of pions, which opens new absorption channels
such as �∗ → π (NN−1)�,π (NN−1)� and similarly with
the pion coupling to �N−1 excitations. The effect of the
temperature in this case is moderate owing to the important
phase space already available at zero temperature.

An additional output of the model, which can be accessed
from the p-wave amplitudes, is the momentum-, density-,
and temperature-dependent optical potential of the �, �, and
�∗. In all cases we have observed a smooth behavior with
momentum up to 500 MeV/c.

We have exploited the novel features in our model to
calculate the in-medium total cross section for the K−p elastic
and inelastic reactions and compared our results with those
of the vacuum case. These cross sections, dominated by the
s-wave interaction, are particularly smoothened at low incident
momenta and some strength is extended to energies below
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threshold owing to the effectively smaller mass of antikaons
in the dense medium. As a consequence of the melting of the
�(1405), the cross sections fall off more slowly and eventually
remain larger than the vacuum ones with increasing energy.

Our in-medium scattering amplitudes have also been used to
generate off-shell transition rates for binary reactions involv-
ing strange mesons, such as K̄N → K̄N and π� → K̄N ,
of crucial importance to understand strangeness production
mechanisms in HICs. The implementation of this dynamical
information together with the spectral functions of K̄ in a
suitable off-shell transport model along the line of Ref. [53] is
ongoing and will be reported elsewhere [58]. Also, results on
strange vector mesons in matter have been recently reported
(K̄∗ [90] and K∗ [91]) and should be implemented in the
transport models to have a unified scheme for strangeness
production and dynamics in HICs.
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APPENDIX: ANTIKAON SELF-ENERGY FROM TK̄ N

We derive in this section a general expression for the
antikaon self-energy from the effective in-medium K̄N scat-
tering amplitude at finite temperature. Let us denote by TK̄N

the isospin averaged antikaon-nucleon scattering amplitude.
The argument is valid for both s and p waves and thus we
omit the L index in the notation. Following the Feynman rules
in the ITF, the K̄ self-energy reads

�K̄N (ωn,
q; T ) = T

∞∑
m=−∞

∫
d3p

(2π )3

1

iWm − EN ( 
p )

× TK̄N (ωn + Wm, 
P ; T ), (A1)

where ωn and Wm are bosonic and fermionic Matsubara
frequencies, respectively, iωn = i2nπT and iWm = i(2m +
1)πT + μB . The sum over the index m cannot be solved
unless we know exactly how TK̄N depends on m. We skip
this difficulty by invoking a spectral representation for the T
matrix, i.e.,

�K̄N (ωn,
q; T ) = −T

∞∑
m=−∞

∫
d3p

(2π )3

1

π

∫ ∞

−∞
d�

Im TK̄N (�, 
P ; T )

[iWm − EN ( 
p )][iωn + iWm − �]

= −
∫

d3p

(2π )3

1

π

∫ ∞

−∞
d�

Im TK̄N (�, 
P ; T )

iωn − � + EN ( 
p )
[nN ( 
p,T ) − n(�,T )], (A2)

with n(�,T ) = [e(�−μB )/T + 1]−1 here. The former result, after continuation into the real energy axis (iωn → q0 + iε), provides
the finite-temperature antikaon self-energy evaluated from the antikaon nucleon scattering amplitude. Note that it includes a Pauli
blocking correction term, n(�,T ), convoluted with the spectral strength from the imaginary part of the T matrix. At the region in
which the principal value of the spectral integration gets its major contribution, � ≈ q0 + EN ( 
p ), the fermion distribution n(�,T )
behaves as a slowly varying function and thus we can approximate this term by a constant, namely, n(�,T ) 	 n(q0 + EN ( 
p ),T )
and take it out of the integral. The dispersion integral over � then recovers the whole amplitude TK̄N and the self-energy can be
approximated by

�K̄N (q0 + iε,
q; T ) =
∫

d3p

(2π )3
TK̄N (q0 + EN ( 
p ), 
P ; T ) [nN ( 
p,T ) − n(q0 + EN ( 
p ),T )]. (A3)

Note that this procedure is exact for the imaginary part. Equations (31) and (32) follow from the former result by neglecting the
second term in the brackets. The latter is a sensible approximation for the s-wave amplitude, which peaks around the �(1405)
resonance, and thus one expects this correction to be small with respect to that on the nucleon. For the p-wave self-energy, the two
terms in the brackets guarantee that the crossing property of the (retarded) self-energy, Im �

p

K̄
(−q0,
q; T ) = −Im �

p
K (q0,
q; T ),

is satisfied. As a consistency test, we find that the p-wave self-energy derived in Ref. [57] in terms of YN−1 Lindhard functions
and K̄NY amplitudes at leading order is recovered from Eq. (A3) if replacing the T matrix with the tree-level (hyperon pole)
amplitude in Eqs. (14)–(16).
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[38] J. Révai and N. V. Shevchenko, Phys. Rev. C 90, 034004 (2014).
[39] Y. Ikeda and T. Sato, Phys. Rev. C 79, 035201 (2009).
[40] Y. Ikeda, H. Kamano, and T. Sato, Prog. Theor. Phys. 124, 533

(2010).
[41] A. Dote, T. Hyodo, and W. Weise, Nucl. Phys. A 804, 197

(2008).
[42] A. Dote, T. Hyodo, and W. Weise, Phys. Rev. C 79, 014003

(2009).

[43] N. Barnea, A. Gal, and E. Z. Liverts, Phys. Lett. B 712, 132
(2012).

[44] M. Bayar and E. Oset, Phys. Rev. C 88, 044003 (2013).
[45] M. Agnello et al., Phys. Rev. Lett. 94, 212303 (2005).
[46] G. Bendiscioli et al., Nucl. Phys. A 789, 222 (2007).
[47] T. Yamazaki et al., Phys. Rev. Lett. 104, 132502 (2010).
[48] L. Fabbietti et al., Nucl. Phys. A 914, 60 (2013).
[49] A. O. Tokiyasu et al., Phys. Lett. B 728, 616 (2014).
[50] S. Ajimura et al., Nucl. Phys. A 914, 315 (2013).
[51] Y. Ichikawa et al., Few-Body Syst. 54, 1191 (2013).
[52] C. Hartnack, H. Oeschler, and J. Aichelin, Phys. Rev. Lett. 90,

102302 (2003).
[53] W. Cassing, L. Tolos, E. L. Bratkovskaya, and A. Ramos, Nucl.

Phys. A 727, 59 (2003).
[54] C. Hartnack and J. Aichelin, J. Phys. G 28, 1649 (2002).
[55] L. Tolos, A. Ramos, and A. Polls, Phys. Rev. C 65, 054907

(2002).
[56] L. Tolos, A. Polls, A. Ramos, and J. Schaffner-Bielich, Phys.

Rev. C 68, 024903 (2003).
[57] L. Tolos, D. Cabrera, and A. Ramos, Phys. Rev. C 78, 045205

(2008).
[58] D. Cabrera, L. Tolos, E. Bratkovskaya, and J. Aichelin

(unpublished).
[59] D. Jido, E. Oset, and A. Ramos, Phys. Rev. C 66, 055203

(2002).
[60] E. Oset and A. Ramos, Nucl. Phys. A 635, 99 (1998).
[61] J. A. Oller and U. G. Meissner, Phys. Lett. B 500, 263 (2001).
[62] C. Garcia-Recio, M. F. M. Lutz, and J. Nieves, Phys. Lett. B

582, 49 (2004).
[63] T. Hyodo, S. I. Nam, D. Jido, and A. Hosaka, Phys. Rev. C 68,

018201 (2003).
[64] B. Borasoy, R. Nissler, and W. Weise, Eur. Phys. J. A 25, 79

(2005).
[65] J. A. Oller, Eur. Phys. J. A 28, 63 (2006).
[66] B. Borasoy, U.-G. Meissner, and R. Nissler, Phys. Rev. C 74,

055201 (2006).
[67] E. Oset, A. Ramos, and C. Bennhold, Phys. Lett. B 527, 99

(2002); ,530, 260 (2002).
[68] J. A. Oller and E. Oset, Phys. Rev. D 60, 074023 (1999).
[69] J. A. Oller, E. Oset, and J. R. Pelaez, Phys. Rev. Lett. 80, 3452

(1998).
[70] E. Oset and A. Ramos, Nucl. Phys. A 679, 616 (2001).
[71] D. Cabrera, E. Oset, and M. J. Vicente Vacas, Nucl. Phys. A

705, 90 (2002).
[72] J. I. Kapusta and C. Gale, Finite Temperature Field Theory

Principles and Applications, 2nd ed. (Cambridge University
Press, Cambridge, UK, 2006).

[73] A. Reuber, K. Holinde, and J. Speth, Nucl. Phys. A 570, 543
(1994).

[74] V. G. J. Stoks and T. A. Rijken, Phys. Rev. C 59, 3009 (1999).
[75] T. A. Rijken, V. G. J. Stoks, and Y. Yamamoto, Phys. Rev. C 59,

21 (1999).
[76] I. Vidana, A. Polls, A. Ramos, and H.-J. Schulze, Phys. Rev. C

64, 044301 (2001).
[77] J. Haidenbauer and Ulf-G. Meißner, Phys. Rev. C 72, 044005

(2005).
[78] T. Hasegawa et al., Phys. Rev. C 53, 1210 (1996); P. H. Pile et al.,

Phys. Rev. Lett. 66, 2585 (1991); D. H. Davis and J. Pniewski,
Contemp. Phys. 27, 91 (1986); M. May et al., Phys. Rev. Lett.
78, 4343 (1997).

055207-17

http://dx.doi.org/10.1016/j.ppnp.2005.07.004
http://dx.doi.org/10.1016/j.ppnp.2005.07.004
http://dx.doi.org/10.1016/j.ppnp.2005.07.004
http://dx.doi.org/10.1016/j.ppnp.2005.07.004
http://dx.doi.org/10.1016/S0375-9474(97)00409-0
http://dx.doi.org/10.1016/S0375-9474(97)00409-0
http://dx.doi.org/10.1016/S0375-9474(97)00409-0
http://dx.doi.org/10.1016/S0375-9474(97)00409-0
http://dx.doi.org/10.1103/PhysRevLett.82.1640
http://dx.doi.org/10.1103/PhysRevLett.82.1640
http://dx.doi.org/10.1103/PhysRevLett.82.1640
http://dx.doi.org/10.1103/PhysRevLett.82.1640
http://dx.doi.org/10.1088/0954-3899/28/7/363
http://dx.doi.org/10.1088/0954-3899/28/7/363
http://dx.doi.org/10.1088/0954-3899/28/7/363
http://dx.doi.org/10.1088/0954-3899/28/7/363
http://dx.doi.org/10.1103/PhysRevC.75.024906
http://dx.doi.org/10.1103/PhysRevC.75.024906
http://dx.doi.org/10.1103/PhysRevC.75.024906
http://dx.doi.org/10.1103/PhysRevC.75.024906
http://dx.doi.org/10.1016/j.physrep.2011.08.004
http://dx.doi.org/10.1016/j.physrep.2011.08.004
http://dx.doi.org/10.1016/j.physrep.2011.08.004
http://dx.doi.org/10.1016/j.physrep.2011.08.004
http://dx.doi.org/10.1103/PhysRevC.90.025210
http://dx.doi.org/10.1103/PhysRevC.90.025210
http://dx.doi.org/10.1103/PhysRevC.90.025210
http://dx.doi.org/10.1103/PhysRevC.90.025210
http://dx.doi.org/10.1016/0370-2693(86)90331-X
http://dx.doi.org/10.1016/0370-2693(86)90331-X
http://dx.doi.org/10.1016/0370-2693(86)90331-X
http://dx.doi.org/10.1016/0370-2693(86)90331-X
http://dx.doi.org/10.1103/PhysRevC.87.035206
http://dx.doi.org/10.1103/PhysRevC.87.035206
http://dx.doi.org/10.1103/PhysRevC.87.035206
http://dx.doi.org/10.1103/PhysRevC.87.035206
http://dx.doi.org/10.1016/j.physletb.2008.01.002
http://dx.doi.org/10.1016/j.physletb.2008.01.002
http://dx.doi.org/10.1016/j.physletb.2008.01.002
http://dx.doi.org/10.1016/j.physletb.2008.01.002
http://dx.doi.org/10.1103/PhysRevC.87.025201
http://dx.doi.org/10.1103/PhysRevC.87.025201
http://dx.doi.org/10.1103/PhysRevC.87.025201
http://dx.doi.org/10.1103/PhysRevC.87.025201
http://dx.doi.org/10.1016/0370-2693(94)91434-6
http://dx.doi.org/10.1016/0370-2693(94)91434-6
http://dx.doi.org/10.1016/0370-2693(94)91434-6
http://dx.doi.org/10.1016/0370-2693(94)91434-6
http://dx.doi.org/10.1016/0370-2693(95)01289-3
http://dx.doi.org/10.1016/0370-2693(95)01289-3
http://dx.doi.org/10.1016/0370-2693(95)01289-3
http://dx.doi.org/10.1016/0370-2693(95)01289-3
http://dx.doi.org/10.1016/0370-2693(96)00472-8
http://dx.doi.org/10.1016/0370-2693(96)00472-8
http://dx.doi.org/10.1016/0370-2693(96)00472-8
http://dx.doi.org/10.1016/0370-2693(96)00472-8
http://dx.doi.org/10.1016/S0370-2693(98)00299-8
http://dx.doi.org/10.1016/S0370-2693(98)00299-8
http://dx.doi.org/10.1016/S0370-2693(98)00299-8
http://dx.doi.org/10.1016/S0370-2693(98)00299-8
http://dx.doi.org/10.1016/S0375-9474(99)00846-5
http://dx.doi.org/10.1016/S0375-9474(99)00846-5
http://dx.doi.org/10.1016/S0375-9474(99)00846-5
http://dx.doi.org/10.1016/S0375-9474(99)00846-5
http://dx.doi.org/10.1016/S0375-9474(03)01598-7
http://dx.doi.org/10.1016/S0375-9474(03)01598-7
http://dx.doi.org/10.1016/S0375-9474(03)01598-7
http://dx.doi.org/10.1016/S0375-9474(03)01598-7
http://dx.doi.org/10.1016/j.nuclphysa.2008.01.003
http://dx.doi.org/10.1016/j.nuclphysa.2008.01.003
http://dx.doi.org/10.1016/j.nuclphysa.2008.01.003
http://dx.doi.org/10.1016/j.nuclphysa.2008.01.003
http://dx.doi.org/10.1016/S0375-9474(00)00711-9
http://dx.doi.org/10.1016/S0375-9474(00)00711-9
http://dx.doi.org/10.1016/S0375-9474(00)00711-9
http://dx.doi.org/10.1016/S0375-9474(00)00711-9
http://dx.doi.org/10.1103/PhysRevC.74.015203
http://dx.doi.org/10.1103/PhysRevC.74.015203
http://dx.doi.org/10.1103/PhysRevC.74.015203
http://dx.doi.org/10.1103/PhysRevC.74.015203
http://dx.doi.org/10.1016/j.nuclphysa.2008.05.008
http://dx.doi.org/10.1016/j.nuclphysa.2008.05.008
http://dx.doi.org/10.1016/j.nuclphysa.2008.05.008
http://dx.doi.org/10.1016/j.nuclphysa.2008.05.008
http://dx.doi.org/10.1016/S0375-9474(97)81464-9
http://dx.doi.org/10.1016/S0375-9474(97)81464-9
http://dx.doi.org/10.1016/S0375-9474(97)81464-9
http://dx.doi.org/10.1016/S0375-9474(97)81464-9
http://dx.doi.org/10.1103/PhysRevC.84.045206
http://dx.doi.org/10.1103/PhysRevC.84.045206
http://dx.doi.org/10.1103/PhysRevC.84.045206
http://dx.doi.org/10.1103/PhysRevC.84.045206
http://dx.doi.org/10.1016/j.nuclphysa.2013.01.016
http://dx.doi.org/10.1016/j.nuclphysa.2013.01.016
http://dx.doi.org/10.1016/j.nuclphysa.2013.01.016
http://dx.doi.org/10.1016/j.nuclphysa.2013.01.016
http://dx.doi.org/10.1103/PhysRevC.61.055205
http://dx.doi.org/10.1103/PhysRevC.61.055205
http://dx.doi.org/10.1103/PhysRevC.61.055205
http://dx.doi.org/10.1103/PhysRevC.61.055205
http://dx.doi.org/10.1016/S0375-9474(00)00152-4
http://dx.doi.org/10.1016/S0375-9474(00)00152-4
http://dx.doi.org/10.1016/S0375-9474(00)00152-4
http://dx.doi.org/10.1016/S0375-9474(00)00152-4
http://dx.doi.org/10.1103/PhysRevC.65.044005
http://dx.doi.org/10.1103/PhysRevC.65.044005
http://dx.doi.org/10.1103/PhysRevC.65.044005
http://dx.doi.org/10.1103/PhysRevC.65.044005
http://dx.doi.org/10.1103/PhysRevC.70.044313
http://dx.doi.org/10.1103/PhysRevC.70.044313
http://dx.doi.org/10.1103/PhysRevC.70.044313
http://dx.doi.org/10.1103/PhysRevC.70.044313
http://dx.doi.org/10.1016/j.physletb.2005.03.041
http://dx.doi.org/10.1016/j.physletb.2005.03.041
http://dx.doi.org/10.1016/j.physletb.2005.03.041
http://dx.doi.org/10.1016/j.physletb.2005.03.041
http://dx.doi.org/10.1103/PhysRevC.74.015207
http://dx.doi.org/10.1103/PhysRevC.74.015207
http://dx.doi.org/10.1103/PhysRevC.74.015207
http://dx.doi.org/10.1103/PhysRevC.74.015207
http://dx.doi.org/10.1103/PhysRevLett.98.082301
http://dx.doi.org/10.1103/PhysRevLett.98.082301
http://dx.doi.org/10.1103/PhysRevLett.98.082301
http://dx.doi.org/10.1103/PhysRevLett.98.082301
http://dx.doi.org/10.1103/PhysRevC.76.044004
http://dx.doi.org/10.1103/PhysRevC.76.044004
http://dx.doi.org/10.1103/PhysRevC.76.044004
http://dx.doi.org/10.1103/PhysRevC.76.044004
http://dx.doi.org/10.1103/PhysRevC.76.035203
http://dx.doi.org/10.1103/PhysRevC.76.035203
http://dx.doi.org/10.1103/PhysRevC.76.035203
http://dx.doi.org/10.1103/PhysRevC.76.035203
http://dx.doi.org/10.1103/PhysRevC.90.034004
http://dx.doi.org/10.1103/PhysRevC.90.034004
http://dx.doi.org/10.1103/PhysRevC.90.034004
http://dx.doi.org/10.1103/PhysRevC.90.034004
http://dx.doi.org/10.1103/PhysRevC.79.035201
http://dx.doi.org/10.1103/PhysRevC.79.035201
http://dx.doi.org/10.1103/PhysRevC.79.035201
http://dx.doi.org/10.1103/PhysRevC.79.035201
http://dx.doi.org/10.1143/PTP.124.533
http://dx.doi.org/10.1143/PTP.124.533
http://dx.doi.org/10.1143/PTP.124.533
http://dx.doi.org/10.1143/PTP.124.533
http://dx.doi.org/10.1016/j.nuclphysa.2008.02.001
http://dx.doi.org/10.1016/j.nuclphysa.2008.02.001
http://dx.doi.org/10.1016/j.nuclphysa.2008.02.001
http://dx.doi.org/10.1016/j.nuclphysa.2008.02.001
http://dx.doi.org/10.1103/PhysRevC.79.014003
http://dx.doi.org/10.1103/PhysRevC.79.014003
http://dx.doi.org/10.1103/PhysRevC.79.014003
http://dx.doi.org/10.1103/PhysRevC.79.014003
http://dx.doi.org/10.1016/j.physletb.2012.04.055
http://dx.doi.org/10.1016/j.physletb.2012.04.055
http://dx.doi.org/10.1016/j.physletb.2012.04.055
http://dx.doi.org/10.1016/j.physletb.2012.04.055
http://dx.doi.org/10.1103/PhysRevC.88.044003
http://dx.doi.org/10.1103/PhysRevC.88.044003
http://dx.doi.org/10.1103/PhysRevC.88.044003
http://dx.doi.org/10.1103/PhysRevC.88.044003
http://dx.doi.org/10.1103/PhysRevLett.94.212303
http://dx.doi.org/10.1103/PhysRevLett.94.212303
http://dx.doi.org/10.1103/PhysRevLett.94.212303
http://dx.doi.org/10.1103/PhysRevLett.94.212303
http://dx.doi.org/10.1016/j.nuclphysa.2007.03.010
http://dx.doi.org/10.1016/j.nuclphysa.2007.03.010
http://dx.doi.org/10.1016/j.nuclphysa.2007.03.010
http://dx.doi.org/10.1016/j.nuclphysa.2007.03.010
http://dx.doi.org/10.1103/PhysRevLett.104.132502
http://dx.doi.org/10.1103/PhysRevLett.104.132502
http://dx.doi.org/10.1103/PhysRevLett.104.132502
http://dx.doi.org/10.1103/PhysRevLett.104.132502
http://dx.doi.org/10.1016/j.nuclphysa.2013.04.012
http://dx.doi.org/10.1016/j.nuclphysa.2013.04.012
http://dx.doi.org/10.1016/j.nuclphysa.2013.04.012
http://dx.doi.org/10.1016/j.nuclphysa.2013.04.012
http://dx.doi.org/10.1016/j.physletb.2013.12.039
http://dx.doi.org/10.1016/j.physletb.2013.12.039
http://dx.doi.org/10.1016/j.physletb.2013.12.039
http://dx.doi.org/10.1016/j.physletb.2013.12.039
http://dx.doi.org/10.1016/j.nuclphysa.2013.04.013
http://dx.doi.org/10.1016/j.nuclphysa.2013.04.013
http://dx.doi.org/10.1016/j.nuclphysa.2013.04.013
http://dx.doi.org/10.1016/j.nuclphysa.2013.04.013
http://dx.doi.org/10.1007/s00601-013-0668-3
http://dx.doi.org/10.1007/s00601-013-0668-3
http://dx.doi.org/10.1007/s00601-013-0668-3
http://dx.doi.org/10.1007/s00601-013-0668-3
http://dx.doi.org/10.1103/PhysRevLett.90.102302
http://dx.doi.org/10.1103/PhysRevLett.90.102302
http://dx.doi.org/10.1103/PhysRevLett.90.102302
http://dx.doi.org/10.1103/PhysRevLett.90.102302
http://dx.doi.org/10.1016/j.nuclphysa.2003.07.010
http://dx.doi.org/10.1016/j.nuclphysa.2003.07.010
http://dx.doi.org/10.1016/j.nuclphysa.2003.07.010
http://dx.doi.org/10.1016/j.nuclphysa.2003.07.010
http://dx.doi.org/10.1088/0954-3899/28/7/316
http://dx.doi.org/10.1088/0954-3899/28/7/316
http://dx.doi.org/10.1088/0954-3899/28/7/316
http://dx.doi.org/10.1088/0954-3899/28/7/316
http://dx.doi.org/10.1103/PhysRevC.65.054907
http://dx.doi.org/10.1103/PhysRevC.65.054907
http://dx.doi.org/10.1103/PhysRevC.65.054907
http://dx.doi.org/10.1103/PhysRevC.65.054907
http://dx.doi.org/10.1103/PhysRevC.68.024903
http://dx.doi.org/10.1103/PhysRevC.68.024903
http://dx.doi.org/10.1103/PhysRevC.68.024903
http://dx.doi.org/10.1103/PhysRevC.68.024903
http://dx.doi.org/10.1103/PhysRevC.78.045205
http://dx.doi.org/10.1103/PhysRevC.78.045205
http://dx.doi.org/10.1103/PhysRevC.78.045205
http://dx.doi.org/10.1103/PhysRevC.78.045205
http://dx.doi.org/10.1103/PhysRevC.66.055203
http://dx.doi.org/10.1103/PhysRevC.66.055203
http://dx.doi.org/10.1103/PhysRevC.66.055203
http://dx.doi.org/10.1103/PhysRevC.66.055203
http://dx.doi.org/10.1016/S0375-9474(98)00170-5
http://dx.doi.org/10.1016/S0375-9474(98)00170-5
http://dx.doi.org/10.1016/S0375-9474(98)00170-5
http://dx.doi.org/10.1016/S0375-9474(98)00170-5
http://dx.doi.org/10.1016/S0370-2693(01)00078-8
http://dx.doi.org/10.1016/S0370-2693(01)00078-8
http://dx.doi.org/10.1016/S0370-2693(01)00078-8
http://dx.doi.org/10.1016/S0370-2693(01)00078-8
http://dx.doi.org/10.1016/j.physletb.2003.11.073
http://dx.doi.org/10.1016/j.physletb.2003.11.073
http://dx.doi.org/10.1016/j.physletb.2003.11.073
http://dx.doi.org/10.1016/j.physletb.2003.11.073
http://dx.doi.org/10.1103/PhysRevC.68.018201
http://dx.doi.org/10.1103/PhysRevC.68.018201
http://dx.doi.org/10.1103/PhysRevC.68.018201
http://dx.doi.org/10.1103/PhysRevC.68.018201
http://dx.doi.org/10.1140/epjad/i2005-06-034-0
http://dx.doi.org/10.1140/epjad/i2005-06-034-0
http://dx.doi.org/10.1140/epjad/i2005-06-034-0
http://dx.doi.org/10.1140/epjad/i2005-06-034-0
http://dx.doi.org/10.1140/epja/i2006-10011-3
http://dx.doi.org/10.1140/epja/i2006-10011-3
http://dx.doi.org/10.1140/epja/i2006-10011-3
http://dx.doi.org/10.1140/epja/i2006-10011-3
http://dx.doi.org/10.1103/PhysRevC.74.055201
http://dx.doi.org/10.1103/PhysRevC.74.055201
http://dx.doi.org/10.1103/PhysRevC.74.055201
http://dx.doi.org/10.1103/PhysRevC.74.055201
http://dx.doi.org/10.1016/S0370-2693(01)01523-4
http://dx.doi.org/10.1016/S0370-2693(01)01523-4
http://dx.doi.org/10.1016/S0370-2693(01)01523-4
http://dx.doi.org/10.1016/S0370-2693(01)01523-4
http://dx.doi.org/10.1016/S0370-2693(02)01338-2
http://dx.doi.org/10.1016/S0370-2693(02)01338-2
http://dx.doi.org/10.1016/S0370-2693(02)01338-2
http://dx.doi.org/10.1103/PhysRevD.60.074023
http://dx.doi.org/10.1103/PhysRevD.60.074023
http://dx.doi.org/10.1103/PhysRevD.60.074023
http://dx.doi.org/10.1103/PhysRevD.60.074023
http://dx.doi.org/10.1103/PhysRevLett.80.3452
http://dx.doi.org/10.1103/PhysRevLett.80.3452
http://dx.doi.org/10.1103/PhysRevLett.80.3452
http://dx.doi.org/10.1103/PhysRevLett.80.3452
http://dx.doi.org/10.1016/S0375-9474(00)00363-8
http://dx.doi.org/10.1016/S0375-9474(00)00363-8
http://dx.doi.org/10.1016/S0375-9474(00)00363-8
http://dx.doi.org/10.1016/S0375-9474(00)00363-8
http://dx.doi.org/10.1016/S0375-9474(02)00612-7
http://dx.doi.org/10.1016/S0375-9474(02)00612-7
http://dx.doi.org/10.1016/S0375-9474(02)00612-7
http://dx.doi.org/10.1016/S0375-9474(02)00612-7
http://dx.doi.org/10.1016/0375-9474(94)90073-6
http://dx.doi.org/10.1016/0375-9474(94)90073-6
http://dx.doi.org/10.1016/0375-9474(94)90073-6
http://dx.doi.org/10.1016/0375-9474(94)90073-6
http://dx.doi.org/10.1103/PhysRevC.59.3009
http://dx.doi.org/10.1103/PhysRevC.59.3009
http://dx.doi.org/10.1103/PhysRevC.59.3009
http://dx.doi.org/10.1103/PhysRevC.59.3009
http://dx.doi.org/10.1103/PhysRevC.59.21
http://dx.doi.org/10.1103/PhysRevC.59.21
http://dx.doi.org/10.1103/PhysRevC.59.21
http://dx.doi.org/10.1103/PhysRevC.59.21
http://dx.doi.org/10.1103/PhysRevC.64.044301
http://dx.doi.org/10.1103/PhysRevC.64.044301
http://dx.doi.org/10.1103/PhysRevC.64.044301
http://dx.doi.org/10.1103/PhysRevC.64.044301
http://dx.doi.org/10.1103/PhysRevC.72.044005
http://dx.doi.org/10.1103/PhysRevC.72.044005
http://dx.doi.org/10.1103/PhysRevC.72.044005
http://dx.doi.org/10.1103/PhysRevC.72.044005
http://dx.doi.org/10.1103/PhysRevC.53.1210
http://dx.doi.org/10.1103/PhysRevC.53.1210
http://dx.doi.org/10.1103/PhysRevC.53.1210
http://dx.doi.org/10.1103/PhysRevC.53.1210
http://dx.doi.org/10.1103/PhysRevLett.66.2585
http://dx.doi.org/10.1103/PhysRevLett.66.2585
http://dx.doi.org/10.1103/PhysRevLett.66.2585
http://dx.doi.org/10.1103/PhysRevLett.66.2585
http://dx.doi.org/10.1080/00107518608211002
http://dx.doi.org/10.1080/00107518608211002
http://dx.doi.org/10.1080/00107518608211002
http://dx.doi.org/10.1080/00107518608211002
http://dx.doi.org/10.1103/PhysRevLett.78.4343
http://dx.doi.org/10.1103/PhysRevLett.78.4343
http://dx.doi.org/10.1103/PhysRevLett.78.4343
http://dx.doi.org/10.1103/PhysRevLett.78.4343
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