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Within a multichannel formulation of ππ scattering, we investigate the use of the finite-volume Hamiltonian
approach to resolve scattering observables from lattice QCD spectra. The asymptotic matching of the well-known
Lüscher formalism encodes a unique finite-volume spectrum. Nevertheless, in many practical situations, such as
coupled-channels systems, it is advantageous to interpolate isolated lattice spectra in order to extract physical
scattering parameters. Here we study the use of the Hamiltonian framework as a parametrization that can be fit
directly to lattice spectra. We find that, with a modest amount of lattice data, the scattering parameters can be
reproduced rather well, with only a minor degree of model dependence.
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I. INTRODUCTION

Lattice QCD (LQCD) studies are making tremendous
progress in resolving the excitation spectrum of QCD [1–5].
By the nature of the finite-volume and Euclidean time aspects
of the lattice formulation, it is impossible to directly simulate
scattering processes. The established way to extract scattering
information from lattice simulations is the Lüscher method
[6,7]. For the case of elastic two-body scattering, Lüscher
identified that the finite-volume eigenstates are uniquely
determined in terms of the on-shell scattering parameters (up to
exponentially suppressed corrections associated with quantum
fluctuations of the lightest degrees of freedom in the system).
While the spectrum is determined uniquely, there are technical
challenges associated with inverting a given lattice spectrum
to determine scattering observables. One of these issues arises
from the fact that the full rotational group is broken down by the
geometry of the lattice boundary conditions. As a consequence,
partial wave mixing is unavoidable in lattice simulations and
eigenstates on the finite volume do not correspond to definite
eigenstates of the continuum rotation group. There has been
significant work in previous years addressing this issue (e.g.,
Refs. [5,8–11]).

In the present work, we focus our attention of the study
of inelastic scattering channels. The generalization of the
Lüscher formalism to incorporate inelastic channels was
developed by He, Feng, and Liu [12] and continues to be
the topic of considerable further investigations and extensions
[9–11,13–19]. In addition to the issue of partial wave mixing,
coupled-channels systems are further complicated by the
multicomponent nature of the S matrix. For example, by
neglecting the angular momentum mixing, for the case of two
coupled channels on a given volume, a single energy eigenstate
can be related to three asymptotic scattering parameters (i.e.,
two phase shifts and an inelasticity). Therefore the only way to
uniquely identify all three parameters would be to search for
near-coincident energy eigenstates at either different volumes
or with different momentum boosts of the system [19]. In
practice, such a “pointwise” extraction is only anticipated to

have limited applicability. Alternatively, one requires some
form of interpolation which can reproduce the scattering
parameters with a limited set of lattice simulation results. In the
present work, we extend a recently developed finite-volume
Hamiltonian formalism [20] to a coupled-channels system.
The necessary equivalence with the Lüscher formalism is
numerically established. Further, we investigate the inversion
problem of extracting the phase shifts and inelasticity from a
finite set of pseudo lattice data. We find that all three scattering
parameters can be reliably reproduced by directly constraining
the parameters of the model to the finite-volume spectra. In the
energy region constrained by the fits, the extracted phase shifts
and inelasticity show only a mild sensitivity to the precise form
of the model.

To facilitate the exploration of LQCD spectra, our analysis
is based upon a two-channel Hamiltonian formulation which
is constructed by fitting the available ππ scattering phase
shift data in the J IP = 00+,11− partial waves. The explicit
channels included are ππ and the inelasticity associated with
KK̄ production. With the present manuscript being focused
primarily on the influence of the inelastic channel, we do
not consider the issues associated with angular momentum
mixing.

In Sec. II, we write down a multichannel formulation for
constructing several model Hamiltonians from fitting the ππ
scattering data. The model with only the ππ channel is used in
Sec. III to recall the finite-box Hamiltonian method developed
in Ref. [20] and to examine the correspondence with Lüscher’s
formula. In Sec. IV, we use the model with ππ and KK̄
channels to show that the finite-box Hamiltonian approach is
equivalent to the approach based on the two-channel Lüscher’s
method developed in Ref. [12]. In Sec. IV, we compare the
LQCD efforts needed to apply the finite-box Hamiltonian
approach and the approach based on Lüscher’s method. Our
predictions of the spectra for testing LQCD results for ππ
scattering in the J IP = 00+,11− partial waves are presented in
Sec. V. In Sec. VI, we give a summary and discuss possible
future developments.
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II. MODEL HAMILTONIAN FOR ππ SCATTERING

The Hamiltonian with only vertex interactions, such as
� ↔ πN considered in Ref. [20], is the simplest example
within the general multichannel formulation, inspired by the
cloudy bag model [21,22] and developed in Ref. [23] for
investigating nucleon resonances [24] and meson resonances
[25]. For investigating the finite-box Hamiltonian approach in
this work, it is useful to recall the formulation of Refs. [23,25]
in order to write down a general Hamiltonian for ππ scattering.

Following Refs. [23,25], we assume that ππ scattering can
be described by vertex interactions and two-body potentials.
In the rest frame, the model Hamiltonian of a meson-meson
system takes the following energy-independent form:

H = H0 + HI . (1)

The noninteracting part is

H0 =
∑
i=1,n

|σi〉m0
i 〈σi | +

∑
α

∫
d�k|α(�k)〉

× [√
m2

α1
+ �k 2

α1
+

√
m2

α2
+ �k 2

α2

]〈α(�k)|, (2)

where σi is the ith bare particle with mass m0
i , α =

ππ,KK̄,πη, . . . denotes the channels included, and mαi
and

�kαi
are the mass and the momentum of the ith particle

in channel α, respectively. In the considered center-of-mass
system, we obviously have defined �kα1 = −�kα2 = �k.

The interaction Hamiltonian is

HI = g + v, (3)

where g is a vertex interaction describing the decays of the
bare particles into two-particle channels α,β, . . .:

g =
∑

α

∫
d�k

∑
i=1,n

{|α(�k)〉g†
i,α(k)〈i| + |i〉gi,α(k)〈α(�k)|}, (4)

and the direct two-particle–two-particle interaction is defined
by

v =
∑
α,β

∫
d�kd�k′ |α(�k)〉vα,β(k,k′)〈β(�k′)|. (5)

In each partial wave, two-particle scattering is then defined
by the following coupled-channel equations:

tα,β(k,k′; E) = Vα,β (k,k′) +
∑

γ

∫ ∞

0
k

′′ 2dk
′′
Vα,γ (k,k′′)

× 1

E − Eγ1 (k′′) − Eγ2 (k′′) + iε
tγ,β (k

′′
,k′; E),

(6)

where Eγi =
√

k
′′ 2 + m2

γi
, and the coupled-channels poten-

tials are

Vα,β (k,k′) =
∑
i=1,n

g∗
i,α(k)

1

E − m0
i

gi,α(k′) + vα,β(k,k′) (7)

with

gi,α(k) = 〈i|g|α(�k)〉, (8)

vα,β (k,k′) = 〈α(�k)|v|β(�k′)〉. (9)

We choose the normalization 〈α(�k)|β(�k ′
)〉 = δα,βδ(�k − �k ′

)
such that the S matrix in each partial wave is related to the
T matrix by

Sα,β (E) = 1 + 2iTα,β (k0α,k0β ; E) (10)

with

Tα,β (k0α,k0β ; E) = −ρ1/2
α (k0α)tα,β(k0α,k0β ; E)ρ1/2

β (k0β),

(11)

where k0α is the on-shell momentum for channel α and the
density of states is

ρα(k0α) = π
k0αEα1(k0α)Eα2(k0α)

Eα1(k0α) + Eα2(k0α)
. (12)

In the following sections, we construct models of (1) one
bare state and one channel (1b-1c), (2) one bare state and two
channels (1b-2c), and also (3) two bare states and two channels
(2b-2c).

III. ONE BARE STATE AND ONE CHANNEL

In this section, we consider a model which has one bare state
(σ ) and one channel (ππ ) to describe the isoscalar s-wave
ππ scattering phase shifts up to the energy below the KK̄
threshold. The formulas for constructing this model can be
obtained by taking n = 1 and α = β = γ = ππ in Sec. II.

A. Model parameters

For simplicity, we parametrize the matrix elements of the
interactions in Eqs. (4) and (5) as

〈σ |g|ππ (�k)〉 = gσ,ππ (k)

= gππ√
π

1

[1 + (cππ × k)2]
, (13)

〈ππ (�k)|v|ππ (�k′)〉 = vππ,ππ (k,k′)

= Gππ,ππ

m2
π

× 1

[1 + (dππ × k)2]2

× 1

[1 + (dππ × k′)2]2
, (14)

where k and k′ are the three-momenta of π in the center-of-
mass system. By fitting the ππ phase shifts, the parameters mσ ,
gππ , cππ , Gππ,ππ , and dππ of the model can be determined,
and these are listed in the column “1b-1c” in Table I. The
calculated phase shifts are compared with the data in Fig. 1.
The model gives a reasonable description of the data and is
sufficient for exploring the systematics of the finite-volume
Hamiltonian method.

B. Finite-volume Hamiltonian

The finite-volume Hamiltonian method provides direct
access to the multiparticle energy eigenstates in a periodic
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TABLE I. Parameters for the 1b-1c model and the 1b-2c model.

1b-1c 1b-2c

mσ (MeV) 700. 700.00
gσππ 1.6380 2.0000
cσππ (fm) 1.0200 0.6722
Gππ,ππ 0.5560 2.4998
dππ (fm) 0.5140 0.2440
gσKK̄ — 0.6451
cσKK̄ (fm) — 1.0398
GKK̄,KK̄ — 0.0200
dKK̄ (fm) — 0.1000
Gππ,KK̄ — 0.3500

volume characterized by side length L. The quantized three-
momenta of the π meson must be kn = √

n 2π
L

for integers n =
0,1,2, . . .. For a given choice of N momenta (k0,k1, . . . ,kN−1),
solving the Schrodinger equation H |�E〉 = E|�E〉 in the
finite box is equivalent to finding the solutions of the following
matrix equations:

det([H0]N+1 + [HI ]N+1 − E[I ]N+1) = 0, (15)

where det means taking the determinant of a matrix, [I ]N+1

is an (N + 1) × (N + 1) unit matrix, and the noninteraction
Hamiltonian H0, defined by Eq. (2), is represented by the
following (N + 1) × (N + 1) matrix:

[H0]N+1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

mσ 0 0 · · ·
0 2

√
k2

0 + m2
π 0 · · ·

0 0 2
√

k2
1 + m2

π · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(16)

With the forms of the interactions g and v in Eqs. (4) and
(5), the (N + 1) × (N + 1) matrix representing the interaction

FIG. 1. The phase shifts of ππ scattering from Model 1b-1c (cf.
Table I) compared with the data.

FIG. 2. (Color online) The spectrum of ππ states in the 1b-1c
model. The black curves are calculated by using the finite-volume
Hamiltonian approach. The boxes denote discrete points on these
curves which are used in the phase extraction shown in Fig. 3.

Hamiltonian HI can be written as

[HI ]N+1

=

⎛
⎜⎜⎜⎜⎜⎝

0 g
f in
ππ (k0) g

f in
ππ (k1) · · ·

g
f in
ππ (k0) v

f in
ππ,ππ (k0,k0) v

f in
ππ,ππ (k0,k1) · · ·

g
f in
ππ (k1) v

f in
ππ,ππ (k1,k0) v

f in
ππ,ππ (k1,k1) · · ·

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎠ .

(17)

The corresponding finite-volume matrix elements are given by

gf in
ππ (kn) =

√
C3(n)

4π

(
2π

L

)3/2

gσ,ππ (kn), (18)

vf in
ππ,ππ (kn1 ,kn2 )=

√
C3(n1)

4π

√
C3(n2)

4π

(
2π

L

)3

vππ,ππ (kn1 ,kn2 ),

(19)

where gππ (kn) and vππ,ππ (kn1 ,kn2 ) are defined in Eqs. (13) and
(14), and C3(n) represents the number of ways of summing
the squares of three integers to equal n. As explained in
Ref. [20], the factor

√
C3(n)

4π
( 2π

L
)3/2 follows from the quanti-

zation conditions in a finite box with size L.
The solution of Eq. (15) is a spectrum which depends on

the choice of the box size L and N . Obviously, the acceptable
solution must converge as N increases. To get high-accuracy
results for examining Lüscher’s formula, we find that N =
600 is sufficient for a range of L in our calculations. The
predicted spectra for each L can be read from the solid curves
shown in Fig. 2. The dashed curves indicate the free-particle
spectra (i.e., in the absence of interactions). In a practical
simulation at the physical pion mass, we note that the energy
threshold associated with the 4π inelasticity is at ∼ 560 MeV.
The complete interpretation of energy levels near or above this
threshold will necessarily involve new techniques which have
yet to be developed. In this exploratory study, rather than going
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FIG. 3. Phase shifts. The black curve is generated from directly
solving scattering equations (6) and (7), and the solid squares are
calculated from Lüscher’s method by using the spectrum appearing
in Fig. 2.

to a set of unphysical parameters or studying a toy model, we
opt to study a realistic representation of the QCD interactions
and neglect the role of multiparticle thresholds. For recent
work on the extension to three-particle thresholds, the reader
is referred to Refs. [26–31].

C. Phase shift extraction

As reported in Ref. [20], the Hamiltonian and Lüscher
methods predict almost identical finite-volume spectra. The re-
lationship between the Hamiltonian and Lüscher quantization
conditions is explored analytically in Appendix B. Here we
numerically demonstrate this by using the Lüscher formalism
to extract the phase shift from the finite-volume spectra.
The appropriate formulas are summarized in Appendix A.
By sampling the spectrum at a discrete set of hypothetical
volumes, shown in Fig. 2, we invert to obtain the phase shifts
shown in Fig. 3. Here we see an excellent reproduction of the
model phase shifts. A couple of points show a small deviation
from the exact curve. These correspond to the smallest volume,
L = 5fm, where the exponentially suppressed corrections are
beginning to be relevant.

In comparison with realistic lattice calculations, we note
that the smooth reproduction of the phase shift would require
significant resources in terms of the number of volumes
sampled. Such a dense extraction of the phase shift is more
easily made possible by studying the spectra in moving
frames, such as done in Refs. [5,32–36]. The extension of
the Hamiltonian formalism to such boosted systems will be
investigated in future work.

With the equivalence with the Lüscher technique
demonstrated, we now turn to the extension to multichannel
scattering.

IV. ONE BARE STATE AND TWO CHANNELS

A. Model parameters

To describe ππ scattering above the KK̄ threshold, we
construct a model with one bare state and two channels. The

FIG. 4. The phase shift δππ for ππ scattering from the 1b-2c
model compared with the data.

formula for such a model can be obtained from Sec. II by
setting n = 1 for a bare particle σ and α,β,γ = ππ,KK̄ .
Similar to the 1b-1c model of Sec. III, the matrix elements of
the interactions defined in Eqs. (4) and (5) are parametrized as

〈σ |g|α(�k)〉 = gσ,α(k)

= gσ,α√
π

1

[1 + (cα × k)2]
, (20)

〈α(�k)|v|β(�k′)〉 = vα,β(k,k′)

= Gα,β

m2
π

× 1

[1 + (dα × k)2]2

× 1

[1 + (dβ × k′)2]2
, (21)

where k and k′ are the three-momenta of π or K in the
center-of-mass system. There are ten parameters: mσ , gππ ,
cππ , gKK̄ , cKK̄ , Gππ,ππ , Gππ,KK̄ , GKK̄,KK̄ , dππ , and dKK̄ .
By fitting the data of ππ phase shift δ and inelasticity η, the
model parameters can be determined, and these are listed in

FIG. 5. The phase shift δKK̄ of KK̄ scattering calculated in the
1b-2c model.
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FIG. 6. The inelasticity η in the 1b-2c model compared with the
data.

the second column of Table I. The calculated phase shifts are
compared with the data in Figs. 4–6. As in the single channel
case, the agreement is sufficiently good for our exploration of
the finite-volume Hamiltonian method.

B. Finite-volume Hamiltonian method

To calculate the spectrum for the 1b-2c model constructed
in the previous section, we follow the procedures given
in Sec. III B to extend the matrix representation of the
Hamiltonian to include the elements associated with the
additional KK̄ channel for each mesh point of the chosen N
momenta kn = √

n 2π
L

for n = 0,1,2, . . . ,(N − 1). This leads
to the following (2N + 1) × (2N + 1) matrix equations:

det([H0]2N+1 + [HI ]2N+1 − E[I ]2N+1) = 0, (22)

where [I ]2N+1 is an (2N + 1) × (2N + 1) unit matrix, and

[H0]2N+1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m0 0 0 0 0 · · ·
0 2

√
k2

0 + m2
π 0 0 0 · · ·

0 0 2
√

k2
0 + m2

K 0 0 · · ·
0 0 0 2

√
k2

1 + m2
π 0 · · ·

0 0 0 0 2
√

k2
1 + m2

K · · ·
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The (2N + 1) × (2N + 1) matrix for the interaction Hamiltonian is

[HI ]2N+1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 g
f in
ππ (k0) g

f in

KK̄
(k0) g

f in
ππ (k1) g

f in

KK̄
(k1) · · ·

g
f in
ππ (k0) v

f in
ππ,ππ (k0,k0) v

f in

ππ,KK̄
(k0,k0) v

f in
ππ,ππ (k0,k1) v

f in

ππ,KK̄
(k0,k1) · · ·

g
f in

KK̄
(k0) v

f in

KK̄,ππ
(k0,k0) v

f in

KK̄,KK̄
(k0,k0) v

f in

KK̄,ππ
(k0,k1) v

f in

KK̄,KK̄
(k0,k1) · · ·

g
f in
ππ (k1) v

f in
ππ,ππ (k1,k0) v

f in

ππ,KK̄
(k1,k0) v

f in
ππ,ππ (k1,k1) v

f in

ππ,KK̄
(k1,k1) · · ·

g
f in

KK̄
(k1) v

f in

KK̄,ππ
(k1,k0) v

f in

KK̄,KK̄
(k1,k0) v

f in

KK̄,ππ
(k1,k1) v

f in

KK̄,KK̄
(k1,k1) · · ·

...
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

with

gf in
α (kn) =

√
C3(n)

4π

(
2π

L

)3/2

gσ,α(kn), (23)

v
f in
α,β

(
kni

,knj

)=
√

C3(ni)

4π

√
C3(nj )

4π

(
2π

L

)3

vα,β(kni
,knj

), (24)

where gσ,α(kn) and vα,β (kni
,knj

) are defined in Eqs. (20) and
(21). In this way, we can generate the spectrum from the
Hamiltonian in a finite box with a given size L by solving
Eq. (22). The computed spectrum is shown as a function of the
volume in Fig. 7.

As discussed in the previous section, we are neglecting the
physics associated with the multiparticle thresholds (e.g., 4π
at E ∼ 560MeV). We thereby focus our attention on the issues

related to the coupled-channels system, while maintaining a
realistic representation of observed scattering in QCD.

C. Multichannel spectra

Our first task here is to establish the equivalence of
the Hamiltonian spectrum with that of the multichannel
generalization of Lüscher. The relevant formulas for the
coupled-channels system are summarized in Appendix A2. For
the present case, the eigenvalue spectrum (above the inelastic
threshold) is defined by the solutions to the following equation:

cos[φ(qππ ) + φ(qKK̄ ) − δππ (E) − δKK̄ (E)]

− η(E) cos[φ(qππ ) − φ(qKK̄ ) − δππ (E) + δKK̄ (E)] = 0.

(25)
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FIG. 7. The computed spectrum is shown as a function of the
volume. The black curves show the energy spectra generated by using
the finite-box Hamiltonian approach within the the 1b-2c model. The
solid and open squares are selected solutions below and above the
inelastic threshold, respectively. These solutions have been inverted
through the extended Lüscher formalism to determine the phase shifts
and inelasticities (see Fig. 9).

The phase φ characterizes the lattice geometry as defined by
Eq. (A3). Knowledge of the energy dependence of the phase
shifts and inelasticity allows one to determine the spectrum
for a given value of L. The eigenvalue equation is solved
for E, where the dimensionless momenta is qα = kαL/(2π ),
corresponding to the on-shell momentum kα in channel α [see
Eq. (A2)].

By using the model phase shifts and inelasticities, the
Lüscher-style formalism allows one to uniquely determine the
finite-volume spectrum. For this model, the solutions of Eq.
(25) (in the inelastic region) are shown in Fig. 8. The predicted

FIG. 8. (Color online) The solutions of Eq. (25) (in the inelastic
region). The solid dots represent the finite-volume spectrum as
determined by the extended Lüscher formalism, computed directly
from the model phase shifts and inelasticities. These are in excellent
agreement with the spectra computed with the Hamiltonian approach,
as shown by the continuous curves.

spectra from the two approaches are in excellent agreement,
hence confirming that the spectra are determined by the same
asymptotic eigenvalue constraint.

Of relevance to lattice QCD simulations is the desire
to obtain δππ , δKK̄ , and η from the spectra determined in
numerical simulations. By using Eq. (A8), the isolation of
all three scattering parameters at any given E would require
eigenstates at this energy for three different box sizes.1 Such
solutions are indicated by the white squares in Fig. 7. Across
an ensemble of volumes, the extraction of the resonance
parameters from the asymptotic constraints of the Lüscher
quantization alone can only lead to a pointwise determination
of the scattering parameters. Such a pointwise inversion for the
coupled-channels systems was discussed by Guo et al. [19].
Here it was demonstrated that, by using multiple different
total momentum quantizations of the system, there is an
increased opportunity to identify near-degenerate eigenstates
such that at least three independent quantizations can be
used to model-independently extract the scattering parameters.
Nevertheless, it is generally true for any finite set of discrete
spectra that the pointwise extraction will have only a limited
applicability.

For an example of the inversion in the present case, at E =
1200MeV, with box sizes L = 5.022, 5.708, and 6.014fm, the
model spectrum can be inverted through Eq. (A8) to determine

δππ = 256.5◦, δKK̄ = 79.84◦, η = 0.6980. (26)

We note that the relative phase between δππ and δKK̄ is only
determined up to integer multiples of π—an ambiguity that
has been elaborated on in Ref. [37]. Up to the determination
of this phase, we note excellent agreement with the underlying
model scattering,

δππ = 256.6◦, δKK̄ = 80.18◦, η = 0.6965. (27)

The extraction of δππ in this way, for a range of energies, is
shown by the white squares in Fig. 9.

To make the most of a finite set of spectrum “data,” the
authors of Ref. [19] have proposed using a K-matrix formu-
lation to parametrize the S matrix and thereby the predicted
spectrum. In the following section we explore the use of the
Hamiltonian formulation as an alternative parametrization to
fit a finite set of lattice spectra. Both the Hamiltonian and K-
matrix approaches have been used extensively to extract from
scattering observables the resonance parameters associated
with excited hadrons, as reviewed in Ref. [38] for excited
nucleons. It has been well recognized that the comparisons
of the results from these two different approaches are fruitful
in making progress to establish the hadron spectra, as can
be seen in the coupled-channels analysis results presented in
Refs. [24,39,40].

We note that the main point of our approach is to relate
the spectrum in a finite volume to the asymptotic properties
of scattering wave functions directly through a procedure of
diagonalizing a Hamiltonian; rather than indirectly through

1Of course, in any finite-statistics simulation, this degeneracy will
only be realized up to some finite numerical precision.
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FIG. 9. The extraction of δππ for a range of energies. The black
curve denotes the model ππ phase shift. The solid and open squares
denote the inversion of the solutions shown in Fig. 7 below and above
the inelastic thresholds. Below the inelastic threshold, each solution
uniquely determines the phase shift. Above the inelastic threshold,
the unique solution requires the impractical determination of three
identical energy levels at different L. In this region, δKK̄ and η (Figs. 5
and 6) are equally well described by this inversion.

the scattering parameters. Our numerical results presented
above show that this procedure is equivalent to the Lüscher
formulation for the coupled-channels case. Thus our approach
is readily applicable to the case with more than two particles,
for which the corresponding Lüscher formulation has not yet
been developed. This marks the main difference between our
work and that of Ref. [19] and similarly related work.

V. APPLICATIONS TO LQCD

We investigate the procedure for using the Hamiltonian ap-
proach to predict the scattering observables from the spectrum
generated from LQCD. We will compare our approach with
the approach based on Lüscher’s formula. For this illustrative
purpose, it is sufficient to use the 1b-1c and 1b-2c models
described in Secs. III and IV to generate the spectra which
will be referred to as the “LQCD data.” The phase shifts at
each energy of these spectra are of course known, as shown as
the solid curves in Figs. 1 and 4–6.

Our procedure is to use a Hamiltonian to fit a given
choice of the spectrum data by solving the eigenvalue problem
defined by Eqs. (15)–(19) for the one-channel case and
Eqs. (22)–(24) for the two-channel case. We then use the
determined Hamiltonian to calculate the phase shifts by using
the scattering equations (6) and (7) in infinite space.

To proceed, we need to choose the forms of the interactions
in Eqs. (1)–(5) of the phenomenological Hamiltonian. For
simplicity, we consider the Hamiltonian which has either one
bare state and one channel or one bare state and two channels.
These Hamiltonians are similar to the 1b-1c and 1b-2c models
constructed in Secs. III and IV, but they can have different
parametrizations of the vertex interaction gσ,α and vα,β . We
consider three forms:

A:

g(k)σ,α = gα√
π

1

[1 + (cα × k)2]
, (28)

vα,β (k,k′) = Gα,β

m2
π

× 1

[1 + (dα × k)2]2

× 1

[1 + (dβ × k′)2]2
, (29)

B:

g(k)σ,α = gα√
π

1

[1 + (cα × k)2]2
, (30)

vα,β (k,k′) = Gα,β

m2
π

× 1

[1 + (dα × k)2]4

× 1

[1 + (dβ × k′)2]4
, (31)

C:

g(k)σ,α = gα√
π

e−(cα×k)2
, (32)

vα,β (k,k′) = Gα,β

m2
π

e−(dα×k)2
e−(dβ×k′)2

. (33)

Note that parametrization A is the same as those of
models 1b-1c and 1b-2c, as described above.

A. Fit for one channel

We first consider the one-channel case. The spectrum data
are generated from model 1b-1c constructed in Sec. III. In the
left side of Fig. 10, we show eight data points generated by
solving the eigenvalue equation, Eq. (15), for L = 5,6 fm. For
the discussion of this manuscript, the choice of L values is
largely irrelevant. The smaller of these volumes has mπL ∼
3.5, which is just below the reputed value of 4. As such, it is
plausible that there are non-negligible corrections associated
with the exponentially suppressed finite-volume effects [41–
43]. While we neglect these effects in the present study, they
will certainly be of relevance in future precision studies.

To see whether the fit depends sensitively on the form of
the Hamiltonian, we assign a very small (1 MeV) error for
each energy level in the spectrum. We find that these eight
spectrum data points can be fitted by using parametrization B
or C, as shown in the left side of Fig. 10. The ππ phase shifts
calculated from two new Hamiltonians using the scattering
equations (6) and (7) in infinite space are compared with the
data (solid squares) in the right side of Fig. 10. They agree very
well in the energy region E� 0.9 GeV, where the spectrum
data are fitted. At higher energies, the calculated phase shifts
from B and C deviate from each other and also from the 1b-1c
model. Note that both the black solid curves (A) and data (solid
squares) are from the 1b-1c model and thus they agree with
each other completely.

The results presented above suggest that the finite-box
Hamiltonian approach is valid in the energy region where the
spectrum data are fitted, since the predicted scattering phase
shifts are independent of the form of the Hamiltonian and
agree with the phase shifts corresponding the fitted spectrum
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FIG. 10. (Color online) (a) The spectrum data generated from the 1b-1c model. (b) The phase shifts calculated from the one-channel model
with parametrizations A (1b-1c model) and B and C specified in Eqs. (28)–(33) compared with the data (from the 1b-2c model).

data. To further examine this, we generate 16 data points up to
1.2 GeV and repeat the fitting process. The generated data are
the black squares on the left side of Fig. 11. The predicted phase
shifts agree with the data in the E < 1.2 GeV region where
the spectrum data are fitted. Above 1.2 GeV they deviate from
the the 1b-1c model, similar to what we observed in Fig. 10.

With the results shown in Figs. 10 and 11 and in
Fig. 2 on Lüscher’s method in Sec. III, we conclude that
the finite-volume Hamiltonian approach gives a comparable
reproduction of the phase shifts as compared to Lüscher’s
method. However, for the one-channel case the finite-volume
Hamiltonian method has no distinct advantage over Lüscher’s
method, since the required LQCD efforts are not so different.

B. Fit for two channels

Here we explore the finite-volume Hamiltonian method for
the coupled-channels system. We generate 16 and 24 spectrum
data points from the 1b-2c model constructed in Sec. IV A by
solving the eigenvalue problem defined by Eqs. (22)–(24) for
L = 5, 6 fm. As shown in the left top panels of Figs. 12
and 13, these spectrum data can be fit by a Hamiltonian with
parametrization B or C of the interaction Hamiltonian specified
in Eqs. (30)–(33). As in the one-channel case, we assign a
1-MeV error for each spectrum data point in these fits. We

see in Figs. 12 and 13 that the phase shifts δππ and δKK̄ and
inelasticity η calculated from the determined Hamiltonians
agree well with data (from model 1b-2c) in the energy region
where the spectrum data are fitted. Similar to the one-channel
case, the predicted phase shifts deviate from each other outside
the energy range of the fitted spectrum data. We thus conclude
that the finite-volume Hamiltonian offers a method to directly
extract the scattering parameters from numerical simulation.
Furthermore, the method is largely independent of the form
of the Hamiltonian. One should caution that the resulting
Hamiltonian can only be reliably used to predict the scattering
observables in the energy region where the lattice spectra are
fit—as also seen in the single-channel case.

Here we point out an important difference from the
approach using the two-channel Lüscher’s formula. As we
discussed in Sec. IV, the two-channel Lüscher formula,
Eq. (25), needs three spectrum data points at the same energy to
calculate two phase shifts and inelasticity. Thus the spectrum
data (open squares) in the left top panels of Figs. 12 and 13
are not sufficient to apply Lüscher’s method. One thus requires
many more calculations to get a spectrum like the open squares
shown in Fig. 9 in Sec. IV. For a given E, we need to get
results for three values of L, which can be chosen only after
some searches, since we do not know the spectrum for each L
before the calculation is finished. Alternatively, the finite-box

FIG. 11. (Color online) (a) The spectrum data generated from the 1b-1c model. (b) The phase shifts calculated from the one-channel model
with parametrizations A (1b-1c model) and B and C specified in Eqs. (28)–(33) compared with the data (from the 1b-1c model).
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FIG. 12. (Color online) (a) The spectrum data generated from the 1b-2c model. (b)–(d) The phase shifts and the inelasticity calculated
from the two-channel model with parametrizations A (1b-2c model) and B and C specified in Eqs. (28)–(33) compared with the data (from the
1b-2c model).

FIG. 13. (Color online) (a) The spectrum data generated from the 1b-2c model. (b)–(d) The phase shifts and the inelasticity calculated
from the one-channel model with parametrizations A (1b-2c model) and B and C specified in Eqs. (28)–(33) compared with the data (from the
1b-2c model).
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FIG. 14. (Color online) The phase shifts δππ and δKK̄ and inelasticity η of s-wave ππ scattering in the J IP = 10+ partial wave. The solid
squares are the experimental data. The red solid, blue dashed, and green dotted lines are from the NKLS model, Model B, and Model C,
respectively.

Hamiltonian method offers a method to interpolate the lattice
spectra with a minimal set of volumes. Further, the quality of
the extraction will naturally improve more simulation results.

Finally, regarding the relative phase ambiguity mentioned
above [37], in the present context of the Hamiltonian formu-
lation, the finite-volume spectra cannot fix the relative sign
of the resonance coupling to different channels, Eq. (20), nor
the sign of the off-diagonal terms in the direct interaction,
Eq. (21). Again, these signs only act to constrain the relative
phase between δππ and δKK̄ but do not influence the energy
dependence or the isolation of the resonance pole position.

VI. SPECTRA FROM ππ DATA

As a final investigation for the present study, we comment
on the possibility of lattice QCD providing the necessary
knowledge to improve upon phenomenological scattering
parametrizations.

Within the Hamiltonian formulation given in Sec. II, the
ππ scattering phase shifts δππ and inelasticity η up to 2 GeV
have been fit [25] using a model which has two bare states and
includes the ππ and KK̄ channels. Its interaction Hamiltonian
only has the vertex interaction g defined in Eq. (4). This model
(which we will refer to as NKLS) also reproduces well the
resonance pole positions listed by the Particle Data Group
[44]. We explore two further models, B and C, which further
incorporate the two-body interaction v defined in Eq. (5) with
the form Eq. (29). These two solutions give equally good fits

to the data of δππ and inelasticity η and to the resonance
pole positions. The three models for both s-wave and p-wave
scattering are shown in Figs. 14 and 15, with model parameters
listed in Table II. Note that the parametrization of the matrix
elements of the interactions of the NKLS model are the same
as Model A specified in Eqs. (28) and (29) except that the
parametrization for the p-wave vertex interaction in the J IP =
11− partial wave is

〈k|gσ,i〉 = gσ,i(k) = gi√
mπ

(
1

[1 + (cππ × k)2]

) 3
2 k

mπ

. (34)

As there are no data to constrain the KK̄ scattering phase
shifts, this observable displays the largest variation among the
model solutions (see the right panels of Figs. 14 and 15). We
can now explore the sensitivity to this variation in the predicted
finite-volume spectra. These predicted spectra are show in
Fig. 16. While the spectra are in broad agreement among the
models, there are noticeable differences among the volumes
considered. In particular, on the 4-fm box some energy levels
see a variation of up to 50MeV among the different model
solutions. In principle, lattice QCD spectra of this order of
precision could act to further constrain this phenomenological
model. One should of course caution that, in principle, there
could be further inelastic channels appearing in the lattice
calculation—such as four pions.

FIG. 15. (Color online) The phase shifts δππ and δKK̄ and inelasticity η of p-wave ππ scattering in the J IP = 11− partial wave. The solid
squares are the experimental data. The red solid, blue dashed, and green dotted lines are from the NKLS model, Model B, and Model C,
respectively.
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TABLE II. Parameters of the Hamiltonians from fitting the phase shift data of ππ scattering in s-wave J IP = 00+ and p-wave J IP = 11−

partial waves.

Parameter s wave p wave

NKLS B C NKLS B C

mσ1 (MeV) 1220.0 1094.28 1300.00 891.54 900.000 999.950
gσ1ππ −0.63474 −0.97085 −0.51274 −0.20583 −0.15561 −0.11669
cσ1ππ (fm) 0.44658 0.50923 0.33070 0.49998 0.41213 0.31296
gσ1KK̄ 0.00605 1.64234 0.07659 0.10607 0.01010 0.00128
cσ1KK̄ (fm) 0.10012 2.29463 0.17073 0.42241 0.17333 0.04512
mσ2 (MeV) 2400.0 1907.63 2318.94 1840.0 1657.66 1903.56
gσ2ππ 0.49518 0.49178 1.43296 0.01453 0.01852 0.00517
cσ2ππ (fm) 0.20645 0.31107 0.35299 0.10000 0.15068 0.06607
gσ2KK̄ −1.17880 −1.53414 −2.50030 0.16674 2.42851 0.10514
cσ2KK̄ (fm) 0.50000 1.06150 0.79294 0.49993 1.71022 0.30817
Gππ,ππ — 0.10000 0.10000 — −0.01718 0.00024
Gππ,KK̄ — −0.00045 −0.07138 — −0.11589 −0.04689
GKK̄,KK̄ — −0.00016 0.09992 — 0.34790 0.02819
dππ (fm) — 0.27088 0.18337 — 0.42441 0.26895
dKK̄ (fm) — 0.00551 0.18402 — 0.41520 0.12503
χ 2 305 205 215 189 119 119

Pole (GeV) 0.43 − 0.27i 0.43 − 0.32i 0.43 − 0.26i 0.77 − 0.081i 0.77 − 0.075i 0.77 − 0.076i

1.0 − 0.010i 1.0 − 0.014i 1.0 − 0.008i 1.61 − 0.11i 1.63 − 0.075i 1.65 − 0.083i

1.35 − 0.17i 1.51 − 0.22i 1.52 − 0.20i − − −

VII. SUMMARY

We have investigated the finite-volume Hamiltonian
method developed in Ref. [20] within several models for
ππ scattering. We have demonstrated the equivalence of the
finite-volume spectra with the Lüscher formalism for both a
single channel and also the corresponding generalization to a
coupled-channels system.

We then investigated the practical inversion problem for
lattice QCD, with the aim to determine the physical scattering
parameters from the finite-volume spectra. The finite-volume
Hamiltonian framework offers a robust framework for the
parametrization of hadronic interactions to fit lattice spectra.
Future work will aim at addressing outstanding issues, as
addressed throughout the manuscript, including the role of

angular momentum mixing, exponentially suppressed correc-
tions, and multiparticle inelasticities. The generalization to
moving frames will also act to improve the determination
of scattering parameters, with little additional computational
costs.

Based on phenomenological fits to experimental ππ scat-
tering, we have presented the predicted spectra that one could
anticipate seeing in lattice simulations at the physical pion
mass. Here we have demonstrated that sufficient precision
from lattice QCD simulations would offer the potential to
improve the knowledge of these phenomenological models.
This is particularly significant for channels that are not directly
observable in experiment.

Our investigations are based on a rather phenomenological
form of the Hamiltonian. Thus the constructed Hamiltonian

FIG. 16. (Color online) Spectra for (a) J IP = 00+ and (b) J IP = 11− partial waves from the NKLS model, Model B, and Model C. The
spectra have been displaced for clarity.
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from fitting lattice QCD spectrum cannot be used reliably to
predict scattering observables beyond the energy region where
the spectra are fit. One potential improvement in this general
framework would be to consider more realistic forms of the
Hamiltonian, such as those derived from chiral Lagrangians.
This would largely act to improve the near-threshold behavior
of the interactions; however, is beyond the scope of the present
work.

ACKNOWLEDGMENTS
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APPENDIX A: LÜSCHER SUMMARY

1. Single channel

For comparison with Lüscher’s method, we summarize the
formulas relevant to a purely s-wave interaction, as considered
in this manuscript. It relates each energy eigenvalue E of the
finite box with size L to the scattering phase shift δ at energy
E by the following equations:

δ(k) = −φ(q) + nπ (A1)

with the on-shell momenta given by

k =
√

E2/4 − m2
π (A2)

and the geometric phase φ defined by

tan φ(q) = − qπ3/2

Z00(1; q2)
, (A3)

expressed in terms of the lattice momenta

q = kL

2π
. (A4)

The generalized zeta function is defined by

Z00(1; q2) = 1√
4π

∑
�n∈Z3

(�n2 − q2)−1 , (A5)

defined with an appropriate regularization of the divergent
sum (see, e.g., [7] for a discussion). Numerically, a convenient
representation for the evaluation of the regularized form is

given by

Z00(1; q2) = 1√
4π

(
− 1

q2
− 8.91363292 + 16.53231596q2

+
∑

�n∈Z3,�n=0

q4

�n4(�n2 − q2)

)
. (A6)

2. Coupled channels

At energies above the KK̄ threshold, we need Lüscher’s
method for two open channels, as developed in Ref. [12]. For
the considered ππ and KK̄ channels, the S matrix is defined
by

S =
(

ηe2iδππ i
√

1 − η2ei(δππ +δKK̄ )

i
√

1 − η2ei(δππ +δKK̄ ) ηe2iδKK̄

)
, (A7)

where the phase shifts δππ and δKK̄ and inelasticity η at each
E are related to the box size L by the following relation:

cos[φ(qππ ) + φ(qKK̄ ) − δππ (E) − δKK̄ (E)]

− η(E) cos[φ(qππ ) − φ(qKK̄ ) − δππ (E) + δKK̄ (E)] = 0,

(A8)

where φ(qα) is defined as Eq. (A3), and

qα = kα(E)L

2π
. (A9)

APPENDIX B: RELATIONSHIP BETWEEN THE
HAMILTONIAN AND LÜSCHER QUANTIZATIONS

The Lüscher formalism has established that the finite-
volume spectrum of multiparticle states is determined by an
eigenvalue equation involving just the S matrix of the corre-
sponding theory—up to corrections which are exponentially
suppressed in mL for large volumes. This has been derived on
the basis that the underlying fields satisfy the periodicity of
the lattice and that the interactions are finite range in nature,
being limited by a mass scale m (typically the lightest particle
degree of freedom present in the system). The Hamiltonian
formulation presented here, and previously in Ref. [20], has an
interaction which is finite ranged and the fields themselves are
quantized to satisfy the lattice periodicity. Therefore, in terms
of the quantization condition on the spectra, the Hamiltonian
is no more than an explicit realization of the general conditions
considered by Lüscher.

In Secs. III C and IV C, we have numerically demonstrated
the correspondence between the Hamiltonian and Lüscher
spectra. In this Appendix, for the case of a simple idealized
system we provide an analytic derivation of the connection
between the Lüscher and Hamiltonian formalisms.
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1. Hamiltonian quantization

From Eqs. (16), (17), and (18), the Hamiltonian matrix for the single-channel case with v = 0 is given by

[H ]N+1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

mσ g
f in
ππ (k0) g

f in
ππ (k1) · · ·

g
f in
ππ (k0) 2

√
k2

0 + m2
π 0 · · ·

g
f in
ππ (k1) 0 2

√
k2

1 + m2
π · · ·

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

. (B1)

The eigenvalue Ei of the above matrix is satisfied by the following equation:

Ei − mσ =
(

2π

L

)3 1

4π

∑
�kn= 2π

L
�n, �n∈Z3

g2
σ,ππ (kn)

Ei − 2Eπ (kn)
. (B2)

This can be rearranged to the form

Ei − mσ =
(

2π

L

)3 1

4π

∑
�kn= 2π

L
�n, �n∈Z3

[
Eig

2
σ,ππ (kn)

2
(
k2
i − k2

n

) − g2
σ,ππ (kn)

Ei + 2Eπ (kn)

]
, (B3)

with ki implicitly defined by Ei = 2
√

m2
π + k2

i . To highlight the comparison with the Lüscher eigenvalue equation, we further
isolate the pole term,

Ei − mσ =
(

2π

L

)3 1

4π

∑
�kn= 2π

L
�n, �n∈Z3

[
Eig

2
σ,ππ (ki)

2
(
k2
i − �k2

n

) + Ei

(
g2

σ,ππ (kn) − g2
σ,ππ (ki)

)
2
(
k2
i − �k2

n

) − g2
σ,ππ (kn)

Ei + 2Eπ (kn)

]
. (B4)

The last two terms on the right side have no singularities, and hence this discrete sum can be approximated by the continuum
integral (up to corrections of the order of e−mπ L). Moving the principal value parts of the sum to the left side, we obtain

Ei − mσ − �PV
L (Ei) = Eig

2
σ,ππ (ki)

8π

(
2π

L

)3 ∑
�kn= 2π

L
�n, �n∈Z3

1(
k2
i − �k2

n

) , (B5)

where �PV
L denotes the finite-volume implementation of the real part of the self-energy. We do note that in performing this

separation we have introduced ultraviolet divergences to both sides of the equation; these of course exactly cancel each other and
have no significance in determining the infrared properties associated with the finite-volume quantization.

2. Lüscher quantization

With the conventional parametrization of the S matrix,
S = exp(2iδ), and our definition of the T matrix given by
Eqs. (10)–(12), the phase shift δ can be directly evaluated
from the equation

kon cot δ(E) = − 4

πE
t−1(E) + ikon, (B6)

where kon is the on-shell momentum of a single pion for total
center-of-mass energy E.

With HI = g, the t of the ππ channel is

t(E) = g2
σ,ππ

E − mσ − �(E)
, (B7)

�(E) =
∫

k2dk
g2

σ,ππ (k)

E − 2Eπ (k) + iε
, (B8)

and hence the phase shift is given by

kon cot δ(E) = −4

πE

1

g2
σ,ππ (kon)

[E − mσ − �PV(E)]. (B9)

By neglecting the influence of the partial wave mixing,
and any exponentially suppressed corrections, the eigenvalue
equation of the Lüscher formalism can be expressed as

kon cot δ(kon) = 2√
πL

Z00
(
1; q2

on

)
, (B10)

with qon = konL/(2π ). Equating Eq. (B10) with the exact
model phase shift of Eq. (B9) with some straightforward
manipulation yields

E − mσ − �PV(E) = Eig
2
σ,ππ (ki)

8π

(
2π

L

)3

×
∑

�kn= 2π
L

�n, �n∈Z3

1(
k2
i − �k2

) . (B11)

This we recognize as the same eigenvalue equation described
by the Hamiltonian formulation in Eq. (B5), up to the
difference �PV − �PV

L —which is known to be exponentially
suppressed.
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