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Transport coefficients of two-flavor superconducting quark matter
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Background: The two-flavor color superconducting (2SC) phase of quark matter is a possible constituent of
the core of neutron stars. To assess its impact on the observable behavior of the star one must analyze transport
properties, which in 2SC matter are controlled by the scattering of gapless fermionic modes by each other and
possibly also by color-magnetic flux tubes.
Purpose: We determine the electrical and thermal conductivities and the shear viscosity of 2SC matter.
Methods: We use a variational formulation of transport theory, treating the strong and electromagnetic interactions
via a weak coupling expansion.
Results: We provide the leading order scaling of the transport coefficients with temperature and chemical potential
as well as accurate fits to our numerical results. We also find that the scattering of fermions by color-magnetic
flux tubes is insignificant for thermal conductivity, but may contribute to the electrical conductivity and shear
viscosity in the limit of very low temperature or high magnetic field. We also estimate the transport coefficients
in unpaired quark matter.
Conclusions: Our calculation has set the stage for exploration of possible signatures of the presence of 2SC
quark matter in neutron stars.
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I. INTRODUCTION

Transport coefficients of dense matter play a central role
in the modeling of astrophysical phenomena in compact stars.
The thermal and magnetic evolution of compact stars, their
rotational dynamics, and emission of electromagnetic and
gravitational waves, all depend on the transport properties of
different phases of dense matter.

In the core of a massive compact star, gravity compresses
matter to a density where it may undergo a transition to quark
matter which at sufficiently low temperature should be in
one of the color superconducting phases [1,2]. Transport in
a given phase is determined by the low-energy excitations
of that phase, which are controlled by the symmetry breaking
pattern. At asymptotically high density the favored phase is the
color-flavor-locked (CFL) phase, where all the quark flavors
and colors form Cooper pairs with zero total momentum [3].
The only excitations of the CFL phase at low temperature are
superfluid phonons, whose interactions determine the transport
coefficients of this phase [4–6]. The nature of quark pairing
at lower densities, which may include the range relevant
for compact stars, remains uncertain. One candidate is the
two-flavor color-superconducting (2SC) phase, in which up
(u) quarks and down (d) quarks pair in a color antitriplet state
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leaving one of the colors unpaired [1,2]. In this paper we
calculate key transport properties of this phase.

The paper is structured as follows. In Sec. II we discuss
the relevant interactions among the ungapped fermions and
calculate the scattering matrix elements for the fermions
interacting via exchange of gauge bosons in the 2SC phase.
Section III develops a general formalism for transport in
multicomponent systems starting from the Boltzmann equa-
tion. After briefly explaining the physics of transport in the
2SC phase in Sec. IV A and our approximation schemes in
Sec. IV B, we go on to compute the electrical conductivity,
thermal conductivity, and shear viscosity of 2SC matter
(Secs. IV C–IV E, respectively). In Sec. V we compare the
fermion-fermion scattering contribution to the fermion–flux-
tube scattering contribution and identify the domain where the
latter could become important. Our results are summarized
in Sec. VI. We use “Heaviside-Lorentz” natural units with
� = c = kB = ε0 = 1, where kB is the Boltzmann constant
and ε0 is the vacuum permittivity; the electric charge e is
related to the fine structure constant by α = e2/(4π ) = 1/137
and similarly, the QCD coupling constant g by αs = g2/(4π ).

II. FERMION-FERMION SCATTERING
IN THE 2SC PHASE

A. Relevant excitations

The excitations that transport momentum and energy in
2SC superconductors are ungapped fermions. We fix to unitary
gauge, where the 2SC condensate is uniform over all space
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and time, and use the standard convention that the condensate
points in the red-green direction in color space. The red and
green quarks, because of their 2SC pairing, have gaps �
which are expected to be around 10 MeV or larger [2,7]
so their occupation is Boltzmann suppressed and they are
frozen out of transport processes at temperatures appropriate to
neutron stars. This leaves electrons and blue quarks as the only
ungapped fermionic excitations. We will neglect muons and
strange quarks. If they were present, their Fermi momenta and
available phase space would be much smaller, so they would
play a subleading role in transport processes. The main effect
of strange quarks would be to reduce the electron population,
affecting the dominance of electrons in transport.

The 2SC phase breaks no global symmetries, so there are no
massless Goldstone bosons, or light pseudo-Goldstone bosons.
The gauge bosons available to mediate fermion-fermion
interactions in the 2SC phase are the eight gluons (generators
TA) and the photon (generator Q). However, because the
transport coefficients are determined by the interactions only
among the electron (e), the blue up quark (bu), and the blue
down quark (bd), most of the gauge bosons can be neglected.
In the 2SC phase, the gauge symmetry breaking pattern is
SU (3)color ⊗ U (1)Q → SU (2)rg ⊗ U (1)Q̃ [8,9]. The unbro-
ken SU (2)rg symmetry consists of color rotations involving the
red and green colors. The unbroken U (1)Q̃ gauge symmetry is
a linear combination of the original electromagnetic and color
symmetries, called “rotated electromagnetism,” generated by
Q̃ which is a linear combination of Q and the eighth color
generator T8. The other linear combination of the gauge bosons
is called the X boson, which is massive. The remaining gauge
bosons are irrelevant because they do not couple to electrons,
which have no color, and they cannot mediate interactions
between blue quarks, because they all carry some nonblue
color. As we will see, the transport properties of the 2SC
phase are determined by the Q̃ interaction, which is weakly
coupled but long ranged (Landau damped), and the T8 and
X interactions, which are strongly coupled but short ranged
because of Debye and Meissner screening, respectively.

Lastly, we here compute the chemical potential of each
flavor in the 2SC phase. The symmetry group of massless
two-flavor QCD is SU (3)color × SU (2)L × SU (2)R × U (1)B ,
where electromagnetism (generated by a combination of
baryon number and isospin) and color are gauged. The relevant
chemical potentials are μq (coupled to quark number), μe (cou-
pled to negative electric charge), and μ3 and μ8 which are cou-
pled to the Cartan generators of SU (3)color, T3 = diag(1/2, −
1/2,0), and T8 = diag(1/(2

√
3),1/(2

√
3), − 1/

√
3). Because

the color subgroup SU (2)rg , which rotates red and green
quarks, is unbroken in the 2SC phase, we have μ3 = 0. The
chemical potentials for blue up and blue down quarks are, then,

{μbu, μbd} =
{
μq − 2

3
μe − 1√

3
μ8, μq + 1

3
μe − 1√

3
μ8

}
.

(1)

The rest of the quarks, red up (ru), green up (gu), red down
(rd), and green down (gd), form the Cooper pairs, which have

average chemical potential,

μC = μru + μgd

2
= μgu + μrd

2

= μq − 1

6
μe + 1

2
√

3
μ8. (2)

The Fermi surfaces of the paired fermion species are locked
together with common Fermi momentum μC [10]. The free
energy density of 2SC quark matter without strange quarks is

�2SC = − μ4
bu

12π2
− μ4

bd

12π2
− μ4

e

12π2
− 4

μ4
C

12π2
− μ2

C�2

π2
. (3)

The charge neutrality conditions, ∂�2SC/∂μe = 0
and ∂�2SC/∂μ8 = 0, are satisfied provided μe =
3(2 + 3 × 61/3 − 62/3)μq/22 and μ8 = √

3(12 − 15 ×
61/3 + 5 × 62/3)μq/22, where we have ignored corrections of
order �2/μ2

q . Thus each chemical potential in the 2SC phase
is written in terms of the quark chemical potential μq as

{μbu,μbd,μe,μC} � {0.566μq,1.13μq,0.566μq,0.934μq}.
(4)

To obtain a stable 2SC phase we require � > μe/2 [11], but
for μe � � > μe/2 the terms of order �2/μ2

q that we have
dropped only modify (4) by a few percent. We note that μbu =
μe = μbd/2 even with the �2/μ2

q correction.

B. Scattering matrix elements

Our analysis of transport in the 2SC phase of quark matter
parallels that of Heiselberg and Pethick [12], who performed
perturbative calculations for unpaired quark matter, assuming
the strong coupling αs is small enough to make a perturbative
expansion meaningful. We consider the scattering process of
two incoming particles, particle 1 of type i and particle 2 of
type j , into two outgoing particles, particle 3 of type i and
particle 4 of type j . We denote four-momentum of particle n
as (εn,pn), and εn = |pn| because the Fermi momenta of the
gapless fermions are large enough that we can neglect their
masses. In the presence of scattering but no external force, the
distribution function in momentum-position space of particle
1, f1(x,p1,t), obeys the Boltzmann transport equation,(

∂

∂t
+ v1 · ∇x

)
f1

= −(2π )4
∑

j

νj

∑
234

|Mij |2[f1f2(1 − f3)(1 − f4)

− f3f4(1 − f1)(1 − f2)] δ4(pin − pout), (5)

where
∑

n = ∫
d3pn/(2π )3, δ4 (pin − pout) =

δ (εin − εout) δ (pin − pout), and νj = 2 is the spin factor.
The scattering matrix element Mij is usually decomposed into
longitudinal and transverse parts [13], and the longitudinal
and transverse components of gauge boson self-energies in
the static limit correspond to the Debye mass and the Meissner
mass, respectively. According to [14,15], the Meissner mass
matrix is diagonal in the rotated (X,Q̃) basis, while the Debye
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mass matrix is diagonal in the (T8,Q) basis. Therefore, the
two parts of the scattering matrix need to be expressed in the
two different bases of the gauge bosons. We now show how
to construct the scattering matrix below.

The indices i and j specify the species of the ungapped
fermions, using the basis,


i = {
bu,
bd,
e}
= {blue up quark (bu), blue down quark (bd),

electron (e)}. (6)

The relevant gauge bosons can be written in either the (T8,Q)
or the (X,Q̃) basis,

Aμ = AT8
μ T8 + AQ

μ Q = AX
μX + AQ̃

μ Q̃, (7)

and we write the components as Aa
μ, so a may vary over

(T8,Q) or (X,Q̃) depending on the context. The components
are related by

AX
μ = cos ϕ AT8

μ + sin ϕ AQ
μ , (8)

AQ̃
μ = − sin ϕ AT8

μ + cos ϕ AQ
μ , (9)

where the mixing angle ϕ is related to the QCD coupling g
and the electromagnetic coupling e as [16]

cos ϕ =
√

3g√
e2 + 3g2

. (10)

We write the covariant derivative as

Dμ
 =
(

∂μ − i
∑

a

Aa
μQa

)

, (11)

where Qa is defined to be the product of the coupling constant
and the charge matrix for the ungapped fermions:

QT8 = g × diag

(
− 1√

3
,− 1√

3
,0

)
,

(12)

QQ = e × diag

(
+ 2

3
,−1

3
,−1

)
,

in the (T8,Q) basis and

QX = g cos ϕ

× diag

(
− 1 − 2 tan2 ϕ√

3
, − 1 + tan2 ϕ√

3
, −

√
3 tan2 ϕ

)
,

QQ̃ = e cos ϕ × diag(1,0,−1), (13)

in the (X,Q̃) basis [16]. We will write the ith diagonal element
as Qa

i , defined by (Qa)ij = Qa
i δij (with no sum over i), and

we give the values of Qa
i in Table I.

Because of the screening in a plasma, the gauge bosons
acquire self-energies �μν , which then contribute to the gauge
field propagator,(

Dab
μν

)−1 = gμν(ω2 − q2)δab + �ab
μν, (14)

where ω and q are the energy and momentum transfer. We
define q ≡ |q| and similarly for other momenta. The scattering
matrix element for two incoming particles, one with flavor i

TABLE I. Value of Qa
i , the product of the coupling constant and

the charge, for each gauge boson a and each gapless fermion i. We
also show the average for the two quarks in a Cooper pair.

QT8 QQ QX QQ̃

Blue −g/
√

3 2e/3 −g cos ϕ
(
1 − 2 tan2 ϕ

)
/
√

3 e cos ϕ

up (bu)
Blue −g/

√
3 −e/3 −g sec ϕ/

√
3 0

down (bd)
Electron (e) 0 −e −√

3g sin ϕ tan ϕ −e cos ϕ

Cooper g/(2
√

3) e/6 g sec ϕ/(2
√

3) 0
pair (C)

and four-momentum (ε1,p1) and the other with flavor j and
four-momentum (ε2,p2), is

Mij = J
μ
a,i

(
Dab

μν

)
J ν

b,j , (15)

J
μ
a,i = Qa

i ū (p3) γ μu (p1) /2p1, (16)

J ν
b,j = Qb

j ū (p4) γ νu (p2) /2p2, (17)

where J
μ
a,i and J ν

b,j are the transition currents, γ μ is a Dirac
matrix, and u is the Dirac spinor.

We split the current into the longitudinal component, J l =
J · q̂ = ωJ 0/q, and the transverse component, Jt = J − J l q̂.
We denote the corresponding self-energies in the propagator
as �ab

l and �ab
t , respectively. Because the longitudinal

components of the propagator are diagonal in the (T8,Q)
basis and the transverse components are diagonal in the (X,Q̃)
basis [14,15], we can write the matrix element as

Mij =
∑

a={T8,Q}

J 0
a,iJ

0
a,j

q2 + �aa
l

−
∑

a={X,Q̃}

Jt
a,i · Jt

a,j

q2 − ω2 + �aa
t

, (18)

and after summing over the final spins and averaging over the
initial spins, the scattering matrix element can be written as

|Mij |2 = Ll

∣∣∣∣∣∣
∑

a={T8,Q}

Qa
i Qa

j

q2 + �aa
l

∣∣∣∣∣∣
2

+Lt

∣∣∣∣∣∣
∑

a={X,Q̃}

Qa
i Qa

j

q2 − ω2 + �aa
t

∣∣∣∣∣∣
2

− 2Llt Re

⎡
⎣
⎛
⎝ ∑

a={T8,Q}

Qa
i Qa

j

q2 + �aa
l

⎞
⎠

×
⎛
⎝ ∑

a={X,Q̃}

Qa
i Qa

j

q2 − ω2 + �aa
t

⎞
⎠
∗ ⎤
⎦ + δij γint, (19)

where γint is the interference term, which is the cross term of
two different channels for two identical incoming particles. As
discussed in [17], however, it is small in the weak-screening
approximation, so we neglect γint. In the limit ω 	 p,μq , L’s
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become

Ll =
(

1 − q2

4p2
1

)(
1 − q2

4p2
2

)
, Llt =

(
1 − q2

4p2
1

)1/2(
1 − q2

4p2
2

)1/2

cos θ,

(20)

Lt =
(

1 − q2

4p2
1

)(
1 − q2

4p2
2

)
cos2 θ + q2

4p2
1

+ q2

4p2
2

,

where θ is the angle between p1 + p3 and p2 + p4 [17].
The one-loop correction of self-energies comes from the ungapped fermions and the Cooper pairs. Following Appendix A

in [18], we parametrize the longitudinal component �l and transverse component �t as

�aa
l =

∑
i

(
qa

D,i

)2
χl + 4

(
qa

D,C

)2
χl in the (T8,Q) basis,

�aa
t =

∑
i

(
qa

D,i

)2
χt + 4

(
qa

D,C

)2
χt + 4

(
qa

D,C

)2
χsc in the (X,Q̃) basis,

(21)

where qa
D,i and qa

D,C are the Debye masses for a given flavor i
and the Cooper pair, respectively, and the factors of 4 in front
of (qa

D,C)2 arise from the four different species of Cooper pairs
in the 2SC phase. The Debye masses are

(
qa

D,i

)2 = (
Qa

i

)2 μ2
i

π2
, (22)

(
qa

D,C

)2 = (
Qa

C

)2 μ2
C

π2
, (23)

where μi and μC are the chemical potentials of fermion with
flavor i and the Cooper pair, respectively. Qa

C is a product of a
coupling constant and the average charge of the two quarks that
constitute the pair [19] (see Table I). The Cooper pair has X
charge but no Q̃ charge, so in the static limit where ω/q 	 1,
�XX

t has a real component, which gives the Meissner effect,

while �
Q̃Q̃
t has an imaginary component, which gives the

Landau damping. The screening functions, χl and χt , are
functions of ω and q, and are calculated in [20–22]. In this
paper, we use the static limit of the screening functions [12,19],

χl = 1, χt = i
π

4

ω

q
, χsc = 1

3
. (24)

Taking the leading order in ω/q, we thus have

�
T8T8
l =

∑
i

(
Q

T8
i

)2 μ2
i

π2
+ 4

(
Q

T8
C

)2 μ2
C

π2
, (25)

�
QQ
l =

∑
i

(
Q

Q
i

)2 μ2
i

π2
+ 4

(
Q

Q
C

)2 μ2
C

π2
, (26)

�XX
t = 4

3

(
QX

C

)2 μ2
C

π2
, (27)

�
Q̃Q̃
t = i

ω

q
�2 where �2 ≡

∑
i

(
Q

Q̃
i

)2 μ2
i

4π
, (28)

where Q’s are given in Table I.

III. TRANSPORT COEFFICIENTS IN A
MULTICOMPONENT SYSTEM

In preparation for our calculation of the transport properties
of the 2SC phase, we write down transport coefficients in

a general multicomponent system at low temperature and
high density, T/μ 	 1, using the linear Boltzmann transport
equation in the relaxation time approximation. We consider
an isotropic system which is weakly perturbed from its
equilibrium state. In this case, the electrical conductivity σ , the
thermal conductivity κ , and the shear viscosity η, are related
to the electric current jα , the heat flux hα , and the shear stress
tensor σαβ , respectively, as [23]

jα = −σ∂αU, (29)

hα = −κ∂αT , (30)

σαβ = −ηVαβ, (31)

where U is the electric potential and Vαβ is the traceless part
of the spatial derivative of fluid velocity V,

Vαβ = ∂αVβ + ∂βVα − 2
3δαβ∇ · V. (32)

We use α, β, λ, and ρ as spatial indices. From kinetic theory,
we can write the fluxes on the left-hand sides as [24]

jα =
∫

d3p

(2π )3 evα δf, (33)

hα =
∫

d3p

(2π )3 (ε − μ) vα δf, (34)

σαβ =
∫

d3p

(2π )3 pαvβ δf, (35)

where vα is the particle velocity with |vα| = 1, and δf is a
deviation from the equilibrium distribution function f 0. As we
explained in the previous section, the fermions that contribute
to the transport properties in the 2SC phase are the blue up
quark, blue down quark, and electron. In general, we can
combine the above equations to write for a multicomponent
system as [25–27]

ξY =
∑

i

νi

∫
d3p

(2π )3
φi δfi, (36)

where νi is a spin factor for a particle flavor i. Instead of
writing three different equations for the transport coefficients,
we have defined ξ as a transport coefficient for σ , κ , or η
with corresponding macroscopic quantity Y (−∂αU , −∂αT , or
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−Vαβ , respectively) and a microscopic quantity,

φi =
⎧⎨
⎩

eivα Electrical conductivity
(ε − μi)vα Thermal conductivity
pαvβ Shear viscosity

, (37)

respectively. We treat Y and φi as matrices for the shear vis-
cosity and vectors for the thermal and electrical conductivities.
We write each distribution function with flavor i as

fi = f 0
i + δfi = 1

e(ε−μi )/T + 1
− ∂f 0

i

∂ε
�i, (38)

and we further parametrize the unknown coefficient �i using
the relaxation time approximation [17,28]:

�i = 3τiψi · Y, (39)

where τi is a relaxation time. ψi · Y denotes the dot product
for vectors and the Hadamard product for matrices, i.e.,
ψi · Y ≡ (ψi)αβY αβ . The numerical factor of 3 is given so
that the definition of the relaxation time agrees with that of
Heiselberg and Pethick [12]. ψi is a microscopic quantity

depending on the transport phenomena, and the standard
forms1 are given as [24]

ψi =

⎧⎪⎨
⎪⎩

eivα Electrical conductivity

(ε − μi) vα/T Thermal conductivity(
pαvβ − 1

3δαβ p · v
) /

2 Shear viscosity

.

(40)

From Eq. (36), we can now define transport coefficient of each
component ξi as

ξ =
∑

i

ξi = ξbu + ξbd + ξe, (41)

with

ξiY = −3τiνi

∫
d3p

(2π )3
φi (ψi · Y )

∂f 0
i

∂ε
. (42)

Following the standard procedure, we rewrite Y as

Y =

⎧⎪⎪⎨
⎪⎪⎩

−∂αU = −δλ
α ∂λU Electrical conductivity

−∂αT = −δλ
α ∂λT Thermal conductivity

−Vαβ = − 1
2

(
δλ
α δ

ρ
β + δρ

α δλ
β − 2

3δαβδλρ
)
Vλρ Shear viscosity

, (43)

and then we can divide the common factor of Y on both sides
in Eq. (42) and contract the indices α and λ for the electrical
and thermal conductivities and the pairs of indices α, λ and
β, ρ for the shear viscosity. This gives us an expression for a
generic transport coefficient,

ξi = −3τiνi

γ

∫
d3p

(2π )3
(φi · ψi)

∂f 0
i

∂ε
, (44)

where γ is a numerical factor after contracting the indices:
γ = δα

α = 3 for the electrical and thermal conductivities and
γ = (δα

αδ
β
β + δα

α − 2δα
α/3)/2 = 5 for the shear viscosity.

From the Boltzmann equation, we can obtain another
expression for a transport coefficient. By taking the leading
order in the derivative expansion of the Boltzmann transport
equation, Eq. (5), we obtain the linearized Boltzmann equa-
tion:

ψi · Y
∂f 0

1

∂ε1

= − (2π )4

T

∑
j

νj

∑
234

|Mij |2f 0
1 f 0

2

(
1 − f 0

3

)(
1 − f 0

4

)
× δ4(pin − pout) (�1 + �2 − �3 − �4) . (45)

1We could use the Chapman-Enskog method and write each ψi as
an infinite sum of trial functions, but one trial function with correct
power of momentum is usually sufficient. See, e.g., [29,30].

Acting with −3τiνi

∑
1 φ1 on both sides, we obtain

ξiY = 3τi

(2π )4

T

∑
j

νiνj

∑
1234

|Mij |2f 0
1 f 0

2

(
1 − f 0

3

)(
1 − f 0

4

)
× δ4(pin − pout)φ1[3τi(ψ1 − ψ3) + 3τj (ψ2 − ψ4)] · Y,

(46)

and using the same procedure that led us to Eq. (44), we have

ξi = 9τi

γ

(2π )4

T

∑
j

νiνj

∑
1234

|Mij |2f 0
1 f 0

2

(
1 − f 0

3

)(
1 − f 0

4

)
× δ4(pin − pout)φ1 · [τi(ψ1 − ψ3) + τj (ψ2 − ψ4)].

(47)

After taking the limit ω,T 	 μq [12], we finally have

ξi = τi

γ

∑
j

νiνj

36T μ2
i μ

2
j

(2π )5

∫ ∞

0
dω

(
ω/2T

sinh(ω/2T )

)2

×
∫ qM

0
dq

∫ 2π

0

dθ

2π
|Mij |2φ1

·[τi(ψ1 − ψ3) + τj (ψ2 − ψ4)], (48)

where qM = min[2p1,2p2] = min[2μi,2μj ] is the maximum
momentum transfer, and θ is again the angle between p1 + p3

and p2 + p4. The momentum of an incoming fermion is the
Fermi momentum in the limit T/μq 	 1, so we simply replace
all p1 and p2 with μi and μj , respectively. Equations (44)
and (48) can be used to find the relaxation times τi for the
three gapless fermion species, and thus their contributions ξi

to the transport coefficient.
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IV. TRANSPORT PROPERTIES IN THE 2SC PHASE

A. The physics of transport in 2SC quark matter

Transport in the 2SC phase occurs via the ungapped
fermions: the blue up quark, the blue down quark, and the
electron. At a given temperature, transport is dominated by
the fermion that feels the least influence from the surrounding
particles because it will have a long relaxation time or mean
free path. The relevant interactions (and their generators) are as
follows. The longitudinal strong interaction (T8) and the longi-
tudinal electromagnetic interaction (Q), which are both short
ranged because of Debye screening; the transverse “rotated”
strong interaction (X) which is short ranged because of Meiss-
ner screening; and the transverse “rotated” electromagnetic
interaction (Q̃), which is not screened, only Landau damped.

At low temperatures, where the typical energy transfer ω
is small, Landau damping [which is proportional to ω (28)]
becomes a small effect, making the Q̃ interaction long ranged.
The bu quark and electron, which carry Q̃ charge, therefore
experience more scattering than the bd quark, whose Q̃ charge
is zero, so their relaxation time is short and transport is
dominated by the bd quark. The essential point is that at low
temperature the long range of the Q̃ interaction compensates
for its small inherent coupling, so particles that feel the Q̃
interaction have suppressed contributions to transport.

At high temperatures, where typical energy transfers are
large, the Landau damping of the Q̃ becomes more significant,
and it no longer has such a long range. Relaxation times are
then determined by the strong interaction (T8 and X), so the
electron, which has no T8 charge and only a very small X
charge, dominates transport. The next most important fermion
is the blue down quark, simply because its Fermi momentum
is larger (4), so there are more states near its Fermi surface.

We therefore expect that as temperature rises, we start off
in a regime dominated by the bd quark, and then make a
transition to a regime dominated by electrons. As we will see,
this transition occurs at different temperatures for different
transport properties.

B. Approximation schemes

We now compute the electrical conductivity, the thermal
conductivity, and the shear viscosity in the 2SC phase using
the formalism developed in Sec. III. In each case we perform
a numerical calculation and obtain an analytic approximation
to it. The coefficients will be functions of two parameters
of microscopic physics, the strong coupling αs and electro-
magnetic coupling α, and two thermodynamic potentials, the
quark chemical potential μq and the temperature T . Following
Heiselberg and Pethick [12], we will calculate to leading order
in αs and, for quantities dominated by electromagnetism, in
α. This gives results that are reliable at very high energy
scales, but provides at best a rough estimate of the values
of the transport coefficients at the energy scales relevant for
compact star phenomenology because the strong interaction
is nonperturbative in that regime. For numerical estimates we
will take αs = 1.

The relevant temperature range for compact star phe-
nomenology is from about 10 keV to 1 MeV while the

density regime of interest requires quark chemical potential
μq ∼ 400 MeV. We will therefore make use of an expansion
in powers of T/μq . For numerical computations, we present
results for T/μq in the range from 10−5 to 10−3. We can
assume that the energy transfer is much smaller than the
momentum transfer, ω 	 q, because the characteristic energy
transfer is of the order of the temperature (ω ∼ T ), and the
characteristic momentum transfer is roughly the screening
scale (of order eμ or gμ) of the relevant gauge bosons. Terms
such as q2 − ω2 + �aa

t in the transverse component of the
scattering matrix element in Eq. (19) become q2 + �aa

t .
For physical insight we will also obtain analytic approxima-

tions by using the additional simplifying assumption that the
momentum transfer is much smaller than the quark chemical
potential, q 	 μq . This is a good approximation for the
transverse component of the Q̃ interaction [17], because
the self-energy of the Q̃ boson is Landau damped, and the
characteristic momentum transfer is q ∼ (e2μ2

qT )1/3 	 μq .
Therefore, even for the numerical computations, we use the an-
alytical expression for the Q̃ interaction [third lines of Eqs. (54)
and (62)] by taking the limit q 	 μq in Eq. (48). As pointed
out by Shternin and Yakovlev [17], the approximation is not
always reliable for screened interactions: High momentum
transfer processes sometimes play an important role. However,
we will show that these analytic results agree well with the
numerical results in the 2SC phase, and they provide us with
a physical understanding of the numerical results.

C. Electrical conductivity of Q̃ charge

In the 2SC phase, electrical conductivity involves Q̃ charge
rather than Q charge. A charged current produces magnetic
fields, but X magnetic fields are Meissner screened, so only
the Q̃ current exists in the bulk of 2SC matter. The expected
behavior discussed in Sec. IV A is affected by the fact that bd
quarks have no Q̃ charge, so their low-temperature dominance
of transport is not relevant to electrical conductivity. Q̃ charge
is carried by the electron and the blue up quark, which have
Q̃ interactions with each other. However, the blue up quark
has a shorter relaxation time because of its additional strong
interactions with the blue down quarks, so conductivity will
be dominated by the electron. We will see below how our
calculations confirm this expectation.

For the electrical conductivity of Q̃ charge, we have φi =
Q

Q̃
i vα and γ = 3 in Eq. (44), which then gives the Drude result

for the conductivity of species i with relaxation time τσ
i ,

σi = τσ
i

μ2
i

(
Q

Q̃
i

)2

π2
. (49)

Because Q
Q̃
bd is zero, σbd = 0. To calculate τσ

i using Eq. (48),
we write

φ1 · [τσ
i (ψ1 − ψ3) + τσ

j (ψ2 − ψ4)
]

=
(
Q

Q̃
i

)2

2p2
1

(
τσ
i − τσ

j

p1Q
Q̃
j

p2Q
Q̃
i

)
q2, (50)

where we have ignored the terms suppressed by factors
of ω/p1,2. Using the above two equations in Eq. (48),
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we find

1 = 3T

4π3

∑
j

μ2
j

μ2
i

(
τσ
i − τσ

j

μiQ
Q̃
j

μjQ
Q̃
i

)
sσ
ij , (51)

for a flavor i = bu or e, where

sσ
ij =

∫ ∞

0
dω

(
ω/2T

sinh(ω/2T )

)2 ∫ qM

0
dq

∫ 2π

0

dθ

2π
|Mij |2q2,

(52)

which is symmetric in exchanging i and j . We can then solve
Eq. (51) for the relaxation times, τσ

bu and τσ
e , and find

1

τσ
i

= 3T

4π3
sσ
i,bd sσ

bu,e

(
1

sσ
bu,bd

+ 4

sσ
bu,e

+ 1

sσ
bd,e

)
, (53)

where i = bu or e. Even though σbd = 0, the blue down quark
has some effect on the conductivity because its interactions
with the charged fermions, particularly the bu quark, affect
their relaxation rates. We numerically integrate Eq. (52) using
the scattering matrix element Mij given in Eq. (19), with the
charges from Table I with α = 1/137 and αs = 1, L’s from
Eq. (20) with p1 = μi and p2 = μj , the boson self-energies
from Eqs. (25)–(28), and the chemical potentials from Eq. (4).
sσ is then a dimensionless function of T/μq . We use the nu-
merical value of sσ in Eq. (53) to obtain τσ

i μq , which then gives
σi/μq by Eq. (49). The results are plotted in Fig. 1, and the best
fits are σbu/μq = 0.000 672/((T/μq )5/3 + 2.11 (T/μq )2) and
σe/μq = 1.46/((T/μq )5/3 + 2.11 (T/μq )2). We note these
fits can be extrapolated to arbitrary low temperature.

FIG. 1. (Color online) Numerically calculated electrical (Q̃) con-
ductivity as a function of temperature, both expressed in units of
the quark chemical potential μq , taking strong interaction coupling
αs = 1. The electrons dominate because the bu relaxation time is
shortened by its strong interaction with the bd quarks.

We see in Fig. 1 that the electrons dominate the conductivity,
obeying a T −5/3 power law. To understand this we now
derive an approximate analytic expression for the electrical
conductivity by assuming that the momentum transfer q is
much less than the typical Fermi momenta. In this limit,
q 	 μq ∼ p1,2, Eq. (20) simply becomes Ll = 1, Llt = cos θ ,
and Lt = cos2 θ . Furthermore, the upper interval of the
q integral in Eq. (52) may be taken as infinity because
the integrand is very small for q � qM . The integral in
Eq. (52) can then be performed analytically [12] using the
identity,

∫ ∞

0
dω

(
ω/2T

sinh(ω/2T )

)2 ∫ ∞

0
dq Re

[
q2

(q2 + �aa)(q2 + �bb)∗

]
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

π3 T

6(
√

�aa+
√

�bb)
if neither a nor b is Q̃

π3 T

6
√

�aa
+ O(

T 4/3

μ
4/3
q

)
if b is Q̃ and a is not

π�(8/3)ζ (5/3) T 2/3

3�2/3 if a and b are both Q̃

, (54)

where �aa is a self-energy of a boson of type a, with the convention that �aa = �aa
l if a is either T8 or Q and �aa = �aa

t if a is
either X or Q̃, as given in Eqs. (25)–(28). For the first case, both the gauge boson self-energies �aa and �bb are independent of
ω and q, so the integration can be performed straightforwardly. In the second case, one of the self-energies is for the Q̃ photon,

which is dominated by Landau damping, �Q̃Q̃
t = iω�2/q (28). In this case, we first perform the q integral exactly, then keep the

leading order in ω/μq because ω ∼ T 	 μq , and finally perform the ω integral exactly. This is equivalent to doing the integral

exactly by neglecting �
Q̃Q̃
t because ω/q 	 1. In the third case, however, both the self-energies are for Q̃ photons; their Landau

damping acts as the regulator of an infrared divergence and the integral scales as (T/�)2/3. We call this the “Q̃-interaction term.”
We thus find

sσ
ij = π3T

6

∑
a,b={T8,Q}

Qa
i Qa

j Qb
i Qb

j√
�aa

l +
√

�bb
l

+ π3T

12

((
QX

i

)2(
QX

j

)2

2
√

�XX
t

+ 2QX
i QX

j Q
Q̃
i Q

Q̃
j√

�XX
t

)

+ π�(8/3)ζ (5/3)T 2/3

6

(
Q

Q̃
i

)2(
Q

Q̃
j

)2

�2/3
, (55)

where the self-energies are given in Eqs. (25)–(28). The first term comes from the longitudinal interactions and the rest comes
from the transverse interactions. As shown in [12], the Q̃-interaction term has a lower power of the temperature because Landau
damping gives a small contribution to the self-energy at low energy transfer, making the Q̃ interaction long ranged at low
temperature. If we use this analytic approximation in Eqs. (53) and (49), then we obtain values of τσ

bu and τσ
e that agree with the

numerical evaluation to within 35% and 4%, respectively, at temperatures up to 10−3μq .
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We can explain qualitatively why σe is much larger than
σbu. From Eqs. (49) and (53), we have σe/σbu = τe/τbu =
sσ
bu,bd/s

σ
e,bd where the first equality comes from the fact that

the blue up quark and the electron have the same chemical
potential and the opposite Q̃ charge. From Eq. (55), we find
that sσ

bu,bd is proportional to g3 because the main interactions
are the screened strong interactions by the T8 and X bosons.
sσ
bd,e is proportional to e3 because it is dominated by the

longitudinal screened electromagnetic Q interaction. Thus we
can estimate that σe/σbu ∼ (g/e)3 ∼ 103, which qualitatively
agrees with Fig. 1.

We now explicitly show the analytical expression for the
dominant contribution of σe. The first term in Eq. (53) is
negligible compared to the other two terms because sσ

bu,bd is
proportional to a scattering amplitude of the strong interaction.
Thus we have

1

τσ
e

= 3T

4π3

(
4sσ

bd,e + sσ
bu,e

)
. (56)

The leading term of sσ
bu,e is the Q̃ interaction term, which is

proportional to (T/μq)2/3 from Eq. (54) (third case), while
the leading term of sbd,e is (T/μq) from (54) (first and second
cases). If we only keep the Q̃ interaction term in sσ

bu,e, then
we have

σe = μ2
e

(
QQ̃

e

)2

π2

4π3

3T sσ
bu,e

= μ2
e

(
QQ̃

e

)2

π2

8π2�2/3

�(8/3)ζ (5/3)T 5/3
(
Q

Q̃
bu

)2(
Q

Q̃
e

)2

� μ2
qe

2

π2

0.0433

α5/3T (T/μq)2/3
, (57)

which agrees with the numerical result to 5% at T = 10−5μq

and 22% at T = 10−3μq . We thus conclude that for the
electrical conductivity of Q̃ charge, the dominant contribution
comes from the electron, and the relevant scattering process
in leading order of T/μq is between the electron and the blue
up quark via the Q̃ interaction.

D. Thermal conductivity

For the thermal conductivity, the discussion of Sec. IV A
applies straightforwardly, as we now demonstrate. We have
φi = (ε − μi)vα and γ = 3 in Eq. (44), which then gives

κi = τ κ
i

μ2
i T

3
. (58)

To calculate κi using Eq. (48) in the limit ω 	 q and T 	 μq ,
we write

φ1 · [τ κ
i (ψ1 − ψ3) + τ κ

j (ψ2 − ψ4)
]

= φ1 − φ3

2T
· [τ κ

i (ψ1 − ψ3) + τ κ
j

(
ψ2 − ψ4)

]
= ω2

2T

[
τ κ
i + q2

4p1p2
τ κ
j

− cos θ

√(
1 − q2

4p2
1

)(
1 − q2

4p2
2

)
τ κ
j

]
. (59)

Using the above two equations in Eq. (48), we have

1 = 9

4π5T

∑
j

μ2
j

(
τ κ
i sij + τ κ

j s̃ij

)
, (60)

for each flavor i, where

sκ
ij =

∫ ∞

0
dω

(
ω/2T

sinh(ω/2T )

)2 ∫ qM

0
dq

∫ 2π

0

dθ

2π
|Mij |2ω2,

s̃κ
ij =

∫ ∞

0
dω

(
ω/2T

sinh(ω/2T )

)2 ∫ qM

0
dq

∫ 2π

0

dθ

2π
|Mij |2

×ω2

(
q2

4p1p2
− cos θ

√(
1 − q2

4p2
1

)(
1 − q2

4p2
2

))
,

(61)

which are symmetric in exchanging i and j . We numerically
evaluate both sκ

ij and s̃κ
ij as functions of T/μq using the

scattering matrix element Mij given in Eq. (19), with the
charges from Table I with α = 1/137 and αs = 1, L’s from
Eq. (20) with p1 = μi and p2 = μj , the boson self-energies
from Eqs. (25)–(28), and the chemical potentials from Eq. (4).
We then solve the three relaxation times from the three
equations in Eq. (60), and we use τ κ

i μq in Eq. (58) to
obtain κi/μ

2
q . The results are plotted in Fig. 2, and the

best fits are κbu/μ
2
q = 5.69/(1 + 3720 (T/μq )), κbd/μ

2
q =

0.00617/(T/μq ), and κe/μ
2
q = 6.70/(1 + 6.92 (T/μq )2/3).

We note these fits can be extrapolated to arbitrary low
temperature.

We see in Fig. 2 the expected gradual transition from a
low-temperature regime dominated by blue down quarks to
a high-temperature regime dominated by electrons. We now
derive approximate analytic expressions to account for this
behavior, by assuming that the momentum transfer q is much
less than the typical Fermi momenta [12]. We use the identities,

∫ ∞

0
dω

(
ω/2T

sinh(ω/2T )

)2 ∫ ∞

0
dq Re

[
ω2

(q2 + �aa)(q2 + �bb)∗

]

=

⎧⎪⎪⎨
⎪⎪⎩

2π5 T 3

15(�aa
√

�bb+�bb
√

�aa )
if neither a nor b is Q̃

π�(14/3)ζ (11/3) T 8/3

3�aa�2/3 − 2π5 T 3

15(�aa )3/2 + O
(

T 10/3

μ
10/3
q

)
if b is Q̃ and a is not

πζ (3) T 2

�2 if a and b are both Q̃

. (62)
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For the second case, we keep up to T 3/μ3
q , which is the same order as the first case. This allows us to obtain a closed form for

sκ and s̃κ up to T 3/μ3
q ,

sκ
ij = πζ (3)T 2

2

(
Q

Q̃
i

)2(
Q

Q̃
j

)2

�2
+ π�(14/3)ζ (11/3)T 8/3

3

QX
i QX

j Q
Q̃
i Q

Q̃
j

�XX
t �2/3

+ 2π5T 3

15

⎡
⎣−QX

i QX
j Q

Q̃
i Q

Q̃
j(

�XX
t

)3/2 +
∑

a,b={T8,Q}

Qa
i Qa

j Qb
i Qb

j

�aa
l

√
�bb

l + �bb
l

√
�aa

l

+ 1

2

(
QX

i

)2(
QX

j

)2

2 �XX
t

√
�XX

t

⎤
⎦ , (63)

and

s̃κ
ij = π�(14/3)ζ (11/3)T 8/3

3

∑
a={T8,Q}

Qa
i Qa

j Q
Q̃
i Q

Q̃
j

�aa
l �2/3

+ 2π5T 3

15

∑
a={T8,Q}

[
− Qa

i Qa
j Q

Q̃
i Q

Q̃
j(

�aa
t

)3/2 + Qa
i Qa

j QX
i QX

j

�aa
l

√
�XX

t + �XX
t

√
�aa

l

]
.

(64)

The term proportional to T 2 in sκ comes from the Q̃
interaction, while the terms proportional to T 3 in sκ and s̃κ

come from the screened interactions by the Q, T8, and X
bosons. The term proportional to T 8/3 is the cross term of
the Q̃ interaction and screened interactions in the scattering
matrix |Mij |2. As shown in [12], the Q̃-interaction term has a
lower power of temperature because of the Landau damping,
and it is the leading term at lower temperature. Using these
expressions in Eq. (60), we can solve for the τ κ

i in closed
form. These expressions are, however, lengthy, so we only
show results for αs = 1 and α = 1/137, expanding 1/τ κ

i to
order of T/μq to obtain

κbu � μ2
q

3

16.9

1 + 75.3(T/μq )2/3 + 3350(T/μq )
, (65)

κbd � μ2
q

3

0.0189

T/μq

, (66)

κe � μ2
q

3

20.0

1 + 29.9(T/μq )2/3 − 58.8(T/μq )
, (67)

FIG. 2. (Color online) Numerically calculated thermal conduc-
tivity in units of quark chemical potential μq in the 2SC phase with
αs = 1. In this temperature range we see the crossover from electron
domination at high temperature to blue down quark domination at
low temperature (see Sec. IV A).

which agree with the numerical results to within 11% for κbu,
6% for κbd , and 12% for κe at temperatures up to 10−3μq . In
the denominators of the expressions above for κi , we see terms
proportional to T 0, T 2/3, and T . The terms of order T 0 arise
from electromagnetic scattering of the relevant fermion by the
background of charged gapless fermions. This interaction is
mediated by Q̃ photons, and the power of T is determined by
the Landau damping of the transverse Q̃ photon propagator
as shown in Eq. (28). The terms of order T 2/3 arise from the
cross term of Q̃ and screened interactions in sκ and s̃κ , and
the terms of order T arise from the screened interactions in
sκ and s̃κ . We can now use these physical insights to obtain
analytic expressions for some of the numerical coefficients
in (65)–(67).

If we take the Q̃-interaction term and ignore the other terms
in sκ and s̃κ , then we can solve Eq. (60) for τ κ

bu and τ κ
e exactly.

For κe, from Eq. (58), we have

κe=μ2
eT

3

4π5T

9μ2
e

(
sκ
e,e + sκ

e,bu

) = 4π4

27ζ (3)

�2(
Q

Q̃
e

)4
� μ2

q

3

0.146

α
,

(68)

which gives the leading T 0 term in Eq. (67). For κbu, the same
approximation yields an expression similar to Eq. (68), but
this is not a good approximation at T/μq � 10−3 because the
coefficients of the higher-order terms of T/μq are large as we
can see in Eq. (65). This is because they arise from the strong
interaction. For κbd , the leading order for the denominator is
T , which comes from the screened T 8, X, and Q interactions,
but we can ignore the Q interaction because e/g is small. The
analytic solution then becomes

κbd = μ2
bdT

3

16π5T

9μ2
bd

(
sκ
bu,bd + 4sκ

bd,bd + 4s̃κ
bd,bd

) , (69)

with

sκ
bu,bd + 4sκ

bd,bd + 4s̃κ
bd,bd

= 2π5T 3

15

[(
Q

T8
bu

)2(
Q

T8
bd

)2 + 4
(
Q

T8
bd

)4

2
(
�

T8T8
l

)3/2
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+
(
QX

bu

)2(
QX

bd

)2 + 4
(
QX

bd

)4

4
(
�XX

t

)3/2

+ 4
(
Q

T8
bd

)2(
QX

bd

)2

�
T8T8
l

√
�XX

t + �XX
t

√
�

T8T8
l

⎤
⎦ ,

which gives Eq. (66). Therefore, the relevant scattering process
in leading order of T/μq for κe is between electrons and blue
up quarks via the Q̃ interaction, and the relevant scattering
process in leading order of T/μq for κbd is between bd and bu
quarks via the strong interactions.

The approximate temperature when κbd crosses κe can be
calculated from Eqs. (68) and (69):

κe

κbd

= sκ
bu,bd

/
4 + sκ

bd,bd + s̃κ
bd,bd

sκ
e,e + sκ

e,bu

� 7.73
α

1/2
s (T/μq)3

α(T/μq)2
,

(70)

which crosses unity at T/μq � α/(7.73 α
1/2
s ) � 10−3. The

factor of 7.73 is a numerical constant whose only physics
content is the charges of the fermions; it is independent of
e,g,μq , and T . As we anticipated, the thermal conductivity
is dominated by blue down quarks at lower temperature
because they do not have Q̃ charge and so do not feel the
long-ranged (Landau-damped) Q̃ interaction. Their relaxation
time is determined by the screened strong interactions, so the
total thermal conductivity in the 2SC phase goes as 1/T . This
behavior is different from unpaired quark matter, in which
the thermal conductivity has a constant value in the low
temperature limit because of the unscreened magnetic gluon
interaction (see Sec. VI).

E. Shear viscosity

For the shear viscosity, the transition described in Sec. IV A
occurs only at very low temperature, so, as we now demon-
strate, electrons dominate in most of the temperature range we
study. We have φ = pαvβ and γ = 5 in Eq. (44), which then
gives

ηi = τ
η
i

μ4
i

5π2
, (71)

where τ
η
i is the relaxation time for the fermion flavor i. To

calculate ηi using Eq. (48) in the limit ω 	 q and T 	 μq ,
we write

φ1 · [τ η
i (ψ1 − ψ3) + τ

η
j (ψ2 − ψ4)

]
= q2

2

(
1 − q2

4p2
1

)
τ

η
i

− q2

2
cos θ

√(
1 − q2

4p2
1

)(
1 − q2

4p2
2

)
τ

η
j . (72)

Using these two equations in Eq. (48), we have

1 = 9T

4π3

∑
j

μ2
j

μ2
i

(
τ

η
i s

η
ij + τ

η
j s̃

η
ij

)
, (73)

for each flavor i, where

s
η
ij =

∫ ∞

0
dω

(
ω/2T

sinh(ω/2T )

)2 ∫ qM

0
dq

×
∫ 2π

0

dθ

2π
|Mij |2q2

(
1 − q2

4p2
1

)
,

s̃
η
ij = −

∫ ∞

0
dω

(
ω/2T

sinh(ω/2T )

)2 ∫ qM

0
dq

∫ 2π

0

dθ

2π
|Mij |2q2

× cos θ

√(
1 − q2

4p2
1

)(
1 − q2

4p2
2

)
, (74)

which are both symmetric in exchanging i and j . We
numerically evaluate both s

η
ij and s̃

η
ij as functions of T/μq

using the same parameters used in the case of the elec-
trical conductivity. We then solve for the three relax-
ation times from the three equations in Eq. (73), and
we use τ

η
i μq in Eq. (71) to obtain ηi/μ

3
q . In Fig. 3

we show the temperature dependence of the shear vis-
cosity, and the best fits are ηbu/μ

3
q = 0.150/((T/μq )5/3 +

2490 (T/μq )2), ηbd/μ
3
q = 0.004 43/(T/μq )2, and ηe/μ

3
q =

0.171/((T/μq )5/3 + 2.78 (T/μq )2). We note these fits can be
extrapolated to arbitrary low temperature. We can see that the
electrons dominate in most of the temperature range we study,
but there is a transition to the bd-dominated regime at low
temperature, T � 2.2 × 10−5μq . In the temperature range of
Fig. 3, the blue up contribution to the total shear viscosity is
less than 0.8%.

We now derive approximate analytic expressions by assum-
ing that the momentum transfer is much less than the Fermi
momenta (q 	 μq). Then, as for the electrical conductivity,
we can obtain a closed form for sη and s̃η using Eq. (54). In
this limit, we have s

η
ij = sσ

ij in Eq. (55) and

s̃
η
ij = π3T

6

∑
a={T8,Q}

⎡
⎣ Qa

i Qa
j QX

i QX
j√

�aa
l +

√
�XX

t

+ Qa
i Qa

j Q
Q̃
i Q

Q̃
j√

�aa
l

⎤
⎦ .

(75)

FIG. 3. (Color online) Numerical calculation of shear viscosity
as a function of temperature, taking αs = 1. In this temperature range
we see the crossover from electron domination at high temperature
to blue down quark domination at low temperature (see Sec. IV A).
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Using s
η
ij and s̃

η
ij in Eq. (73), we can solve the three relaxation

times in closed form. These expressions are lengthy, so we
only show results for αs = 1 and α = 1/137, expanding 1/τ

η
i

to order of T (T/μq) to obtain

ηbd � μ4
q

5π2

0.111

T (T/μq)
, (76)

ηe � μ4
q

5π2

8.42

T (T/μq)2/3 + 5.56T (T/μq)
, (77)

which agree with the numerical calculations to within 50%
for ηbd and 18% for ηe at temperatures up to 10−3μq . As
pointed out by Heiselberg and Pethick [12], the shear viscosity
and the electrical conductivity vary as a different power of
temperature from the thermal conductivity, because they are
weighted by the momentum transfer rather than the energy
transfer. Consequently, the ratio ηbd/ηe becomes of order 1 at
T/μq ∼ 10−5 instead of 10−3 (70), so most of our temperature
range (shown in Fig. 3) is in the “high temperature” regime of
Sec. IV A.

We write down the analytic forms of the leading terms of
ηe and ηbd and identify the relevant scattering processes. For
ηe, we can obtain the leading order of T by performing an
analytic calculation of the Q̃ interactions alone. The solution
of Eq. (73) can then be simplified and becomes

ηe = μ4
e

5π2

4π3

9T
(
s
η
e,e + s

η
e,bu

)
= μ4

e

5π2

8π2�2/3

3�(8/3)ζ (5/3)T 5/3
((

Q
Q̃
e

)4 + (
Q

Q̃
e

)2(
Q

Q̃
bu

)2)
� μ4

q

5π2

0.002 31

α5/3T (T/μq)2/3
, (78)

which is Eq. (77) without the second term. This agrees with the
numerically calculated expression to 5% at T = 10−5μq and
30% at T = 10−3μq . For ηbd the relaxation time is determined
by the screened T 8, X, and Q interactions, but we can ignore
the Q interaction because e/g is small. The analytic solution
then becomes

ηbd = μ4
bd

5π2

16π3

9T
(
s
η
bu,bd + 4s

η
bd,bd + 4s̃

η
bd,bd

) , (79)

with

s
η
bu,bd + 4s

η
bd,bd + 4s̃

η
bd,bd

= π3T

6

⎡
⎣(

Q
T8
bu

)2(
Q

T8
bd

)2 + 4
(
Q

T8
bd

)4

2
√

�
T8T8
l

+
(
QX

bu

)2(
QX

bd

)2 + 4
(
QX

bd

)4

4
√

�XX
t

+ 4
(
Q

T8
bd

)2(
QX

bd

)2√
�

T8T8
l +

√
�XX

t

⎤
⎦ ,

which gives Eq. (76). Therefore, as in the case of the thermal
conductivity, the relevant scattering process in leading order
of T/μq for ηe is between electrons and blue up quarks via the
Q̃ interaction, and the relevant scattering process in leading

order of T/μq for ηbd is between bd and bu quarks via the
strong interactions.

The approximate temperature when ηbd becomes equal to
ηe can be calculated from Eqs. (78) and (79),

ηe

ηbd

= μ4
e

μ4
bd

s
η
bu,bd

/
4 + s

η
bd,bd + s̃

η
bd,bd

s
η
e,e + s

η
e,bu

� 0.331

24

α
3/2
s (T/μq)

α5/3(T/μq)2/3
, (80)

which crosses unity when T/μq � (24α5/3)3/(0.331α
3/2
s )3 ∼

10−5. The factor of 0.331 is a numerical constant whose
only physics content is the charges of the fermions; it
is independent of e,g,μq , and T . As noted above, this
crossover temperature is much lower than that for the thermal
conductivity given in Eq. (70). The reason is as follows. As
we reduce the temperature, the crossover occurs when the
Q̃ interaction becomes long ranged, so the electron mean
free path becomes short, suppressing the electron contribution
to transport relative to that of the Q̃-neutral bd quarks (see
Sec. IV A). However, shear viscosity and thermal conductivity
have different sensitivity to the increase in the range of the
Q̃ interaction. For shear viscosity the relevant collisions are
those that transfer higher momentum [this is related to the
weight of q2 in (74)], so the increase in the range of the Q̃
interaction only has a modest impact on the mean free path
because the long-range interactions involve low momentum
transfer, and do not contribute much to shear viscosity. For
thermal conductivity, the relevant collisions are those that
transfer energy (of order T typically), hence the weight of ω2

in (61), and even the low momentum transfer interactions are
able to do this. This means that as we reduce the temperature,
increasing the range of the Q̃ interaction, the contribution to
shear viscosity from electrons is only moderately suppressed
relative to that from bd quarks, whereas the contribution to
thermal conductivity from electrons is heavily suppressed
relative to that from bd quarks. Consequently, for shear
viscosity we have to go to much lower temperatures to
reduce the electron contribution to the same level as the bd
contribution.

V. VORTEX-FERMION SCATTERING CONTRIBUTION TO
THE TRANSPORT

If the 2SC core of a neutron star forms in the presence of
a magnetic field, it will be penetrated by the Q̃ component
of the field, but behave as a type-II superconductor with
respect to the X component, so the X flux is concentrated into
“color-magnetic” flux tubes [16]. It is not yet clear whether
these flux tubes are energetically stable, but in this section
we estimate their possible contribution to the transport via
scattering of ungapped fermions off the flux tubes. Because
the density of flux tubes is independent of temperature, but
the density of ungapped fermions decreases with T , flux-tube
scattering will eventually dominate the transport at sufficiently
low temperatures.

For a given transport coefficient ξ = {σ,κ,η} the relaxation
time τ

ξ
i of a fermion of type i is inversely proportional to
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the sum of the inverse relaxation times associated with the
different scattering channels:

1

τ
ξ
i

= 1

τ
ξ
i,v

+
∑

j

1

τ
ξ
ij

, (81)

where 1/τ
ξ
i,v and 1/τ

ξ
ij are the fermion-vortex and fermion-

fermion relaxation rates, respectively. To give a simple esti-
mate, we assume that the fermion-vortex and fermion-fermion
relaxation rates are decoupled, so

∑
j 1/τ

ξ
ij is simply the

inverse of the relaxation times which we have computed in
the previous section. It is then clear from this expression
that the fermion-vortex scattering process only increases the
total relaxation rate and thus only suppresses the transport
coefficient.

The vortex-fermion contribution was discussed in [16], and
here we give a brief explanation of the result. The X-flux
tubes have area density nv = B/�X, where �X = 6π/e. The
ungapped fermions will scatter off the color-magnetic flux
tubes via the Aharonov-Bohm effect. The cross section of the
Aharonov-Bohm scattering is proportional to sin2(πβ̃i)/μi ,
where β̃i is a measure of the Aharonov-Bohm interaction of
the fermion of type i with the X-flux tube. The bu quark and
the electron have the same factor sin2(πβ̃i) � π2α2/α2

s , while
for the bd quark this factor is zero [16]. Because the vortex
does not interact with the blue down quark, it does not affect
the blue down quark contributions to the transport coefficients.

Thermal conductivity. From the previous section, we
have found that the dominant contribution to the thermal
conductivity is from blue down quarks, which do not interact
with vortices. Therefore, the vortex scattering process only
suppresses the subdominant contributions and does not affect
the total thermal conductivity in the temperature range we have
considered in the previous section.

Electrical conductivity and shear viscosity. In the absence
of vortices, we have found in the previous section that the
dominant contribution to both the electrical conductivity and
the shear viscosity is from electrons, and the most relevant
interaction for the relaxation rate is the Q̃ interaction. From
Eqs. (49) and (57) for the electrical conductivity and from
Eqs. (71) and (78) for the shear viscosity, we can read off the
relaxation rates of the electron for the two transport coefficients
and write them as ∑

j

1

τ
ξ
e,j

= cξ α5/3 T 5/3

μ
2/3
q

, (82)

where ξ = {σ,η} and for each ξ , cξ is a numerical constant
of order 10, which depends on the charges of the fermions.
According to [16], the momentum relaxation rate for the
electron-vortex scattering is

1

τe,v

= π3/2α5/2

3α2
s

B

μe

. (83)

We expect, as is the case for the fermion-fermion relaxation
rates [12], that the electron-vortex relaxation rates for electrical
conductivity and shear viscosity are the same as the momentum
relaxation rate up to a constant of order 1. Electron-vortex
scattering becomes important when its rate (83) becomes

comparable to the fermion-fermion relaxation rate (82).
Taking αs = 1 and assuming typical chemical potential μq =
400 MeV and the lowest possible temperature in neutron stars
to be T = 107 K, we find that the ratio of the rates becomes
unity when the magnetic field reaches

B ∼ 1012 G

(
T

107 K

)5/3(
μq

400 MeV

)1/3

. (84)

From the above estimates, we conclude that the presence
of the vortices in realistic values of the external magnetic
field can lower the transport coefficients we have computed
in the previous section. Therefore, performing more complete
computations of transport coefficients with the presence of
vortices may be necessary if the vortex in the 2SC phase turns
out to be stable.

VI. CONCLUSIONS

We have calculated the electrical conductivity, thermal
conductivity, and shear viscosity of quark matter in the
2SC phase using the linearized Boltzmann equation in the
relaxation time approximation. We have relied on perturbation
theory and used the leading order in α and αs for the
scattering matrix element. For the numerical computations,
we have assumed that the energy transfer ω is much
smaller than the momentum transfer q (the static limit)
and have taken the leading order in ω/q. In the tempera-
ture range 10−5 < T/μq < 10−3, this approximation is good
because the characteristic energy transfer is temperature, while
the characteristic momentum transfer is the Debye screening
mass. The results are shown in Figs. 1–3 for αs = 1. For
physical insight, we have obtained approximate analytic results
by further assuming that the momentum transfer is much
smaller than the quark chemical potential, q 	 μq . For the
electrical (57) and thermal (69) conductivities, the analytic
results of the leading fermion contributions agree with the
numerical results of the leading fermion contributions to within
22% and 6%, respectively. For the shear viscosity, the leading
(electron) contribution (77) agrees with the numerical result
of the leading fermion contribution to within about 18% over
the relevant temperature range.

The general picture of transport in the 2SC phase is
that it occurs via the ungapped fermions, which are the
blue up quark, the blue down quark, and the electron.
The electron contribution dominates at higher temperature
because electrons do not feel the strong interaction, only
the electromagnetic interaction, and so have longer relaxation
times than the ungapped quarks. However, at low temperature
the Q̃ interaction becomes long ranged because it is Landau
damped (not Meissner screened), and this compensates for
its small inherent coupling. The Q̃-neutral blue down quark
therefore dominates transport at low temperatures, because its
interactions, although strong, are screened.

Thermal conductivity. The crossover from blue-down to
electron domination occurs at T/μq ∼ α/7.7 ∼ 10−3, so most
of the temperature range of interest for neutron stars is in the
blue-down-dominated regime where κ ∼ 1/T .

Shear viscosity. The crossover from blue-down to electron
domination occurs at T/μq ∼ 10−5, so electrons are dominant
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down to T ∼ 10 keV. The crossover temperature for the shear
viscosity is much smaller than for the thermal conductivity
because the relevant collisions for shear viscosity are those
that transfer higher momentum, so the increase in the range of
the Q̃ interaction has a smaller impact on the mean free path
because the long-range interactions involve low momentum
transfer. See the end of Sec. IV E.

Electrical conductivity. This is a special case because the
transported quantity is Q̃ charge, so the blue down quarks,
which are Q̃ neutral, do not contribute to the electrical
conductivity. The electron contribution therefore dominates
over the entire temperature range.

Other possible excitations that might contribute to the
transport coefficients include the color-magnetic flux tubes and
gluons in the unbroken gauge sector. Flux tubes are discussed
in Sec. V, where we have argued that at sufficiently low
temperature and high magnetic field, the vortex-fermion scat-
tering via the Aharonov-Bohm effect may suppress the electron
contributions to the electrical conductivity and shear viscosity.

We now argue that SU (2)rg gluons do not contribute to the
transport coefficients in 2SC quark matter. The glue sector
of the unbroken SU (2)rg gauge theory has a confinement
scale �′

QCD which may be in the keV range, or as high as
about 10 MeV and a coupling α′

s � (παs/2)1/2�/μq which is
smaller than αs because of the partial screening of the Cooper
pairs [7]. If T 	 �′

QCD then the gluons are confined into
glue balls with mass of order �′

QCD , so their contributions
to transport are exponentially suppressed. If T � �′

QCD then
the theory is deconfined, and the gluons can contribute to
the transport coefficients. From dimensional analysis, we
can estimate that the SU (2) gluon contributions to the
thermal conductivity and the shear viscosity are κglue ∼ T 2/α′2

s

and ηglue ∼ T 3/α′2
s where 1/α′2

s comes from the scattering
amplitude of the gluons. Comparing the gluon contributions
with the blue down quark contributions for αs = 1 [see
Eqs. (69) and (79)], we have κglue/κbd ∼ (T/μq)3(μq/�)2 and
ηglue/ηbd ∼ (T/μq)5(μq/�)2, which are both much less than
1 because T/μq � 10−3 and μq/� < 2μq/μe � 3.5 for 2SC
quark matter (see end of Sec. II A). The electrical conductivity
has a contribution from the gluons because, like the blue up
quark, they carry a Q̃ charge arising from their color T8 charge.
However, dimensional analysis shows that their contribution
is σglue ∼ e2T/α′2

s , which is also negligible compared to the
electron contribution (57).

It is interesting to compare our results with the transport
properties of two-flavor unpaired quark matter. Transport in
unpaired quark matter is dominated by electrons and their
electromagnetic scattering off gapless quarks. This is because
there is no Meissner screening of the gluons; they are Landau
damped like the photon, so both gluon and photon interactions
become long ranged at low temperature, and there is no
crossover to a regime where short-ranged strong interactions
dominate transport. We therefore expect that the transport
coefficients of unpaired two-flavor quark matter are similar
to those we calculated as the electron contribution to 2SC
quark matter [(57), (68), and (78)]. The electron contributions
to the transport coefficients of unpaired quark matter can
be easily computed. After performing calculations similar to
those in Sec. II, we can show that the transverse component

of the photon self-energy and the electron chemical potential
in unpaired quark matter are 2.34iω�2/q and 0.219μq ,
respectively. Note that the chemical potential of the electron
in unpaired quark matter is smaller than in 2SC quark matter.
Using these values in (57), (68), and (78), we find the
electron contributions to the transport coefficient in unpaired
quark matter are 0.0070σe, 1.7κe, and 0.022ηe. The electrical
conductivity and shear viscosity are much smaller because
of their μe dependance. We conclude that the electrical
conductivity and shear viscosity, which are dominated by
electrons, have similar expressions in 2SC quark matter and
unpaired two-flavor quark matter in the temperature range that
we studied. However, the thermal conductivity of 2SC matter is
dominated by bd quarks, and rises as μ3

q/T at low temperature,
whereas in unpaired two-flavor quark matter it is dominated
by electrons and tends to a constant value of order μ2

q . It is an
interesting future project to compute the transport properties
of unpaired quark matter numerically and give more rigorous
comparison with 2SC quark matter.

One natural generalization of our results would be to
analyze the 2+1 flavor case, where strange quarks help
to ensure neutrality, and μe is much smaller and depends
on the strange quark mass. This will affect the dominance
of electrons. Another application would be a more careful
treatment of two-flavor and two-plus-one-flavor unpaired
quark matter (to our knowledge, only three-flavor unpaired
quark matter was treated in the literature [12] and it is a special
case because of the absence of electrons). One could then go
on to study applications of these results to the observables
on neutron stars. Shear viscosity plays an important role in
the spin-down behavior of neutron stars because it is one of
the dissipation mechanisms that damps “r modes.” Without
sufficient damping, r modes would arise spontaneously in
fast-spinning neutron stars, spinning them down via emission
of gravitational radiation [31,32]. Thermal conductivity is the
key microscopic quantity that controls macroscopic thermal
transport and equilibration in the dense cores of young (less
than a few hundred years old) isolated neutron stars and
in accreting transient x-ray sources. Hybrid compact stars
with 2SC matter may relax thermally on time scales that are
different from those of their hadronic counterparts and this
can be tested observationally. Finally, electrical conductivity
of 2SC matter determines the time scale for the decay of
the component of magnetic field which is not frozen in the
color-magnetic flux tubes. Addressing this problem requires
(in addition to conductivities of various phases) knowledge of
the large-scale structure of the magnetic field and, therefore,
the current distribution within the star. The putative decay of
the magnetic fields can be tested, for example, with the models
of secular evolution of pulsars in the p-ṗ diagram.
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