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We obtain leading- and next-to-leading-order predictions of chiral perturbation theory for several prominent
moments of nucleon structure functions. These parameter-free results turn out to be in overall agreement with
the available empirical information on nearly all of the considered moments, in the region of low momentum
transfer (Q2 < 0.3 GeV2). Especially surprising is the situation for the spin polarizability δLT , which thus far
was not reproducible in chiral perturbation theory for proton and neutron simultaneously. This problem, known
as the “δLT puzzle,” is not seen in the present calculation.
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I. INTRODUCTION

The recent advent of muonic hydrogen spectroscopy [1]
is probing the limits of our understanding of the nucleon’s
electromagnetic structure. The unveiled discrepancy in the
charge radius value between probing the nucleon with
muons [1,2] or electrons [3,4] is only 4%, but is of great
statistical significance (5 to 8 standard deviations) at the
current level of precision. Interestingly enough, the accuracy of
both muonic-hydrogen and electron-scattering measurements
is limited by the knowledge of subleading effects of nucleon
structure, entering through the two-photon exchange (TPE).
The main aim of our present studies is to provide predictions
for these contributions from first principles using a low-energy
effective-field theory of QCD, referred to as the baryon chiral
perturbation theory (BχPT); see, e.g., [5].

In this endeavor we are primarily concerned with the
doubly-virtual Compton scattering (VVCS) process which
carries all the nucleon structure information of the TPE.
Unitarity (optical theorem) relates the imaginary part of the
forward VVCS amplitude to nucleon structure functions, and
then the use of dispersion relations allows one to write the
low-energy expansion of VVCS in terms of moments of
structure functions [6]. The low-energy expansion of VVCS
can, on the other hand, be directly computed in χPT. Of course,
not all of the moments enter the low-energy expansion of
VVCS: either only odd or only even ones do, depending on
the structure function. Here we shall present the leading-order
(LO) and next-to-leading-order (NLO) BχPT predictions for
the following moments:
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and F1,2, g1,2 are respectively the unpolarized and polarized
inelastic structure functions, which depend on the photon
virtuality Q2 and the Bjorken variable x = Q2/(2MNν), with
MN the nucleon mass and ν the photon energy; x0 corresponds
with an inelastic threshold, such as that of a pion production;
α is the fine-structure constant.

These moments have already been the subject of intense
experimental studies [7–13], including an ongoing experimen-
tal program at Jefferson Laboratory [14,15]; see Ref. [16]
for a review. The first four moments have the interpretation
of generalized nucleon polarizabilities [6], d̄2 at high Q2

represents a color polarizability [17] or a color-Lorentz
force [18], IA is the generalized GDH integral, and �1 is the
Bjorken integral.

II. RESULTS AND DISCUSSION

We have computed the VVCS amplitude to next-to-next-
to-leading order (NNLO) in the χPT expansion scheme with
pion, nucleon, and 	(1232) degrees of freedom, where the
	-nucleon mass difference 	 = M	 − MN � 300 MeV is
an intermediate small scale, viz., the “δ expansion” [19,20].
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FIG. 1. One-πN -loop graphs contributing to Compton scattering at O(p3). Graphs obtained from these by crossing and time reversal are
not shown, but are evaluated too.

This allows us to obtain the LO [i.e., O(p3)] and NLO [i.e.,
O(p4/	)] contributions to the moments listed above. The
diagrams we needed to evaluate these two orders are shown
in Figs. 1 and 2 respectively. Their detailed description can be
found in Ref. [21], where they are worked out for the case of
real Compton scattering, i.e., Q2 = 0. The extension to VVCS
done in this work is rather tedious and will be discussed
elsewhere [22]. Here we only note that the extension to
finite Q2 for the 	-isobar contributions, arising here at NLO,
follows closely Ref. [23]; in particular, the magnetic γN	
coupling gM , entering the first graph of Fig. 2, acquires a dipole
form factor. Further details are available in a MATHEMATICA

notebook in Ref. [24]. As in [21], there are no free parameters
to fit at these orders, hence this calculation is “predictive.”

The resulting predictions for the moments of interest are
shown in Table I for Q2 = 0, and in Figs. 3–6 as functions
of Q2. In the figures, the LO BχPT is given by the red solid
curves, while the complete result, including the NLO and the
uncertainty estimate (cf. Ref. [23]), is given by the blue bands.

In all the plots, the black dotted curves represent the empirical
evaluation using the 2007 version of the Mainz online partial-
wave analysis of meson electroproduction (MAID) [25,26].
Some of the plots contain data points described in the legends.
Other curves represent previous χPT evaluations, as will be
discussed further.

The scalar polarizabilities of the proton and the neutron are
shown in Fig. 3. Here the blue dashed lines denote the LO
of heavy-baryon (HB) χPT. It exactly corresponds with the
static-nucleon approximation of the LO BχPT. Given the large
differences between the two (HB vs B: blue dashed vs red solid
lines), we conclude that the static-nucleon approximation does
not work well in any of these cases. The HB result happens
to be in remarkable agreement with the data at Q2 = 0, but
much less so at finite Q2. Furthermore, the agreement is lost
in HB when the 	 resonance is included [34], whereas the
relativistic result leaves the room for a natural accommodation
of the 	 contribution [21]. Comparing the LO and NLO BχPT
results, we see that the 	 contributions are very significant in

FIG. 2. Graphs contributing at O(p4/	). Double lines denote the propagator of the 	 isobar. Graphs obtained from these by crossing and
time reversal are evaluated too.
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TABLE I. The NLO BχPT predictions for the forward VVCS
polarizabilities (at Q2 = 0) compared with the available empirical
information. Where the reference is not given, the empirical number is
provided by the MAID analysis [25,26], with unspecified uncertainty.

Proton Neutron

This work Empirical This work Empirical

αE1 + βM1 15.12(82) 13.8(4) 18.30(99) 14.40(66)
(10−4 fm3) Ref. [27] Ref. [28]
αL 2.31(12) 2.32 3.21(17) 3.32
(10−4 fm5) [MAID] [MAID]
γ0 − 0.93(5) −1.00(8)(12) 0.05(1) −0.005
(10−4 fm4) Ref. [8] [MAID]
δLT 1.35(7) 1.34 2.20(12) 2.03
(10−4 fm4) [MAID] [MAID]

the combination αE1 + βM1, but not in αL. It is known that the
	(1232) is not as easily excited by longitudinal photons as it
is by magnetic ones; see, e.g., [20].

The spin polarizabilities γ0 and δLT are shown in Fig. 4.
These quantities deserve a more extensive discussion since
they were traditionally hard to reproduce in χPT. In the case
of δLT this problem became known as the “δLT puzzle.” Obvi-
ously our complete result (blue bands) is in a reasonable agree-
ment with the empirical information, so where is the problem?

The δLT puzzle was first observed in the HB variant of
χPT [31,33,34], which invokes an additional semi-relativistic
expansion, in the inverse nucleon mass. Evidently, this ex-
pansion works poorly for these quantities; compare the HB

(blue dashed) curves, which only for δLT are within the scale
of the figure, with the corresponding BχPT calculation (blue
bands). First attempts to go beyond HB were done in the
infrared-regularized (IR) version of BχPT [35], which has an
incorrect analytic structure (unphysical branch cuts), leading
to results shown by the red bands [32]. Having the relativistic
result with unphysical analytic structure obviously did not
solve the problem—the disagreement of the red bands with
the data or the MAID is too large.

More recently, a first BχPT calculation has appeared [30],
shown by the grey bands in the figure. As one can see, for γ0

it works much better than the HB and IR counterparts. In the
lower panel, it seems to resolve the δLT puzzle for the neutron,
albeit at the expense of introducing it for the proton. Indeed,
despite having presently no experimental data for the proton,
we anticipate them to follow closely to the MAID result, shown
by the black dotted line. Again, δLT would not be reproduced
simultaneously for the proton and neutron.

In contrast, the present calculation (blue bands) shows no
puzzle in either the proton or the neutron, and hence the
question of what exactly is the difference between the two
BχPT calculations is to be addressed. At the level of πN
loops they are equivalent, however the inclusion of the 	
isobar is done in different counting schemes: “δ counting”
here vs the “small-scale expansion” in Ref. [30]. In the latter
case, more graphs with 	 are included, particularly those with
photons coupling to the 	 in the loops. They are the only
good candidates to account for the difference between the two
calculations. We have checked that our result for the 	-isobar
contribution to δLT agrees with the expectation from the MAID
analysis, where a separate estimate of this contribution can be
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FIG. 3. (Color online) Scalar polarizabilities of proton and neutron. Red solid lines and blue bands represent, respectively, the LO and NLO
results of this work. Blue dashed line is the LO result in the HB limit. Black dotted lines represents the empirical result of MAID2007 [26].
The data points at Q2 = 0 correspond with Refs. [27] and [28] (red and purple points, respectively) for the proton, and [28] for the neutron.
The data point in the left upper panel at Q2 = 0.3 GeV2 is from Ref. [29].
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FIG. 4. (Color online) Generalized spin polarizabilities of proton and neutron. Red solid lines and blue bands represent, respectively, the
LO and NLO results of this work. Black dotted lines represent MAID2007. Grey bands are the covariant BχPT calculation of Ref. [30]. The
blue dashed line is the O(p4) HB calculation [31], off the scale in the upper panels. The red band is the IR calculation [32]. The data points for
the proton γ0 at finite Q2 are from Ref. [7] (blue dots), and at Q2 = 0 from [8] (purple square). For the neutron all the data are from Ref. [9].

obtained. The corresponding effect in Ref. [30], measured by
the difference between the grey and red curves in the figure for
δLT of the proton, is about an order of magnitude larger and
has an opposite sign.

We next turn to IA and d̄2 moments shown in Fig. 5. The
LO result here (red solid line) is already in agreement with

the experimental data where available. Going to NLO (i.e.,
including the 	) does not change the picture qualitatively
in our BχPT calculation (blue bands). The effect of the 	 is
appreciably larger again for the proton in the BχPT calculation
of Bernard et al. [30] (grey bands). The O(p4) HBχPT result
without explicit 	’s (blue dashed lines) is in disagreement
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FIG. 5. (Color online) Generalized GDH integral and inelastic part of the d2 moment. The legend is the same as in the previous figure,
except for the O(p4) HB result (blue dashed line) which here is from Ref. [33], and the data points which are from Ref. [10] for IA and Ref. [11]
for d̄2.
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FIG. 6. (Color online) Left panel: I1 = (2M2
N/Q2) �1 for the proton. Right panel: isovector part of the Bjorken integral. Legend for the

curves is as in Fig. 4. Data points for I
p
1 are from [7], for �

p−n
1 from [12] (squares) and [13] (dots).

with the experimental data, and in worse agreement with the
empirical picture from MAID.

Note that by means of the GDH sum rule, IA(0) = −κ2/4,
with κ the anomalous magnetic moment of the nucleon. The
χPT calculations are (at Q2 = 0) fixed to this value due
to renormalization, while in the MAID evaluation it comes
out differently. This difference can perhaps serve as a rough
uncertainty estimate of the MAID evaluation.

The last moment in Eq. (1), �1, is the first Cornwall-Norton
moment of the inelastic spin structure function g1, i.e., the
inelastic part of the Bjorken integral. The isovector (proton
minus neutron) combination for this moment is shown in the
right panel of Fig. 6. Here the HBχPT, the previous [30] and
the present BχPT calculations compare fairly well with the
experimental data of Refs. [12,13]. The MAID analysis is in
worse agreement.

In the left panel of Fig. 6 we show I1 = (2M2
N/Q2)�1 for the

proton. Here the discrepancy of the BχPT calculations with the
experimental data is most appreciable. At Q2 = 0, this quantity
is expressed in terms of the anomalous magnetic moment of
the proton: I

p
1 (0) = I

p
A (0) = −κ2

p/4. The empirical result of
MAID is not entirely consistent with this constraint, just as in
the case of IA. However it is consistent with experimental data,
leaving one to wonder whether in either of them the integral
I1 is evaluated accurately.

III. CONCLUSION

We conclude by making the connection to the charge radius
problem mentioned in the beginning. In a recent paper [5]
we presented the leading-order predictions for the proton
polarizability effect in the Lamb shift of muonic hydrogen.
It is based on the same BχPT framework and the same
VVCS amplitude as the present work. The magnitude of the
effect turned out to be in agreement with models based on
dispersion relations, but not with the results of HBχPT [36,37]

which indicate a substantially larger effect. Given that the
longitudinal response of the nucleon is predominant in the
atoms, we focus on the polarizabilities αL and δLT and
observe that the difference between B and HB χPT results
is substantial indeed (cf., lower panels in Figs. 3 and 4). It
is especially large in the scalar polarizability αL which is
relevant to the Lamb shift; the spin polarizability δLT may
only affect the hyperfine splitting. Thanks to the available
empirical information, provided by the MAID analysis, we
conclude that the longitudinal response of the nucleon is
largely overestimated in HBχPT.

In overall the BχPT predictions presented here are in good
(within 3 standard deviations) agreement with the empirical
information on the moments of nucleon structure functions.
The most appreciable disagreement of the present BχPT
calculation with experiment is observed in the integral I1.
For the first time, the spin polarizability δLT is reproduced
for both the proton and the neutron within a parameter-free
(predictive) χPT calculation, thus potentially closing the issue
of the “δLT puzzle.” The latter statement relies of course on the
empirical results of MAID for the proton δLT . The forthcoming
measurement at Jefferson Laboratory is expected to provide
the data for that observable, hence putting to the test the MAID
and present χPT results.
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