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Multipole solution of hydrodynamics and higher order harmonics
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The time evolution of the medium created in heavy ion collisions can be described by hydrodynamical models.
After expansion and cooling, the hadrons are created in a freeze-out. Their distribution describes the final state
of this medium. In particular their azimuthal asymmetry, characterized by the elliptic flow coefficient v2, is one
of the most important observables in heavy ion physics. In recent years it has been revealed that, if measuring
relative to higher order event planes �n, higher order flow coefficients vn for n > 2 can be measured. This is due
to initial state fluctuations, previously not described by analytic solutions of relativistic hydrodynamics. In this
paper we show the first solutions that utilize higher order asymmetries and thus yield realistic vn flow coefficients.
It is a clear consequence of this that different flow patterns may lead to the same observed flow coefficients. We
also compare our results to PHENIX measurements and determine a possible parameter set corresponding to
these data.
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I. INTRODUCTION

It is well known that the medium created in high energy
heavy ion collisions can be described with perfect fluid
hydrodynamics; in particular the soft hadron production
can be successfully compared to hydrodynamic models [1].
Exact solutions provide an analytic handle on the connection
between the initial state, the dynamic parameters of the
system, and the observables. Usually elliptical symmetry is
assumed in the transverse plane [2], as this is simple to
handle and represents geometries that yield realistic results
for spectra, Bose-Einstein correlation functions, and elliptic
flow. However, nuclei contain a finite number of nucleons,
are thus not exactly spherically symmetric, and their overlap
region also fluctuates on an event-by-event basis. This results
in an event-by-event fluctuating initial condition, and gives rise
to nonzero high order flow coefficients, with respect to higher
order reaction planes [3–5]. This was successfully reproduced
in numerical hydrodynamical calculations in Refs. [6,7] and
more recently in Refs. [8,9].

In this work we show the first exact analytic solutions of
relativistic hydrodynamics that assume higher order asym-
metries. An important point of our work is giving explicit
examples of analytic flow patterns leading to realistic higher
order flow coefficients. Our paper is organized as follows.
First we give a short introduction to relativistic perfect
fluid hydrodynamics. In the following section we describe
our new solution, its properties, and its relations to known
solutions. Then we present model results on observables,
such as transverse momentum spectra and angular anisotropy
coefficients (or harmonics) vn. Finally we show a comparison
of our results to PHENIX measurements of Ref. [3].

II. PERFECT FLUID HYDRODYNAMICS

In this manuscript we adopt the following notation: ε is
energy density, p is pressure, n (if present) is the density of
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a conserved charge and σ is entropy density. Moreover, gμν

is the metric tensor, diag(−1,1,1,1), while xμ = (t,rx,ry,rz)
is a given point in space-time (sometimes, for the sake of
simplicity, denoted by x without superscript), τ = √

t2 − r2

is the coordinate proper time, ∂μ = ∂
∂xμ is the derivative versus

space-time, while pμ = (E,px,py,pz) is the four-momentum
(also sometimes denoted by p without superscript). The
equations of hydrodynamics then are

∂μ(nuμ) = 0, (1)

∂νT
μν = 0. (2)

The fluid is perfect if the energy-momentum tensor T μν

is diagonal in the local rest frame, i.e., viscosity and heat
conduction are negligible. This can be assured if T μν is
chosen as

T μν = (ε + p)uμuν − pgμν. (3)

If there are no conserved charges in this perfect fluid, another
local conservation equation may be written: that of entropy
density σ .

An analytic hydrodynamical solution is a functional form
for uμ, ε, p and n or σ , which solves the above equations.
These quantities are also subject to the equation of state (EoS),
which closes the set of equations. Usually ε = κp is chosen,
where κ may depend on temperature T , and solutions with
temperature dependent κ were found in Ref. [10]. In this paper,
however, we use a solution with constant κ . It is important
to see that in this case κ = 1/c2

s , with cs being the speed
of sound. Temperature can then be defined based on entropy
density, energy density, and pressure. An important result for
hydrodynamic models is that, because hadrons are created
at the quark-hadron transition, hadronic observables do not
depend on the initial state or the dynamical equations (equation
of state) separately, just through the final state [11].

There was a long search for exact solutions of relativistic
hydrodynamics, and only a few applicable ones were found.
The first exact solutions of relativistic hydrodynamics were
described by Landau and collaborators, calculating momentum
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distributions of produced particles in high energy collisions
from the theory of locally thermalized and relativistically
expanding fluids [12,13]. These solutions were given in an
implicit form. The first exact and explicit solutions were found
by Hwa [14] and later, independently by Bjorken [15]. A
unified description of these models was found in Ref. [16]
and extended to general 1+1 dimensional relativistic flows in
Refs. [17,18]. Another one-dimensional (1D), longitudinally
expanding explicit relativistic solution has been found in
Ref. [19], generalized later to axial symmetry in 3D [20]
and ellipsoidal symmetry as well [2]. Other multi-dimensional
solutions of relativistic hydrodynamics were given in
Refs. [21–24]. However, a realistic elliptic flow could not
have been calculated from most of these models (except the
one mentioned in Ref. [25]), let alone higher order azimuthal
asymmetries. In the next section we report the first exact
analytic solution of relativistic hydrodynamics that yields
higher order asymmetries with measurements.

III. MULTIPOLE SOLUTIONS

Let us start from the solution given in Ref. [2], a (1+3)D
relativistic solution with realistic (nonspherically symmetric)
geometry. Here the thermodynamical quantities are (at a given
proper time) constant on the surfaces of an expanding ellipsoid,
defined by the s scale variable,

s = r2
x

X2
+ r2

y

Y 2
+ r2

z

Z2
, (4)

where rx , ry , rz are the spatial coordinates, while X, Y , Z are
the time dependent axes of the ellipsoid. The velocity profile
is given as

uμ = γ

(
1,

Ẋ

X
rx,

Ẏ

Y
ry,

Ż

Z
rz

)
, (5)

where Ẋ = dX/dt and similarly for Y and Z.
If the comoving derivative of s vanishes, i.e., uμ∂μs = 0,

then we can construct a hydrodynamical solution with s being
its scaling parameter. For the above equation to be fulfilled,
we need Ẋ, Ẏ , Ż = constant. If we choose X = Ẋt , Y = Ẏ t ,
Z = Żt , then with τ = √

xμxμ we get

uμ = xμ

τ
, (6)

with xμ being the space-time coordinates and τ the coordinate
proper time.

The thermodynamic quantities are then given with an
arbitrary ν(s) scale function as

n(x) = nf

(
τf

τ

)3

ν(s), (7)

T (x) = Tf

(
τf

τ

)3/κ 1

ν(s)
, (8)

p(x) = pf

(
τf

τ

)3+3/κ

, (9)

where n(x) is the number density of a conserved charge (if
any), T (x) is temperature, p(x) is pressure, and constants

are normalized via pf = nf Tf . Parameters with the index
f are values of the given quantity at the freeze-out (and if
the quantity has also spatial dependence, then in the center
of the fireball), in particular τf is the freeze-out proper time,
when hadronization occurs. Note that this solution (and any
other of κ = const type) can be written up for the entropy
density σ (x) instead of n(x) identically [10]. This means that
here σ (x) = σf (τf /τ )3ν(s) can be taken, and n(x) shall not
be used, if there are no conserved charges in the system.

Let us now show how the above known solution can be
extended to multipole symmetries. First, let us consider a 1+2
dimensional case. If we rewrite the scale variable s [given in
Eq. (4)] to polar coordinates (with x = r sin φ, y = r cos φ)
we get

s = r2

R2
[1 + ε cos(2φ)] , where (10)

1

R2
= 1

X2
+ 1

Y 2
and ε(t) = X2 + Y 2

X2 − Y 2
, (11)

i.e., R is the average system size and ε the eccentricity. As
X and Y are time dependent, ε may also depend on time.
However, if X and Y are both proportional to time, this
dependence cancels and ε(t) = ε remains constant. The above
formula for s can be generalized to higher order symmetries:

s = rN

RN
[1 + ε(t) cos(Nφ)] , (12)

where N is the order of the symmetry. To visualize this, we
show a heat map of s values for several different N values in
Fig. 1.

With the s given in Eq. (12), we can derive a new solution:

uμ(x) = γ

(
1,

Ṙ

R(t)
r cos φ,

Ṙ

R(t)
r sin φ

)
, (13)

n(x) = nf

(
γRf

R(t)

)2

ν(s), (14)

T (x) = Tf

(
γRf

R(t)

)2/κ 1

ν(s)
, (15)

p(x) = pf

(
γRf

R(t)

)2+2/κ

, (16)

ε2=0.8 ε3=0.5 ε3=0.4

FIG. 1. (Color online) Heat map of s values in the transverse
plane for the N = 2,3,4 solutions, respectively. If the temperature
is a monotonic continuous function of s, then this is homomorphic
with the actual temperature distribution of the solution.
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where τf is again freeze-out proper time, R(t) = ut t (i.e.,
Ṙ = ut = const being the expansion velocity), Rf = utτf ,
γ = 1√

1−r2Ṙ2/R2
, and ut is a transverse expansion velocity,

while ε = constant. In this case we obtain a Hubble-flow
profile, as

γRf

R(t)
= τf

τ
(17)

and uμ = xμ/τ . Note again, that instead of n(x), σ (x) can be
written up the same way, if there are no conserved charges.

This solution can be generalized to 1+3 dimensions
multiple ways. We may choose cylindrical coordinates (r,φ,z),
and add a zN/RN term to s:

s = rN

RN
[1 + ε cos(Nφ)] + zN

RN
, (18)

uμ(x) = xμ

τ
, (19)

n(x) = nf

(
τf

τ

)3

ν(s), (20)

T (x) = Tf

(
τf

τ

)3/κ 1

ν(s)
, (21)

p(x) = pf

(
τf

τ

)3+3/κ

. (22)

We get another solution in spherical coordinates if we write
s as

s = rN

RN
[1 + εa cos(Nφ)(1 − cos(Nθ )) + εb cos(Nθ )] , (23)

where εa and εb are eccentricities in different planes. There are
many other type of scale variables possible, and it turns out that
there is a relatively high level of freedom in the choice of scale
variables, as it was already mentioned in Ref. [2]. They indicate
that any F (r2

x /t2,r2
y /t2,r2

z /t2) function provides a valid scaling
variable. Our solution falls in a somewhat more general class,
where the scaling variable is given as s = F (x/t,y/t,z/t),
with an arbitrary F function works [the square has to be
dropped, as in case of odd N ’s, cos(Nφ) is not a function
of r2

i /t2 but of ri/t].
We may also combine several symmetries with different

N ’s via

s =
∑
N

rN

RN
{1 + εN cos[N (φ − ψN )]} (24)

with ψN being the N th order reaction planes (which cancel
from the observables). This way we get new solutions with
almost arbitrary shaped initial distributions; see Fig. 2. It is
important to note here that although the initial state fluctuation
in the observed collision is present through the orientation of
the N th order reaction planes and the strength of higher order
asymmetries, the event plane orientation itself does not affect
the measured quantities. Thus if every vN is measured relative
to the N th order reaction plane, then the (event-through-event)
averaged value of vN will correspond to an average n-pole
anisotropy εN . Note also that our solution, presented above,
contains flow patterns belonging to a special class of initial

ε2=0.8, ε3=0, ε4=0 ε2=0.8, ε3=0.5, ε4=0 ε2=0.8, ε3=0.5, ε4=0.4

FIG. 2. (Color online) Heat map of s values in the transverse
plane, with multiple superimposed symmetries. The more εN compo-
nents are included, the more asymmetric the shape gets.

conditions, defined by the energy density profile and Hubble
flow. In a realistic scenario, initial conditions contain more
sophisticated inhomogeneities in the density distributions, and
velocity distributions are also more complicated. Our paper’s
goal is, however, to explicitly show flow patterns (exact hydro
solutions) that describe multipole expansions and lead to
realistic observable flow asymmetries. To arrive at this goal,
let us calculate observables from our solutions.

IV. OBSERVABLES

Similarly to Ref. [25], we use a freeze-out (FO) scenario
in which the pre FO medium is described by hydrodynamics,
and the post FO medium is that of observed hadrons. In our
framework we assume that the freeze-out happens at a given
proper time, e.g., due to a self-quenching effect or if the phase
space evolution is that of a collisionless gas. Thus there is no
jump in the equation of state post- and pre-FO, i.e., κ goes
to κfree smoothly, to the EoS of free hadrons. In this case the
hadronic observables can be extracted from the solution via
the phase-space distribution at the FO. This will correspond to
the hadronic final state or source distribution S(x,p). We also
do not need to fix a special equation of state, because the same
final state can be achieved with different equations of state or
initial conditions [11]. Thus in this paper κ is arbitrary—the
hadronic observables do not restrict its value. Based on the
above, the source distribution takes the following form:

S(x,p)d4x = g

(2π )3
n(x)e−pμuμ(x)/T (x)H (τ )pμd3�μ(x)dt,

(25)

where g is the degeneracy factor of the given particle species,
H (τ ) is the proper-time probability distribution of the FO
(assumed to be a delta distribution), the exponential with
the temperature stems from the Boltzmann–Jttner-distribution,
and d3�μ(x) is the vector measure of the freeze-out hypersur-
face (which gives the Cooper-Frye flux factor, if multiplied by
pμ). If the freeze-out is a delta distribution at a given τ , this
vector measure can be given as uμd3x

u0 . Finally, our distribution
is

S(x,p)d4x = g

(2π )3
n(x)e−pμuμ(x)/T (x)δ(τ − τf )

pμuμ

u0
d4x,

(26)
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where T (x), uμ(x), and n(x) are defined by the hydrodynamic
solution. From this, observables can be calculated via integrals:

N1(p) = E
d3n

d3p
=

∫
S(x,p)d4x, (27)

N1(pt ) = dn

2πptdpt

∣∣∣∣
y=0

= 1

2π

∫ 2π

0
N (p)|pz=0 dα, (28)

where p = (pt sin α,pt cos α,pz) is the three-dimensional mo-
mentum, pz its longitudinal and pt its transverse component,
while α is its angle in the transverse plane. We restrict ourselves
to midrapidity observables, so we use pz = 0 (or rapidity
y = 0), and define transverse momentum flow coefficients as
follows:

vn(pt ) =
1

2π

∫ 2π

0 N (p)|pz=0 cos(nα)dα

N1(pt )
= 〈cos(nα)〉. (29)

Let us now calculate the integral of Eq. (27). If we choose a
scale function of exponential form, exp(−bs) (i.e., the fireball
is the hottest in the center and has a spatially Gaussian profile)
we get

N1(pt ) ∝
∫

ν(s) exp

[
pt cos(α − φ) − Et

τTf

ν(s)

(
τf

τ

)− 3
κ

]

× δ(τ − τf )
τ

t

Et − rpt cos(α − φ)

τ
d4x dα. (30)

Now let us make an integral transformation from t to τ ; then
the result is

N1(pt ) ∝
∫

ebs exp

⎡
⎣ rpt cos(α − φ) − E

√
τ 2
f + r2 + z2

τf Tf e−bs

⎤
⎦

×
E

√
τ 2
f + r2 + z2 − rpt cos(α − φ)

τ 2
f + r2 + z2

× rτf dr dφ dz dα. (31)

Values for vn(pt ) can be calculated similarly, as defined in
Eq. (29).

Let us analyze the results from this model. Parameters
other than higher order anisotropies (εn) can be taken from
Ref. [25], as summarized in Table I. Note that azimuthally
integrated observables are not sensitive to the anisotropies of
this model, so spectra and HBT with parameters from Table I
are compatible with PHENIX 200 GeV Au+Au data, as results

TABLE I. Typical values and meaning of model parameters.
Values were partly taken from Ref. [25].

Variable Typical value Meaning

Tf 200 MeV central freeze-out temperature
ut 0.6 transverse expansion
b 0.08 ∼temperature gradient
τf 7.7 fm/c freeze-out proper time
ε2 0.50 elliptic eccentricity
ε3 0.25 triangular eccentricity
ε4 0.08 quadrupole eccentricity

 0

 0.1

 0.2

 0.3 (a) ε2=0.6   ε3=0   ε4=0

v2v3v4

 0

 0.1

 0.2

 0.3

0 1 2pt [GeV]

(b) ε2=0   ε3=0.3   ε4=0

FIG. 3. (Color online) Curves for v2, v3, v4 with only ε2 �= 0 are
shown in the top panel (a), while for ε3 �= 0 only are shown in the
bottom panel (b). Clearly there is no “interference” between odd and
even harmonics.

from this model are the same as from those in Ref. [25]. We
calculated vn for n = 2,3,4 with only one εn �= 0. Clearly the
odd and even harmonics don not “mix”; i.e., if only ε3 �= 0
then only v3 �= 0, however, ε2 gives rise to a nonzero v2 and
v4. See results in Fig. 3.

In Fig. 4 we investigate the parameter dependence of the
results of this model for vn(pt ). We vary one parameter, and
fix the rest to values from Table I. In this model, ut and b
have a strong effect on the vn coefficients. In the Ref. [25],
model results only depend on u2

t /b, but with the scale variable
s used here, terms in s depend on uN

t /b factors for various N
values. Thus the vn parameters depend here on both b and ut .
This dependence is, however, strongly coupled, as we will see
later on.

V. DATA COMPARISON

In this section we compare our results to PHENIX data
on higher order harmonics measured in 200 GeV Au+Au
collisions [3]. Fit parameters of the model are εN (for N =
2,3,4), ut , and b (Tf and τf were fixed to values given from
spectra and HBT comparisons of a similar model, described
in Ref. [25]). However, there was a strong correlation between
b and the other parameters. We scanned the parameter space
for lowest χ2 values, but found only a weak dependence on
b itself: this parameter yielded approximately the same curve
for b ∈ [0.05,0.2], and this resulted in a systematic error for
the other parameters coming from uncertainty of the b value.
This explicitly shows that different flow patterns (different
parameters of our solution) may lead to the same observables.
Model fits are shown in Fig. 5. Around pt = 2 GeV, nonhydro
effects start to play an important role, thus we did not fit
data points above this value. Model parameters from the fit
are summarized in Table II. It is important to note that even
though higher order flow coefficients arise from event-by-event
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 0.1

 0.2

 0.3

2

(a)

b=0.06
b=0.08

b=0.1

3

(b)

b=0.06
b=0.08

b=0.1

4

(c)

b=0.06
b=0.08

b=0.1

0.1

0.2

0.3

(d)

ut=0.5
ut=0.6
ut=0.7

(e)

ut=0.5
ut=0.6
ut=0.7

(f)

ut=0.5
ut=0.6
ut=0.7

0.1

0.2

0.3

0 1 2pt [GeV]

(g)

Tf=170 MeV
Tf=200 MeV
Tf=230 MeV

0 1 2pt [GeV]

(h)

Tf=170 MeV
Tf=200 MeV
Tf=230 MeV

0 1 2pt [GeV]

(i)

Tf=170 MeV
Tf=200 MeV
Tf=230 MeV

FIG. 4. (Color online) The v2, v3, v4 coefficients at different values of b [panels (a)–(c)], Tf [panels (d)–(f)], and ut [panels (g)–(i)]. The
other, fixed parameters were taken from Table I.

 0.05

 0.1

 0.15 (a) 0-10%
PHENIX v2
PHENIX v3
PHENIX v4

(b) 10-20%

0.5 1 1.5 2 2.5
pt [GeV/c]

(c) 20-30%

0.05

0.1

0.15

0.2

0.5 1 1.5 2 2.5
pt [GeV/c]

(d) 30-40%

0.5 1 1.5 2 2.5
pt [GeV/c]

(e) 40-50%

FIG. 5. (Color online) Fits to PHENIX 200 GeV Au+Au data [3] in five centrality bins. Fit parameters are summarized in Table II. It is
important to note that many set of parameters (and thus many different flow patterns) lead to the same observed vn values, and a large set of
observables (or constraints on the initial conditions, as done for numerical calculations) are needed to determine model parameters.
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 0

0.2

0.4

0.6

0.8

 0 10 20 30 40 50

centrality [%]

ut
ε2
ε3
ε4

FIG. 6. (Color online) Model parameters from data fit to
PHENIX 200 GeV Au+Au data [3], as a function of centrality. The
systematic error band comes from the correlation with b; see caption
of Table II. Note that if b depends on centrality (which is a realistic
scenario) then of course ut would also show a more pronounced
centrality dependence. However, based on the available data, this
ambiguity cannot be resolved.

fluctuations, an average triangular or quadrupole anisotropy
can be extracted from the data this way. This extraction is
somewhat ambiguous, however, due to the correlation of b
and ut parameters. Also note that we did not vary parameters
that were fixed based on Ref. [25]—these would introduce
even more ambiguity, and more data are needed to fix them
(as done in [25]).

VI. SUMMARY

The goal of this paper was to expand the scope of
analytic relativistic hydrodynamics to higher order azimuthal

TABLE II. Model parameters (with statistical errors) from data
fit to PHENIX 200 GeV Au+Au data [3]. Parameter b (governing the
temperature gradient) is strongly correlated to the other parameters,
so only a confidence interval could have been given for it. However,
it affects the value of the other parameters, and this results in a
systematic uncertainty of them. This is around 17% for ut , 27%
for ε2, 8% for ε3, and 9% for ε4 (independently of centrality). The
magnitude of this systematic error is visualized in Fig. 6.

0–10% 10–20% 20–30% 30–40% 40–50%

ut (‰) 740 ± 3 765 ± 2 781 ± 2 787 ± 2 774 ± 3
ε2 (‰) 175 ± 2 330 ± 2 473 ± 3 571 ± 4 621 ± 6
ε3 (‰) 99 ± 2 136 ± 2 165 ± 2 180 ± 3 182 ± 4
ε4 (‰) 44 ± 2 69 ± 2 96 ± 3 111 ± 5 125 ± 12
b 0.05–0.2

symmetries, compatible with realistic (event-by-event fluctu-
ating) geometries. This was achieved through finding a scale
variable of suitable symmetries, through which thermody-
namic quantities depend on spatial coordinates. A new exact
analytic solution of relativistic hydrodynamics was found this
way, for a special class of initial conditions. Higher order flow
observables (vn’s) were then calculated from this model, and
their model parameter dependence was investigated. It was
also found that different flow patterns may lead to the same
observed vn values. Finally, we gave a set of parameters with
which our solution is found to be compatible with PHENIX
data.
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