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Influence of electronic environment on α decay
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The influence of atomic and conductivity electrons in the metal matrices on the α-decay rate is analyzed.
The Coulomb interaction of inner atomic electrons and free electrons with the nuclei is treated in the adiabatic
approximation and as a shake-off process, respectively. The role of conductivity electrons is analyzed in the
framework of strict collision theory. Simple formulas are derived for the exponential tunneling probability P in the
approximation of a short tunneling path compared to characteristic electronic dimensions. It is shown that the pre-
exponential factor in the decay rate depends on the energy absorbed by electrons during decay, whereas P is inde-
pendent of it. The half-life of the nucleus surrounded by electrons is a bit larger (∼1%) than that of the bare nucleus.
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I. INTRODUCTION

Influence of nuclear decay on the surrounding electrons as
well as the opposite influence of the electrons on the nuclear
processes have been analyzed in many papers. Migdal [1] and
Feinberg [2] have been the first to predict the excitation of
the inner atomic electrons by sudden alteration of the nuclear
charge following its β decay. The most detailed description
of such shake-off effect for the K and L electrons has been
provided in Ref. [3] and that of the conductivity electrons
of metals in Ref. [4]. Note that weakly bound electrons are
mainly ejected from the crystal after sudden nuclear decay.
Our theory [4] successfully reproduced the low-energy peak
in the electron emission spectrum, which has been observed
by Kovalik et al. [5]. Kondratyev and Bonasera [6], treating
excitation of the conductivity electrons due to the electron
capture or internal conversion, took into account exponential
time dependence of the perturbation operator rather than the
stepwise one used in the shake-off approach.

Another interesting phenomenon takes place in the op-
posite case when the influence of electrons on the nuclei is
investigated. In particular, in ionized atoms with free electron
levels there were discovered such effects as the bound internal
conversion (BIC) (see, e.g., the review [7]) as well as the
bound β decay [8,9], which may drastically change the nuclear
half-life or even open the decay channels, being forbidden in
neutral atoms by the energy conservation law. In a number
of nuclei the nuclear excitation by electron transition (NEET)
(see, e.g., Ref. [10]) was observed. The most complete theory
of NEET is presented in Ref. [11], and its peculiarities in hot
plasma are discussed in Ref. [12]. Influence of the electron
screening on the Coulomb excitation of nuclei in hot plasma
has been analyzed also in Ref. [13].

Numerous experiments on cold fusion (see, e.g.,
Refs. [14–16]) were successfully explained by the idea that
the electronic screening of the Coulomb potential barrier leads
to its narrowing and, as a consequence, facilitates penetration
of charged particles through the barrier.

In recent years there has been intensive discussion con-
cerning the role of the electronic environment in the β and α
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decay of the nuclei. Specifically, it was found experimentally
that the half-life for the electron capture of 7Be is longer by
0.8% [17], whereas it is 1.2% shorter for the β+ of 22Na [18]
and 4.0% longer for the β− of 198Au [19], when these nuclei
were embedded in the metals cooled to T = 12 K (see also the
review [20]).

As to the α decay half-life, Erma [21] predicted its decrease
owing to atomic electrons. Using the plasma Debye model of
the electronic screening, Kettner et al. [22] again suggested
huge acceleration of the α decay of nuclei embedded in a
metal cooled to low temperatures. Such a possibility, which
could have great advantages in the processing of radioactive
wastes, was verified in many experiments. Raiola et al. [23]
reported results of the experiment on the α decay of 210Po
(Eα = 5.30 MeV, T1/2 = 138 d) located in copper. They found
the half-life of 210Po to be shorter by 6.3 ± 1.4% at T = 12 K
than that at room temperature. These optimistic results have
been further confirmed by Dong et al. [24], who observed
already 24 ± 8% decay acceleration of the 210Po located inside
Bi at T = 4.2 K. But all other experiments [24–28] on nuclei
210Po, 221Fr, 253Es, 224Rn, and 225Ra, embedded in different
metallic matrices, revealed no changes of their half-lives T1/2.
Recently Pöml et al. [29] again declared that T1/2 of 210Po
implanted in a copper matrix at T = 293 K and T = 4.2 K
remains the same.

It may seem that the conductivity electrons in metals are
not significant since their energies are ∼1 eV, while for the
emitted α particles Eα ∼ 1 MeV. However, like protons, they
carry the unit charge and therefore the electron cloud near
the nucleus may considerably distort the nuclear Coulomb
potential barrier. Such a potential in the weak screening
approximation is written in the form [30]

V (scr)
c (r) = Vc(r)e−r/rs , (1)

where Vc(r) = 2(Z − 2)e2/r is the barrier produced by a
bare nucleus and rs represents the screening length. Within
the barrier, where the tunneling path of α particle is much
shorter than the screening radius rs , the potential (1) may be
approximated by the difference

V (scr)
c (r) ≈ Vc(r) − Ue, (2)
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where the screening energy Ue = 2(Z − 2)e2/rs . Such a
representation of the potential is completely equivalent to
replacement of the energy E by E + Ue with unchanged
potential Vc(r). At first glance, this facilitates the α tunneling.

Zinner [31] noted that the binding energy of the α particle
inside the parent nucleus, surrounded by electrons, lowers
by the same quantity Ue, which compensates increasing
of E. At the same time, the next expansion term of the
screening exponent gives small positive correction to Vc(r).
Such corrections due to bound atomic electrons were analyzed
earlier in Ref. [32]. In both these papers the screening was
shown to provide small inhibition of the α decay but not its
acceleration, but in both calculations the role of the kinetic
energy of electrons has not been accounted for.

Contrary to Ref. [31], Patyk et al. [33] tried to compensate
the screening energy by the difference of the binding energies
of electrons in the fields of the parent and daughter nuclei (see
Eq. (8) of Ref. [33]). In doing so they predicted acceleration
of the α decay by surrounding electrons.

A more correct approach to the atomic electrons has
been proposed by Karpeshin [34]. He described the decay
process in the adiabatic approximation, using the fact that
inner atomic electrons are much swifter than the emitted α
particle. However, a number of details, such as the role of
the recoil nucleus and applicability of the proposed monopole
approximation, remained unclear.

In determining the temperature effect of the screening by
conductivity electrons in metals, all authors for the screening
length used the Debye-Hückel classical formula

rD =
√

kBT

4πe2n0
, (3)

where n0 is the average density of conductivity electrons. It
is worth noting, however, that this formula has been derived
in the high-temperature (weak coupling) approximation [35],
when the ratio

eϕp(r)/kBT � 1, (4)

where ϕp(r) = Ze/r is the potential of the parent nucleus. On
the contrary, along the tunneling path of the α particle the ratio
(4) is of the order of 106. Thus, the condition (4) is terribly
violated and the Debye model cannot be exploited in the task
about the screened α decay.

The Thomas-Fermi quasiclassical model, which in this
respect looks much better, predicts the screening radius

rTF =
√

εF

6πe2n0
, (5)

where εF is the Fermi energy of electrons.
But there is one more shortcoming peculiar to both models

at small distances. Namely, the exponential screening (1) is
provided by the electronic charge distribution [13]

ρe(r) = −
(

Ze

4πr2
s

)
1

r
e−r/rs , (6)

which divergences as r → 0.
Therefore in this paper I suggest a straightforward descrip-

tion of the screening by conductivity electrons in metals.

I describe such electrons by plane waves scattered by the
radioactive defect in a crystal. By using the scattering theory
I find the complete electron wave functions and respectively
the charge density ρe(r). It allows me to find the electric field
created by the electron cloud and corresponding distortions of
the nuclear Coulomb field.

The analysis of the effect of inner atomic electrons on the
α decay is also given in more detail than in Ref. [34]. In
particular, simple formulas are derived for the corrections to
the effective potential barrier “seen” by the α particle.

In all previous papers it was assumed that the electrons may
affect only the exponential tunneling probability through the
Coulomb barrier. In the quasiclassical (WKB) approximation
I show below that the pre-exponential factor also depends on
the electronic environment.

II. α DECAY OF BARE NUCLEI

First I consider the α decay of a bare nucleus. It will give the
opportunity to introduce some designations and to understand
further the role of the electron environment. As usually the
center-of-mass coordinate system of the parent nucleus is
used. Let it have the charge and mass numbers Z and A.
The interaction VB(r) of the α particle with a bare nucleus in
the range of the nuclear forces is approximated by a square
potential well with the depth −V0 and radius R, so that

VB(r) =
{−V0, 0 � r < R,
Vc(r), r > R,

(7)

where r = rα − Rd is the radius vector of the relative motion
of the α particle and the daughter nucleus (d) (VB(r) is drawn
in Fig. 1). Following Ref. [36] I approximate R by a sum of
the α particle and the daughter nucleus radii:

R = r0[(A − 4)1/3 + 41/3], (8)

where the parameter r0 = 1.22 fm.
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FIG. 1. Sketch of the α-decay energies. Drawn are the potential
energy of the relative motion of the α particle and a bare daughter
nucleus VB(r) (full line) and the effective potential energy for the
nucleus “dressed in the electron cloud” Veff(r) (dashed). The Q and
E = Q − �Q are the corresponding kinetic energies at infinity, and
�Q is a part of the nuclear energy absorbed by electrons.
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The Hamiltonian of the nuclear system ĤB in the α channel
takes the form

ĤB(r) = Ĥ (α)
in + Ĥ (d)

in − �
2

2μ
�r + VB(r), (9)

where Ĥ (α)
in and Ĥ (d)

in are the Hamiltonians for intrinsic motion
of the α particle and the daughter nucleus, respectively, and
μ = MdMα/(Md + Mα) is their reduced mass with Mα and
Md being the masses of the α particle and the d nucleus.
The eigenvalue of the operator (9), corresponding to ground
states of the constituents, will be (Md + Mα)c2 + E, where
E is the kinetic energy of their relative motion. It is related
to the kinetic energy of the emitted α particle Eα by E =
[1 + Mα/(Md + Mα)]Eα . From the energy conservation law
it follows that for the nucleus free of electrons

E = Q, (10)

where the nuclear energy release Q = (Mp − Md − Mα)c2

with Mp standing for the mass of the parent nucleus.
The α decay rate is usually written as [36]

λ = νsP, (11)

where ν is referred to as the assault frequency of the α particle
on the potential barrier and s as the preformation probability.
The tunneling probability through the barrier Vc(r)

PB = e−2S(E) (12)

depends on the action determined by the well-known WKB
formula [36,37]

S(E) = 1

�

∫ b

R

√
2μ(Vc(r) − E)dr, (13)

where the outer turning point b = 2(Z − 2)e2/E.

III. BASIC EQUATIONS

Now a more careful analysis of the problem, taking into
account the electronic environment, will be provided. I follow
a conventional description of the atoms, where the electrostatic
energy for interaction between the nucleus and electrons is
treated as a potential energy, entering the Schrödinger equation
for electrons.

While free electrons with the energies ∼1 eV are moving
slowly compared to the α particle, the inner electrons of the
atom with characteristic energies ∼10 keV may be treated as a
fast subsystem with respect to this particle. Thus, the velocities
of free electrons v′

e, α particle vα and internal atomic electrons
ve satisfy the inequality

v′
e � vα � ve. (14)

In the α channel the Hamiltonian of the whole system
(nuclei + bound electrons of the radioactive atom embedded
in the metal + free electrons) is represented by the following
sum:

Ĥ = ĤB(r) + Ĥa(re,r) + Ĥfe(r′
e,r), (15)

where Ĥa(re,r) and Ĥfe(r′
er) are respectively the Hamiltonians

of the atomic electrons and free electrons of the conductivity
band with coordinates re and r′

e.

The first of them is given by

Ĥa(re,r) = K̂e + Vint(re,r), (16)

where K̂e is the kinetic energy operator of the electrons and

Vint(re,r) = −
∑

e

(
(Z − 2)e2

|re − Rd | + 2e2

|re − rα|
)

(17)

is the Coulomb interaction of electrons with the nuclei.
The second operator will be

Ĥfe(r′
e,r) = K̂e + Ucr(r′

e) + Vint(r′
e,r), (18)

where Ucr(r) represents a periodical crystal field.
The wave function which describes the initial state of the

system is

�i = gpφ(0)
a (re)χ (0)(r′

e), (19)

where gp describes the initial state of the parent nucleus
and the factors φ(0)

a (re) and χ (0)(r′
e) are the eigenfunctions of

the operators Ĥ (0)
a (re) = Ĥa(re,0) and Ĥ

(0)
fe (r′

e) = Ĥfe(r′
e,0),

respectively. Specifically, for free electrons

Ĥ
(0)
fe (r′

e)χ (0)(r′
e) = εχ (0)(r′

e). (20)

The corresponding energy of the system equals

Ei = Mpc2 + Ea + ε, (21)

where Ea represents the initial energy of atomic electrons and
ε the initial energy of all electrons of the conductivity band. At
r → ∞ one easily finds the eigenvalue of the operator (15),
i.e., the final energy Ef of the whole system:

Ef = (Md + Mα)c2 + E′
a + ε′ + E, (22)

where E′
a = Ea + �Ea and ε′ = ε + �ε are the final energies

of bound and free electrons, respectively. From the energy
conservation law Ef = Ei , it follows that

E = Q − �Q, (23)

where the energy absorbed by electrons

�Q = �Ea + �ε. (24)

In view of the inequality (14) emission of the α particles
may be treated as a shake-off process with respect to slow
conductivity electrons [4]. As a result, during the α decay the
wave function of free electrons χ (0)(r′

e) remains the same, so
that the wave function of the whole system in the α channel is

�f = gdgα�(re,r)χ (0)(r′
e), (25)

where gd and gα describe intrinsic motion of the daughter
nucleus and the α particle, and the factor �(ri ,r) describes the
atomic electrons coupled to the nucleus and α particle.

The function (25) satisfies the Schrödinger equation

Ĥ�f = Ei�f , (26)

where the final energy Ef is replaced by Ei having the same
value. By multiplying both sides of Eq. (26) on the left by
χ (0)(r′

e)∗, then integrating over r′
e and taking into account
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Eq. (20), one arrives at the equation for the factor �:{
− �

2

2μ
�r + VB(r) + Ĥa(re,r) + δε(r)

}
�(re,r)

= (Q + Ea)�(ri ,r), (27)

which contains an additional potential energy of the α particle

δε(r) = 〈χ (0)|δV (r′
e,r)|χ (0)〉, (28)

where

δV (r′
e,r) = Vint(r′

e,r) − Vint(r′
e,0). (29)

Equation (27) can be solved in the adiabatic approximation
(see, e.g., Ref. [38]), when the function � is looked for as a
product

�(re,r) = φa(re,r)ψα(r), (30)

where the atomic wave function φa(re,r) depends on r as on the
parameter. First by fixing the coordinates of the α particle, i.e.,
omitting its kinetic energy operator, the Schrödinger equation
for fast atomic electrons is solved:

Ĥa(re,r)φa(re,r) = Ea(r)φa(re,r). (31)

Next the energy Ea(r) serves as an additional potential energy
in the following equation for the function ψα(r):{

− �
2

2μ
�r + Veff(r) − Q

}
ψα(r) = 0, (32)

where the effective potential energy

Veff(r) = VB(r) + δEa(r) + δε(r). (33)

Here I introduced the notation δEa(r) = Ea(r) − Ea .
When r → ∞, the effective potential approximates the

constant �Q. Then Eq. (32) reduces to

− �
2

2μ
�rψα(r) = Eψα(r) (34)

with the kinetic energy E as a difference of Q and �Q. Thus,
again Eq. (23) is derived.

It is clear that the tunneling probability Pat of the α particle
through such an effective potential barrier is determined by the
same formula (12) but with the action

Seff(E) = 1

�

∫ beff

R

√
2μ(Veff(r) − Q)dr (35)

with the outer turning point beff determined by the equation
Veff(beff) = Q.

The potential energy can be determined with the accuracy
up to arbitrary constant. Therefore one can replace the effec-
tive potential by the potential V (r) = Veff(r) − �Q, which
everywhere is lower than Veff(r) and tends to zero at infinity
(see also Ref. [31]).

IV. ROLE OF ATOMIC ELECTRONS

At small r it is convenient to rewrite the operator Ĥa(re,r)
as

Ĥa(re,r) = Ĥ (0)
a (re) + δV (re,r), (36)

where the perturbation δV is given by Eq. (29) with
r′
e → re. It is convenient to rewrite it as a sum of two

terms

δVα(re,r) = −2e2
∑

e

(
1

|re − r| − 1

re

)
(37)

and

δVd (re,r) = −(Z − 2)e2
∑

e

(
1

|re − Rd | − 1

re

)
, (38)

associated with the α particle and the daughter nucleus,
respectively.

The energy shift δEa(r) may be calculated in the first order
of the perturbation theory,

δEa(r) = 〈
φ(0)

a (re)
∣∣δV (re,r)

∣∣φ(0)
a (re)

〉
, (39)

on the eigenfunctions φ(0)
a (re) of the unperturbed operator Ĥ (0)

a .
It is done by applying the multipole expansion

1

|re − r| =
∞∑

L=0

rL
<

rL+1
>

PL(cos θ ). (40)

I use the fact that the tunneling path of α particle is much
shorter than the radii of the electronic orbits, b � a0/Z, where
a0 = �

2/me2 is the Bohr radius. This allows me to calculate
δEa(r) in the lowest order of the small parameter ξ = Zb/a0.
The monopole term of the expansion for δVα(re,r) takes the
form

δVα(re,r) ≈ −2e2
∑

e

(
1

r
− 1

re

)
θ (r − re), (41)

where the Heaviside step function

θ (x) =
{

1, x > 0,
0, x < 0.

(42)

The value of δEa(r) should be calculated in narrow region
R � r � beff, where only the s-electrons have considerable
density. Inserting their relativistic radial wave functions
fns(r), gns(r), given in Ref. [39], and the operator (41) in
the Eq. (39) one has

δEa(r)s = −4e2
∑
nr

∫ r

0

(
1

r
− 1

re

)(
f 2

ns(re) + g2
ns(re)

)2
r2
e dre,

(43)

where the radial quantum number nr runs the values 0,1, . . . ,
and the principal quantum number n = nr + 1. At re → 0 the
s-wave functions behave as

f 2(re)s + g2(re)s ∼ r2γ−2
e , (44)

where

γ =
√

1 − α2Z2 (45)
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and α = e2/�c ≈ 1/137 is the fine-structure constant. By
means of such functions one finds

δEa(r)s =
∑
nr

�(2γ + nr + 1)

�(2γ + 1)�(2γ + 2)γ nr !

× n2
r+(N+1)2−2nr (N+1)ε

N (N + 1)

(
2Z

Na0

)2γ+1

e2r2γ ,

(46)

where �(z) is the � function,

N =
√

1 + n2
r + 2γ nr, ε = 1√

1 + (
αZ

γ+nr

)2
. (47)

Here the following property of the � functions is used:

�(z + 1) = z�(z). (48)

Similar to the case of internal conversion, the main effect here
is due to K electrons, for which Eq. (46) simplifies as

δEa(r)1s = 2

�(2γ + 2)γ

(
2Z

a0

)2γ+1

e2r2γ . (49)

For r � beff the δEa(r)s calculated above is of the order ξ 2γ .
The next terms of the expansion (40) with L > 0 and r > re

are omitted because they produce a correction of higher order
in ξ .

Let us consider now the region r < re. The expansion terms
−2e2rL

∑
e PL(θe)/rL+1

e of (37) with L = 1,2 might be most
important. However, their averaging on filled electronic shells
|j lm〉 gives nothing since

〈j lm|YL0(θϕ)|j lm〉 ∼
l∑

μ=−l

〈Ylμ(θϕ)|YL0(θϕ)|Ylμ(θϕ)〉 = 0,

(50)

where m = μ + σ , while μ and σ are projections of the orbital
angular momentum and spin of the electron on the quantization
axis. As to the terms L > 2, they are too small due to the
inequality ξ � 1.

The multipole expansion for the operator δVd (re,r), pro-
vided by recoil of the daughter nucleus, is also reduced to the
monopole term

δVd (re,r) = −(Z − 2)e2
∑

e

(
1

Rd

− 1

re

)
θ (Rd − re), (51)

where the displacement of the daughter nucleus Rd =
Mαr/(Md + Mα). It can be shown that its contribution into
δEa(r) is of the order of (Z − 2)(Mα/Md )2 � 1 and hence
will be neglected.

Since δEa(r) is always positive, the effective potential
barrier in “dressed” atomic nuclei becomes higher than the
Coulomb barrier of bare nuclei, which leads to reduction of
the tunneling probability, Pat < PB. The relative change of
the corresponding tunneling probabilities is defined by the
parameter [34]

Y = PB/Pat − 1. (52)

By using Eq. (49) I calculated Y1s for those nuclei, which
have been analyzed previously by Karpeshin [34] and Patyk

TABLE I. Reduction of the α decay rate (in %) due to atomic
electrons calculated in Refs. [33,34] and here.

Nucleus Z Q(MeV) [34] [33] Y1s �R
144Nd 60 1.905 0.24 −1.6 0.10 0.76

214Rn 86 9.208 0.02 0.03 0.30
222Rn 86 5.59 −0.6 0.09 0.53
222Rn 86 6.39 −0.5 0.03 0.42
226Ra 88 4.871 0.23 0.26 0.81
252Cf 98 6.217 0.28 0.35 0.85
241Es 99 8.320 0.12 0.17 0.55
210Po 84 5.42 0.13 0.57
212Po 84 8.95 −0.3 0.03 0.30
147Sm 62 2.31 −1.4 0.002 0.58
148Sm 62 1.99 −1.6 0.002 0.67
213Fr 87 6.91 −0.5 0.03 0.40
220Fr 87 6.80 −0.5 0.03 0.41

et al. [33]. My results as well as those of Refs. [34] and [33]
are presented in Table I. Note that Patyk et al. [33] calculated
the ratio δλ/λ ≈ −Y , and therefore all positive values of δλ/λ
given in Ref. [33] are listed here with the negative sign.

V. ROLE OF CONDUCTIVITY ELECTRONS

I undertake here a tedious but straightforward analysis
of the screening by the conductivity electrons. They will be
treated in the framework of the simplest model as independent
particles moving in the rectangular potential well, whose
volume V = L3 coincides with the volume of the crystal
(see Ref. [37]). These electrons are described by the functions
|q〉 = V −1/2eiqr′

e , where the components of the wave vectors
q run discrete values 2πn/L (n is an integer), imposed by the
periodic boundary conditions. The conductivity electrons are
scattered by a local potential well

Va(r) = −Ze2

r
e−r/rs , (53)

created by the radioactive defect. Here the screening is ensured
mainly by a dense cloud of the bound atomic electrons, whose
characteristic radius according to the Thomas-Fermi model is
ra = a0Z

−1/3 [40]. Therefore following Ref. [13] I set rs = ra .
The incident wave |q〉 gives rise to a scattered spherical

outgoing wave. So the complete wave function of such an
electron will be V −1/2ψ+

q (r′
e), where the function ψ+

q (r′
e) may

be written as an expansion in terms of the partial waves (see,
e.g., [41]),

ψ+
q (r′

e) = 4πileiδl (q)
∞∑
l=0

l∑
m=−l

Fl(qr ′
e)

qr ′
e

Y ∗
lm(ϑ,ϕ)Ylm(θ,φ),

(54)

where ϑ,ϕ and θ,φ are spherical angles of the vectors q and
r′
e, respectively, and δl(q) is the phase shift for the lth partial

wave. The radial function Fl(x) with x = qr ′
e satisfies the

Schrödinger equation

d2Fl(x)

dx2
−

[
l(l + 1)

x2
+ 2η

x
g(x) − 1

]
Fl(x) = 0, (55)
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where the screening factor

g(x) = exp(−x/x0), x0 = qra, (56)

the dimensionless Coulomb parameter

η = −mZe2

�2q
, (57)

and m is the electron mass.
When x � 1 the radial function

Fl(x) ≈ Cl(q)xl+1, (58)

where Cl(q) is the amplitude of the wave. In the opposite case,
when x � x0 and the screened Coulomb potential vanishes,

Fl(x)/x ≈ cos δl[jl(x) − tan δlnl(x)], (59)

where jl(x) and nl(x) are the spherical Bessel and Neumann
functions, respectively [41]. The equation (55) with the
boundary condition (59) has been solved numerically by
iterations (for some details, see Ref. [13]).

The wave function of all the conductivity electrons
χ (0)(r′

e) is a properly symmetrized product of the functions
V −1/2ψq(r ′

e). By substituting them into Eq. (7) and performing
the statistical averaging over the conductivity band one has

δε(r) = −4e2

V

∑
q

ν̄(q)〈ψ+
q |1/|r − r′

e| − 1/r′
e|ψ+

q 〉, (60)

where

ν̄(q) = 1

e(ε(q)−μ)/kBT + 1
, (61)

is the Fermi-Dirac distribution, ε(q) = �
2q2/2m is the electron

kinetic energy, and μ is the chemical potential. In Eq. (60) I
took into account that every level q can be occupied by two
electrons with different spin projections.

The summation over q in Eq. (60) is replaced further by
integration:

1

V

∑
q

→
∫

dq
(2π )3

. (62)

As a result, the crystal volume V disappears.
Note that Vint(r′

e,r), defined by Eq. (17), is the potential
energy of the α particle in the point r with the instanta-
neous electric potential created by the conductivity electrons
−e

∑
e 1/|r − re|. Then one can rewrite Eq. (60) as

δε(r) = 2e[ϕe(r) − ϕe(0)], (63)

where ϕe(r) is the field averaged over the electron distribution

ne(r) = 1

4π3

∫
dqν̄(q)|ψq(r)|2. (64)

Inserting here the expansion (54) and using the equality

l∑
m=−l

|Ylm(θ,φ)|2 = 2l + 1

4π
, (65)

one has

ne(r) = 1

π2

∫ ∞

0
dqν̄(q)

∞∑
l=0

(2l + 1)
F 2

l (qr)

r2
. (66)

The potential ϕe(r) is related with the spherically symmetric
electron distribution by

ϕe(r) − ϕe(0) = 4πe

∫ r

0

dr ′

r ′2

∫ r ′

0
[ne(r ′′) − n0]r ′′2dr ′′. (67)

Having extracted here the average electron density n0 we
impose the boundary condition ϕe(∞) = 0 (otherwise ϕe(r)
diverges at r → ∞). The Eq. (67) can be verified by substitu-
tion ϕe(r) in the Poisson equation

�ϕe(r) = 4πe[ne(r) − n0]. (68)

Numerical calculations show that the Fermi distribution can
be replaced by its value corresponding to T = 0. The resulting
error is of the order of the ratio kBT /εF , being much less than
unity at room temperature. Thus, the final expression for δε(r)
takes the form

δε(r) = 8e2

π

∫ qF

0
dq

∫ qr

0

dy

y2

∫ y

0
dx

×
{ ∞∑

l=0

(2l + 1)F 2
l (x) − 1

3

(
qF

q

)2

x2

}
, (69)

where the Fermi vector qF is related to the average electron
density by [37]

qF = (3π2n0)1/3. (70)

From here the energy shift �ε = δε(∞) can be immedi-
ately obtained . For 210Po solved in copper with density of the
conductivity electrons n0 = 8.48 × 1022 cm−3 and the Fermi
energy εF = 7 eV I got �ε = 0.96 keV.

The correction to the effective potential barrier δε(r) at
r � b is ensured mainly by s wave. In this case Eq. (69)
reduces to

δε(r) = 4π

3
e2[ne(0) − n0]r2, (71)

where ne(0) stands for the electron density at the nucleus:

ne(0) = 1

π2

∫ gF

0
C2

0 (q)q2dq. (72)

Numerical estimations show that the energy correction δε(r)
results in a small increase of the parameter Y . For 210Po in
copper I get Y = 0.14% instead of the value Ys = 0.13%,
provided only by the atomic s electrons.

And for completeness, I follow a standard approach.
The electric potential of the parent nucleus, screened by
surrounding electrons, is written as [30]

ϕ(scr)
p (r) = Ze

r
e−r/rs , r > R. (73)

This potential is a sum of the nuclear potential ϕp(r) = Ze/r
and the electronic potential

ϕe(r) = Ze

r
(e−r/rs − 1). (74)

Expanding it in power series in r one finds such contribution
to the effective potential:

δε(r) = Ze2

r2
s

r, r � b � rs . (75)
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The corresponding energy shift at infinity will be

�ε = 2Ze2

rs

. (76)

Equation (75) gives incorrect linear dependence of δε(r) on
the radius in accordance with the remarks following Eq. (6).

For 210Po solved in copper, where rTF = 5.51 × 104 fm, the
energy shifts �εTF = 4.39 keV and �YTF = 0.004%, which is
close to the exact numerical result �Y = 0.01%. Accepting the
Debye model at T = 300 K one has much more less screening
length rD = 4.1 × 103 fm, which results in an energy shift
�εD = 59.0 keV that is too large.

VI. COMPLETE WKB CALCULATIONS

In all previous works it was suggested that electrons only
affect the penetration probability through the Coulomb barrier.
In order to understand the role of other factors I shall trace here
the derivation of the α decay width �α = �λ. It is proportional
to the squared overlapping integral of the wave function gp,
which describes a doorway state of the parent nucleus, and the
wave function ψα(r) of the continuous spectrum [42]:

�α ∼ k|〈ψα(r)|gp〉|2, (77)

where k stands for the wave vector of the relative motion of
the α particle and the daughter nucleus at infinity, i.e.,

k =
√

2μE/� (78)

with E = Q − �Q. For simplicity, we regard α transitions
between ground states of the parent and the daughter nuclei.
Then the corresponding s-wave function takes the form

ψα(r) = 1√
4π

R0(r)

r
(79)

and the Scrödinger equation (32) transforms to{
− �

2

2μ

d2

dr2
+ Veff(r) − Q

}
R0(r) = 0. (80)

Its regular solution inside the square potential well (0 � r <
R) is

R0(r) = Cα√
�K

sin(Kr), (81)

where Cα/
√

�K designates the amplitude of the wave and

K =
√

2μ(V0 + Q)/� (82)

the wave vector inside the potential well. By making use
of standard WKB rules we easily find the R0(r) under the
barrier (R < r < beff) to be a sum of attenuating and growing
exponents:

R0(r) = Cα

|p(r)|
[

1

2
sin α exp

(
−

∫ r

R

|p(r)|dr

�

)

− cos α exp

(∫ r

R

|p(r)|dr

�

)]
, (83)

where the following designations are used:

α = KR − π

4
, p(r) =

√
2μ(Q − Veff(r)). (84)

If KR = (n + 3/4)π , where n = 0,1, . . . , then cos α = 0, and
the nucleus has a quasistationary state, characterized by large
amplitude of the wave function inside the well and single
attenuating exponent under the barrier [42]. Such quasilevel
has a very narrow width ∼e−2S and therefore there is too small
a probability to find it at low excitation energies of the parent
nucleus.

The WKB solution in the outer region (r > beff) is obtained
as a superposition of the incoming and outgoing waves. I first
match it with the function (83) and then compare it with the
asymptotic expression for the wave function [41]

R0(r) ≈ sin(kr + δ0), (85)

valid in the region r � rs . Here δ0 is the phase shift of the s
wave.

The latter procedure enables me to get the amplitude
Cα/

√
�K of the wave function. It can be shown that far from

the extremely sharp resonance, when cos α �= 0, it is given by
the expression

Cα = (�k)1/2

2 cos α
exp{−Seff(Q)}. (86)

By substituting Eq. (86) into Eq. (77), one gets for the
“dressed” nucleus

�α ∼ (k2/K) exp(−2Seff(Q)). (87)

For a bare nucleus the Seff(Q)) is to be replaced by S(Q) as
well as E by Q in Eq. (78).

Thus, the decay rate λ ∼ E, where E is a sum of the kinetic
energies of the daughter nucleus and α particle at infinity.
Respectively, the ratio of half-periods of the nucleus in the
electronic environment and the bare nucleus takes the form

R = T at
1/2

T B
1/2

= (1 + Y )

(
Q

Q − �Q

)
, (88)

where Y is defined by Eq. (52). Since Y � 1 and �Q � Q,
the relative change of the half-lives �R = R − 1 becomes

�R ≈ Y + �Q/Q. (89)

So �R contains one more contribution �Q/Q due to pre-
exponential factors. Using experimental values of the atomic
binding energies [43] I calculated �Q and �R for a few
nuclei. The values of �R are presented in Table I, where it is
seen that �Q/Q exceeds Y .

VII. CONCLUSION

The internal energy of the parent nucleus Mpc2 is shared be-
tween the emitted α particle, daughter nucleus, and electrons.
From the energy conservation law it follows that the sum of
kinetic energies of the α particle and the daughter nucleus E
lowers compared to the nuclear energy release Q by the energy
�Q absorbed by electrons during the decay. This energy
shift is �Q = �Ea in insulators and Q = �Ea + �ε in
metallic matrices. For polonium with the atomic energy Ea =
−379.72 keV decaying to lead with E′

a = −355.93 keV [43]
the difference �Ea amounts 23.78 keV, while the difference
of energies of free electrons of copper in the final and initial
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states �ε ≈ 1 kev. Thus, the energy of α particles emitted by
the nuclei embedded in a metal is less by small quantity �ε
than their energy in the case of a dielectric target. Such energy
reduction can, in principle, be observed in those crystals, which
demonstrate the Mott transition from the insulating state to
metallic one with decreasing temperature [37].

The energy shift �Q disappears from Eq. (32) for the wave
function of the α particle ψα(r). This result completely agrees
with the conclusion of Zinner [31]. Note that Denisov and
Khudenko [44] earlier a priori inserted Q instead of E in the
formula for the action (13), which allowed them to improve
agreement with the experiment.

I have shown that the pre-exponential factor in the de-
cay constant λ occurs to be connected with the electronic
environment. However strange it may seem, the nucleus
starting the decay already “knows” the final stage of the decay
process. More definitely, it “knows” which kinetic energy E
the α particle together with the recoil nucleus will have at
infinity. This “knowledge” is reflected in dependence of the
decay constant λ on E and respectively on �Q. Just such
a dependence provides a main contribution into the relative
change �R of the half-lives owing to atomic electrons.

Another contribution into �R, which was previously
discussed in Ref. [34], is ensured by corrections δEa(r) to the

Coulomb barrier Vc(r), which are small along the tunneling
path. In the adiabatic approximation I derived simple analytic
formulas (46) and (49) for such corrections caused by atomic
electrons. Besides, strict calculations in the framework of the
collision theory have shown that the conductivity electrons
only provide small additions δε(r). Its temperature dependence
is of the next order of smallness since kBT � εF . Thus, there
is no possibility to speed up the α decay in a cooled metal
matrix. Such a statement supports the experimental results
[24–28,45]. At the same time, the situation may alter in dense
stars, when density of free electrons at the nucleus is high. In
this case just free electrons become responsible for inhibition
of the nuclear decay.

Thus, one can conclude that the electronic environment
slightly decreases the α-decay rate (typical relative change of
the half-lives for the “dressed” and bare nuclei is somewhat
less than 1%).

I have also shown that standard Debye-Hückel and Thomas-
Fermi models cannot be applied for description of the α decay.
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