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Long-range dynamic polarization potentials for 11Li + 208Pb and 6He + 208Pb systems
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We investigate the effects of long-range dynamic polarization on elastic cross sections for heavy-ion collisions
which comprise the Coulomb dipole excitation (CDE) potential and the long-range nuclear (LRN) potential.
To study these effects, we perform a χ 2 analysis for the elastic cross sections of 11Li + 208Pb and 6He + 208Pb
systems using the long-range dynamic polarization potentials. For the CDE we formulate some empirical models
to reproduce the experimental Coulomb dipole strength B(E1) distribution and apply to the collision of 11Li and
6He. But the CDE potential turns out to be not enough to explain the experimental data relevant to the nuclei. It
leads us to additionally take the LRN potential peculiar to these halo nuclei into account. Our model, which was
constructed by adding the CDE and LRN potentials to the conventional short-range nuclear potential corrected
by the Coulomb interaction, provides a good description of the experimental data. In particular, the surface type
is shown to be more reasonable rather than the volume type in the LRN potential.
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I. INTRODUCTION

Borromean nuclei such as 6He, 11Li, and 14Be consist of
a core nucleus and two valence neutrons, which are bound
together, but all two-body systems (core nucleus–valence
neutron or valence neutron–valence neutron) are unbound.
This feature is well explained by one- and two-neutron
separation energies for 6He, 11Li, and 14Be nuclei, as tabulated
in Table I, where two-neutron separation energies are shown to
be smaller than one-neutron separation energies. This implies
that a system composed of a core nucleus and a valence neutron
such as 5He, 10Li, and 13Be cannot be bound, while the addition
of one more valance neutron to the system can make the system
bound.

Another feature of Borromean nuclei is a halo structure
arising from the two valence neutrons being far away from
the core nucleus. Tanihata et al. [1,2] found that 11Li has a
long tail in its matter distribution and Al-Khalili et al. [3]
obtained the root-mean-square (rms) radii of He, Li, Be,
and B isotopes using Glauber model calculations [4]. Since
then, more detailed experiments and calculations have been
reported. Sánchez et al. [5] measured the nuclear charge radii
of Li isotopes by using the high-precision laser spectroscopy
and compared the charge radius of 11Li with those of other
Li isotopes through various methods. Esbensen et al. [6]
measured the charge radius and the dipole response of 11Li
from a three-body model and investigated the relevance of
these measured values and the mean-square distance between
the 9Li core nucleus and the center of mass of the two valence
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neutrons. All data recapitulated in Table II show that the matter
radii of the Borromean nuclei are unexpectedly much larger
than those of the core nuclei. This feature is confirmed to
be caused by the matter density distribution of the weakly
bounded valence neutron far away from the core nucleus. As
a result, the matter radii of Borromean nuclei have a long tail
(see Fig. 7 of Ref. [7]).

The other noteworthy feature for Borromean nuclei is the
Coulomb dipole phenomena at low excitation energies [8–
23]. Because the incident halo or weakly bound nuclei are
composed of a core nucleus and valence neutrons, the charged
core nuclei are decelerated by the Coulomb repulsive field gen-
erated from the target nuclei, but the valence neutrons are not
affected by the Coulomb field. Consequently, the core nucleus
and the valence neutrons in the incident halo or weakly bound
nuclei are easily broken up compared to the tightly bound
core nuclei, which have somewhat large valence-neutron
separation energies. This phenomenon is called electric dipole
polarization or Coulomb dipole excitation (CDE). It is well
known that the breakup or direct reaction cross section is
increased while the elastic cross section is decreased owing
to the CDE. The reason for this is that the breakup or the direct
reaction channels of the CDE are opened more easily than the
elastic channel in heavy-ion collisions.

Andrés et al. [10–12] proposed an analytic complex
polarization potential form without any adiabaticity correction
factor g1(ξ ) [24,25] with the usual adiabatic parameter ξ
as a function of the excitation energy for the CDE. They
investigated the CDE effects coupled to breakup states for the
11Li + 208Pb system by using a dynamic complex polarization
potential at Elab = 24 and 50 MeV. In this calculation, they
used the Coulomb dipole strength B(E1) distribution of Zinser
et al. [23], which is fitted by a sum of two Gaussian functions,
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TABLE I. One- and two-neutron separation energies for 6He,
11Li, and 14Be nuclei.

Nucleus Sn (MeV) S2n (MeV)

6He 1.71 0.98
11Li 0.40 0.37
14Be 1.78 1.27

and also used the two-neutron separation energies S2n for 11Li
nuclei as 0.295 MeV. However, a new experimental result
was reported on the Coulomb dipole strength distribution by
Nakamura et al. [19], and the current two-neutron separation
energy S2n for 11Li nuclei is known to be 0.37 MeV (Table I).
It is an interesting point that the Coulomb dipole strength
distribution of Ref. [19] compared with other experimental
results [20–23] is considerably larger in the low-excitation-
energy region (see Fig. 3 of Ref. [19]).

Kakuee et al. [8] investigated the CDE effect for the
6He + 208Pb system using the analytic complex polarization
potential form proposed in Refs. [10–12]. They utilized a
complex nuclear potential with a volume type of Woods-
Saxon potential and obtained a large value of the imaginary
diffuseness parameter from χ2 fitting. For the same system,
Sánchez-Benı́tez et al. [9] also studied the CDE effect
with the same method as in Ref. [8] and also obtained a
large diffuseness parameter. They performed an additional
calculation to study the energy dependence of the optical
potential and the dispersion relation [26]. To investigate these
features, they divided the complex nuclear potential into short-
and long-range Woods-Saxon potentials. From this approach,
they found that the CDE potential and the long-range nuclear
(LRN) potential may account for the long-range absorption.

Recently, considering all of these things, we studied
the CDE effects for the 11Li + 208Pb system [15]. In the
calculation, however, we did not use the Coulomb dipole
strength distribution in Ref. [19], but rather we used a dipole
resonance energy ε = 0.69 MeV, which is extracted from
the Coulomb dipole strength distribution of Ref. [19], to
obtain the Coulomb dipole strengths B(E1). As a result, the
Coulomb dipole strengths are extracted as 1.42 and 1.41 e2 fm2

at Ec.m. = 23.1 and 28.3 MeV, respectively. These values
are consistent with the experimental values obtained from
Ref. [19]: B(E1) = 1.42 ± 0.18 e2 fm2.

TABLE II. Root-mean-square matter radii for 4,6He, 9,11Li, and
12,14Be nuclei.

Nucleus rms matter radii (fm)

Reference [2] Reference [3]

4He 1.57 ± 0.04 1.58 ± 0.04
6He 2.48 ± 0.03 2.71 ± 0.04
9Li 2.32 ± 0.02 2.30 ± 0.02
11Li 3.12 ± 0.16 3.53 ± 0.10
12Be 2.59 ± 0.06 2.54 ± 0.05
14Be 3.16 ± 0.38 3.20 ± 0.30

The goal of the present work is to investigate the effect
of long-range dynamic polarization potentials for elastic
scattering of incident Borromean nuclei on heavy target nuclei
using not only a short-range nuclear (SRN) potential corrected
by the conventional Coulomb potential but also both a CDE
potential [10–12] and a LRN potential [9,15] to take into
account long-range interactions. In the present work, we also
consider the new Coulomb dipole strength distribution [19]
and the two-neutron separation energy S2n = 0.37 MeV for
11Li nuclei. We also discuss the effect stemming from the
difference between the volume type and surface type on the
LRN potential. Finally, we extend this work to the 6He + 208Pb
system. In Sec. II, we review briefly the experimental data. In
Sec. III, we describe the 11Li + 208Pb system with adjusted
potential parameters and obtain the Coulomb dipole strength
B(E1). We study the 6He + 208Pb system in Sec. IV. Finally,
we summarize the present work in Sec. V.

II. REVIEW OF EXPERIMENTAL DATA

In this section we discuss the ratio of the elastic scattering
cross sections to the Rutherford cross section PE , given by

PE ≡ dσel

d�
/
dσC

d�
= dσel

dσC

, (1)

where dσel/d� and dσC/d� represent the elastic and
Coulomb scattering cross sections, respectively [27,28]. In
Fig. 1, we plot the experimental ratio for (a) 4He + 208Pb
and 6He + 208Pb systems and (b) 9Li + 208Pb and 11Li + 208Pb
systems. The ratio is presented as a function of the reduced
distance d, by which the closest distance is given by D =
d(A1/3

1 + A
1/3
2 ). Figure 1(a) shows data for 4He + 208Pb and

6He + 208Pb systems at Elab = 22 MeV, and Fig. 1(b) shows
data for 9Li + 208Pb and 11Li + 208Pb systems at Ec.m. =
28.3 MeV, which is the center-of-mass energy. Here A1 and A2

are the masses of the projectile and the target nuclei. Because
the SRN force has no effect in the far-distance region, the
Coulomb force influences only the projectile, so that the ratio
PE approaches unity. In the close-distance region, in which
sufficient nuclear force becomes of importance, however, the
value of PE starts to fall off around the interaction distance dI ,
as shown in Fig. 1.

In general, the interaction distances dI for tightly bound
nuclei such as 12C and 16O are about 1.6 fm [29], but those
of weakly bound nuclei such as 6He, 6,7,8Li, and 9Be are
much larger [30,31]. In Ref. [31], we have already obtained
the interaction distances of 6,7,8Li, which lie between 1.8
and 2.1 fm. By using the same method as in Ref. [31], the
interaction distances dI for 9Li and 11Li become ∼1.9 and
∼5.5 fm, respectively. Because 9Li is a relatively tightly bound
nucleus, the interaction distance is close to that of other nuclei
such as 6,7,8Li and 9Be. However, the interaction distances of
6He and 11Li are very long because they are very loosely bound
nuclei owing to the two valence neutrons. This means that the
breakup process easily takes place at forward angles or in the
far-distance region, as shown in Fig. 1. It is well known that
this behavior of 6He and 11Li was related to the CDE potential
effect [10–12] and the LRN potential effect [8,9].
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FIG. 1. (Color online) Ratios of the elastic scattering cross sec-
tions to the Rutherford cross section PE , as a function of the
reduced distance d at (a) Elab = 22 MeV for 4He + 208Pb and
6He + 208Pb systems and (b) Ec.m. = 28.3 MeV for 9Li + 208Pb and
11Li + 208Pb systems. The data are taken from Ref. [9] for 4He + 208Pb
and 6He + 208Pb systems and from Ref. [13] for 9Li + 208Pb and
11Li + 208Pb systems.

III. OPTICAL MODEL CALCULATIONS

First, we consider the 11Li + 208Pb system. To explain
the breakup effect for the 11Li + 208Pb system, we use the
following optical model Scrödinger equation:

[E − Tl(r)]χ (+)
l (r) = UOM(r)χ (+)

l (r), (2)

where χ
(+)
l (r) is the partial decomposed distorted wave

function. The kinetic energy operator Tl(r) is given by

Tl(r) = − �
2

2μ

(
d2

dr2
− l(l + 1)

r2

)
, (3)

where μ and l are the reduced mass and the angular
momentum, respectively. The optical model potential UOM(r)
is generally given by

UOM(r) = UC(r) − [V0(r) + iW0(r)], (4)

where UC(r) denotes the Coulomb potential. V0(r) and W0(r)
are the real and imaginary parts, respectively, of the optical
model potential of the Woods-Saxon volume type given by [32]

V0(r) + iW0(r) = V0(E)f (X0) + iW0(E)f (XW ), (5)

where f (Xi) = [1 + exp(Xi)]−1 with Xi = (r − Ri)/ai (i =
0 and W ) being the usual Woods-Saxon function, while V0(E)

TABLE III. Optical model parameters in the SRN potential for the
9Li + 208Pb system. Here, ri = Ri/(A1/3

1 + A
1/3
2 ) with i = 0 and W .

V sh
0 Wsh

0 ash
0 = ash

W rsh
0 = rsh

W

(MeV) (MeV) (fm) (fm)

56.50 26.60 0.82 1.10

and W0(E) are the energy-dependent strength parameters of
the real and imaginary parts, respectively.

A. Short-range (or bare) nuclear potential

Because 11Li is composed of the core nucleus 9Li and
two valence neutrons, we first extract the bare potential for
11Li + 208Pb from the optical model calculation. To extract
the bare potential, using the elastic scattering data for the
9Li + 208Pb system, we obtain the optical model potential:

U
9Li
OM(r) = UC(r) − [

V sh
0 (r) + iWsh

0 (r)
]
, (6)

where V sh
0 (r) and Wsh

0 (r) are the real and imaginary parts,
respectively, of the optical model potential. With the optical
model potential, we already performed a χ2 analysis in
Ref. [15] and obtained the best-fit parameters listed in Table III.
For this calculation, we used the four parameters (ash

0 , ash
W ,

rsh
0 , and rsh

W ) fixed in our previous calculations [15] and varied
only two parameters (V sh

0 and Wsh
0 ). Using these parameters

we calculated the ratios PE and compared our results (solid
lines) with the experimental data, as shown in Fig. 2. The
red circles denote the experimental data taken from Ref. [13].
Our calculations describe the experimental data very well.
Therefore the parameters in Table III can be used as the bare
potential of the 11Li + 208Pb system. Note that the superscript
“sh” in Eq. (6) means the SRN potential compared relatively
to the LRN one, which will be described later.

1
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 Calculation
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FIG. 2. (Color online) Ratios PE calculated with the SRN poten-
tial for 9Li + 208Pb. The solid line denotes the calculated ratios PE

obtained by using Eq. (6) and the parameters in Table III. Red circles
represent the experimental data taken from Ref. [13].
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B. Coulomb dipole excitation potential

To explain the strong absorption in the long-range region (or
in the forward-angle region), which is peculiar to the Coulomb
breakup reaction of halo systems [13], we need to consider
a long-range potential. The CDE potential is known as the
most significant long-range potential. To take into account the
long-range interaction effect, we add a CDE potential [10–12]
to Eq. (4) as follows:

U
11Li
OM (r) = U

9Li
OM(r) − UCDE(r)

= UC(r) − [
V sh

0 (r) + iWsh
0 (r)

] − UCDE(r), (7)

where the additional CDE potential is written as

UCDE(r) = 4π

9

Z2
2e

2

�v

1

(r − a0)2r

∫ ∞

εb

dε
dB(E1)

dε

×
[
g

(
r

a0
− 1,ξ

)
+ if

(
r

a0
− 1,ξ

)]
, (8)

with

f

(
r

a0
− 1,ξ

)
= 4ξ 2

(
r

a0
− 1

)2

× exp(−πξ )K ′′
2iξ

[
2ξ

(
r

a0
− 1

)]
, (9)

where a0 = Z1Z2e
2/2Ec.m. is the distance of closest approach

in head-on collisions, Z1 and Z2 denote charge numbers of
the projectile and target nuclei, respectively, K ′′ is the second
derivative of a modified Bessel function, and ξ = a0ε/�v is the
usual adiabatic parameter [12]. Here the real part of the CDE
potential, g( r

a0
− 1,ξ ), has to satisfy the dispersion relation

with an imaginary part [10–12] as follows:

g

(
r

a0
− 1,ξ

)
= P

π

∫ ∞

−∞

f
(

r
a0

− 1,ξ
)

ξ − ξ ′ dξ ′. (10)

In Eq. (8), dB(E1)/dε is the Coulomb dipole strength
B(E1) distribution along with the excitation energy ε. A
number of studies for measuring this distribution have been
performed [19–23]. In this work, the most recently measured
B(E1) distribution [19] is used.

We use some empirical models to reproduce the experimen-
tal Coulomb dipole strength B(E1) distribution [19]. The first
model, denoted as model 1 (M1), is given by

dB(E1)

dε

∣∣∣∣
M1

= N1
(ε − εb)

(ε − εb − �1/2)2 + (�1/2)2
. (11)

This model is obtained by modifying the Breit-Wigner
function in Ref. [20]. Note that εb = 0.37 MeV is equal
to the two-neutron separation energy S2n for 11Li nuclei.
N1 and �1 are the normalization constant and the width of
the modified Breit-Wigner function, respectively. The second
model, denoted as model 2 (M2) in Ref. [12], is written as

dB(E1)

dε

∣∣∣∣
M2

= N1
(ε − εb)3

ε4
(1 + t)2 exp(−2t), (12)

with t = ε−εb

�1
. As remarked in Ref. [12], this model is obtained

from a simple analytic three-body calculation. As shown in

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0
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dB
(E

1)
/d

εε εε  (( ((
e2 fm

2 /M
eV

)) ))

εεεε (MeV)

 Exp.
 model 1
 model 2
 model 3

11Li

FIG. 3. (Color online) B(E1) distributions for 11Li obtained from
three models compared with the experimental data (red circles) taken
from Ref. [19]. Solid (black), dashed (blue), and dotted (green) lines
represent the B(E1) distributions obtained from M1, M2, and M3,
respectively.

Fig. 3, however, M2 does not satisfy the B(E1) distribution in
the high-excitation-energy region for ε � 1.1 MeV. To satisfy
the B(E1) distribution there, we add a Gaussian-type function
to Eq. (12). This is model 3 (M3) as follows:

dB(E1)

dε

∣∣∣∣
M3

= N1
(ε − εb)3

ε4
(1 + t)2 exp(−2t)

+ N2

ε
exp(−s2), (13)

with t = ε−εb

�1
and s = ε−ε2

�2
. N2, ε2, and �2 are the normalization

constant, the centroid, and the full width at half maximum
of the additional Gaussian-type function, respectively. The
parameters of each model and the integrated values of the
Coulomb dipole strength distribution are listed in Table IV.

The experimental Coulomb dipole strength value B(E1) is
obtained as B(E1) = 1.42 ± 0.18 e2 fm2 by measuring up to
ε = 3.37 MeV in Ref. [19], and theoretical calculations
obtained from the new s23 model [6] and the correlated single-
particle model [33] are 1.38 and 1.57 e2 fm2, respectively. As
shown in Table IV, these values are consistent with our results
obtained from M1 and M3.

Figure 4 shows the ratios PE for the 11Li + 208Pb system
calculated by using Eq. (7) with three B(E1) distribution
models for the pure dipole excitation. Our results do not

TABLE IV. Parameters of the Coulomb dipole strength B(E1)
distribution for each model. B(E1) is the integrated value of the
Coulomb dipole strength distribution up to excitation energy ε =
3.0 MeV for three models of 11Li nuclei.

N1 εb �1 N2 ε2 �2 B(E1)
(MeV) (MeV) (MeV) (MeV) (e2 fm2)

Model 1 (M1) 0.30 0.37 0.54 1.27
Model 2 (M2) 13.40 0.37 0.40 0.88
Model 3 (M3) 14.00 0.37 0.36 0.90 2.50 1.10 1.49
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FIG. 4. (Color online) Ratios of the elastic scattering cross sec-
tions to the Rutherford cross section PE , as a function of the scattering
angle θc.m. at Ec.m. = 23.1 and 28.3 MeV for the 11Li + 208Pb system.
Solid (black), dashed (blue), and dotted (green) lines are the calculated
ratios PE obtained by using M1, M2, and M3, respectively, for the
11Li + 208Pb system. Red circles represent the experimental data for
11Li + 208Pb taken from Ref. [13]. Note that we only consider the
SRN potential and the CDE potential in Eq. (7).

show any remarkable change for the models of the B(E1)
distribution. This means that the contribution of the B(E1)
distribution is not noticeable at ε � 1.1 MeV. When the
excitation energy ε (or the adiabaticity parameter ξ ) decreases,
both real and imaginary parts of the CDE potential UCDE

rapidly decrease owing to the exponential function in f ( r
a0

−
1,ξ ) of Eq. (8). As shown in Fig. 3, the Coulomb dipole strength
distribution of M2 does not match the experimental data at ε
� 1.1 MeV, but the B(E1) distribution of M3, which includes
six parameters, quite accurately reproduces the experimental
data of the Coulomb dipole strength distribution. Although M3
describes the experimental data well, it is very complicated. In
the present work, therefore, we choose the simplest form M1
among the three B(E1) distribution models.

If the breakup effect in the long-range region were only
affected by the pure dipole excitation, we could have explained
the ratio of the elastic scattering cross section data to the

TABLE V. Geometrical parameters of the LRN potential with (a)
the volume type and (b) the surface type of Woods-Saxon potential
used in Eq. (14) for the 11Li + 208Pb system.

Type Ec.m. V lo
0 Wlo

0 alo
0 = alo

W rlo
0 = rlo

W χ 2

(MeV) (MeV) (MeV) (fm) (fm)

(a) Volume 23.1 − 34.40 3.83 4.00 1.10 9.4
28.3 − 23.40 3.09 4.00 1.10 14.5

(b) Surface 23.1 − 9.10 0.99 3.42 1.44 10.0
28.3 − 6.01 0.75 3.42 1.44 14.3

Rutherford cross section PE in Fig. 3 of Ref. [13]. However,
our results are quite different from the experimental data. This
implies that the breakup effect in the long-range region cannot
be explained by only the pure CDE interaction, as shown in
Fig. 4.

C. Long-range nuclear potential

As done in Refs. [9,15], we add another LRN as follows:
The optical model potential U

11Li
OM (r) including the additional

LRN complex polarization potential Ulo
OM is written as

U
11Li
OM (r) = U

9Li
OM(r) − UCDE(r) − Ulo

OM(r)

= UC(r) − [
V sh

0 (r) + iWsh
0 (r)

]
−UCDE(r) − [

V lo
0 (r) + iW lo

0 (r)
]
. (14)

References [9,15] exploit the volume-type Woods-Saxon form
with large diffuseness parameters alo

0 and alo
W in the additional

LRN potential. In the present work, we fix radii rlo
0 = rlo

W =
1.10 fm and diffuseness parameters alo

0 = alo
W = 4.00 fm as done

in Table III of Ref. [15]. To obtain potential depth parameters
V lo

0 and Wlo
0 , we perform a χ2 analysis with fixed radii and

diffuseness values. The best-fit potential depth parameters V lo
0

and Wlo
0 are listed in rows (a) of Table V. Note that potential

depths of the real part in the LRN potential V lo
0 have negative

values. The negative potential depth plays an important role
of increasing the Coulomb barrier energy and reducing the
absorption cross section. Using these parameters, we obtained
the ratios PE [solid (black) line] in Fig. 5.

Until now, for the effect of LRN potentials in the collision
of incident Borromean nuclei and heavy target nuclei, we have
made use of the CDE potential and the two nuclear potentials
(SRN and LRN) with a volume-type Woods-Saxon potential.
For the two volume-type Woods-Saxon potentials, the inner
region of the SRN and the LRN potential overlaps because they
have the same radius. However, the breakup reaction mainly
occurs at the surface region of the Borromean nuclei because
the two valence neutrons are away from the core nuclei.
Therefore, for the LRN potential in Eq. (14), the surface-type
Woods-Saxon potential is conjectured to be more reasonable
to explain the breakup reaction.

To obtain geometric parameters of the surface-type Woods-
Saxon potential, we first perform a χ2 analysis by using four
adjustable parameters, which are V lo

0 , Wlo
0 , alo

0 = alo
W , and rlo

0 =
rlo
W , for all incident energies and then fix the radius parameter as

the average value of radii obtained from the fitting. As a result,
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FIG. 5. (Color online) Same as in Fig. 4, but including the
additional LRN potential in Eq. (14). Note that we only consider
M1.

we get the radius of the surface-type Woods-Saxon potential,
which is about rlo

0 = rlo
W = 1.44 fm, and then we repeat the χ2

analysis for three adjustable parameters (V lo
0 , Wlo

0 , and alo
0 =

alo
W ) at a fixed radius. From this analysis, we obtain diffuseness

parameters alo
0 = alo

W = 3.42 fm as the average value. After
fixing the radius and the diffuseness parameters, finally, we
perform a χ2 analysis for two adjustable parameters (V lo

0 and
Wlo

0 ). The best-fit potential depth parameters V lo
0 and Wlo

0
are listed in rows (b) of Table V and the ratios PE [dashed
(blue) line] are plotted in Fig. 5. We find that the two methods
provide almost the same results except for the radius and the
diffuseness of LRN potentials. For the case of the volume-type
Woods-Saxon potential, its radius is short compared with that
of the surface-type one, but it is found that the reduction of the
radius can be offset by the enhancement of the diffuseness.

IV. APPLICATION TO THE 6He + 208Pb SYSTEM

As done in the 11Li + 208Pb system, we first find parameters
of the SRN potential for the 6He + 208Pb system by performing
a χ2 analysis with the elastic scattering data for the 4He + 208Pb
system [34]. Note that we fix the radius and the diffuseness

0.0
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0.4

0.6

0.8

1.0

1.2

0 30 60 90 120 150 180
0.0

0.2

0.4

0.6

0.8

1.0

6He + 208Pb

P E

(a) Elab = 22 MeV

(b) Elab = 27 MeV

 Exp.
 with CDE potential
 with CDE + LRN potentials

P E

θθθθc.m. (deg)

FIG. 6. (Color online) Same as Fig. 4, but for the 6He + 208Pb
system. The solid (black) line is for the SRN potential and two long-
range dynamic polarization potentials including the CDE and LRN
potentials; the dashed (blue) line is for only the SRN potential and
the CDE potential obtained by using M1. Red circles represent the
experimental data for 6He + 208Pb taken from Refs. [8,9].

(ash
0 = ash

W = 0.82 fm and rsh
0 = rsh

W = 1.10 fm) as parameters
used in the 11Li + 208Pb system. As a result, the best potential
depths of the real and imaginary potentials obtained from the
χ2 analysis are extracted as V sh

0 = 44.62 MeV and Wsh
0 =

28.07 MeV, respectively. The dashed (blue) line in Fig. 6
shows the ratios PE for the pure CDE using the SRN potential
set (V sh

0 , Wsh
0 , ash

0 = ash
W , and rsh

0 = rsh
W ) with the B(E1)

distribution from the M1 model in Fig. 7. The parameters
of the B(E1) distribution for the 6He nucleus are listed in
Table VI. There are two theoretical calculations for the B(E1)
distributions in Refs. [16,17]. However, the calculated B(E1)
distributions overall do not satisfy the experimental data in

TABLE VI. Same as in Table IV, but for 6He nuclei using M1.

N1 εb �1 N2 ε2 �2 B(E1)
(MeV) (MeV) (MeV) (MeV) (e2 fm2)

Model 1 (M1) 0.26 0.98 2.70 0.71
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FIG. 7. (Color online) Same as Fig. 3, but for the B(E1) distri-
bution of 6He nuclei obtained from M1. Red circles represent the
experimental data for 6He + 208Pb taken from Ref. [18].

the low-excitation-energy region (see Fig. 4 of Ref. [18]). As
shown in Fig. 7, our M1 result satisfies the experimental data
within the error, especially in the low-energy region, but the
shape is different from that of the experimental data. Although
our B(E1) curve has a different shape, the value of B(E1)
using M1 is 0.71 e2 fm2, which agrees with the other theoretical
value (0.71 e2fm2 [17]) and with the experimental data (0.59
± 0.12 e2 fm2 [18]).

As shown in Fig. 6, our results (dashed lines) from the
SRN potential and the pure CDE potential using the B(E1)
distribution with M1 overestimate the experimental data. To
resolve the discrepancy, we have to add the LRN potential with
a surface-type Woods-Saxon potential similarly to the case
of 11Li.

First, we extract the geometric parameters of the surface-
type Woods-Saxon potential by using a χ2 analysis as done in
the 11Li + 208Pb system. The geometric parameters obtained
from the χ2 analysis are listed in Table VII, and the dispersion
relations of the real and the imaginary parts for the LRN
potential are shown in Fig. 8. The values of the strength
parameters of the LRN potential extracted by using the χ2

analysis, V lo
0 (E) and Wlo

0 (E), are denoted by the red and
the black solid circles, respectively. Here we show also
interpolated functions, V lo

0 (E) and Wlo
0 (E), of the incident

energy E(=Elab) extracted by the circle points. The imaginary
strength parameter function Wlo

0 (E) is summarized by the

TABLE VII. Same as in Table V, but for the 6He + 208Pb system
using the surface type of Woods-Saxon potential.

Elab V lo
0 Wlo

0 alo
0 = alo

W rlo
0 = rlo

W χ 2

(MeV) (MeV) (MeV) (fm) (fm)

14 0.10 0.00 2.29 1.43 0.7
16 0.20 0.04 2.29 1.43 0.4
18 0.12 0.13 2.29 1.43 0.8
22 0.09 0.10 2.29 1.43 0.6
27 − 0.03 0.14 2.29 1.43 1.9

10 15 20 25 30
0.00

0.05

0.10

0.15

-0.2

0.0
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0.4
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W
0lo

 (M
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)

 Extracted
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 Extracted
 Theory

V 0lo
 (M

eV
)

FIG. 8. (Color online) Real and imaginary strength functions,
V lo

0 (E) and Wlo
0 (E), as a function of the laboratory energy Elab. The

solid (black) line in the lower panel denotes Wlo
0 (E) from Eq. (15) and

the dotted (red) line in the upper panel represents Wlo
0 (E) obtained

by using the dispersion relation.

following function of E(=Elab) (in units of MeV):

Wlo
0 (E) =

⎧⎨
⎩

0 for E = 14.0,
0.03(E − 14.0) for 14.0 < E � 18.0,
0.12 for 18.0 < E,

(15)

which is shown as the solid (black) line in the lower panel of
Fig. 8. The dotted (red) line in the upper panel denotes V lo

0 (E)
obtained by the interpolation of the (red) points from the
dispersion relation. Note that the dispersion relation obtained
from this work is quite similar to that of Sánchez-Benı́tez
et al. [9] except for the highest excitation energy Elab =
27 MeV. According to Ref. [9], the extracted Wlo

0 (E) values
gradually decrease at Elab � 18 MeV but Wlo

0 (E) values
extracted from the present work are essentially constant. We
chose three intervals to obtain Wlo

0 (E), but Wlo
0 (E) in Ref. [9]

was obtained from four intervals, so that our results are a
bit different from theirs. However, the interpolated Wlo

0 (E)
function in Fig. 8 seems to have a constant value. Thus, even if
we take our model, it is still premature to conclude that there
exists a decrease of Wlo

0 (E) at higher excitation energies, as
mentioned in Ref. [9].

Finally, we calculate the elastic cross sections and present
the results in comparison with the experimental data in Figs. 6
and 9 using Wlo

0 (E) given by Eq. (15) and V lo
0 (E) obtained by

using the dispersion relation. The solid (black) line in Fig. 6
shows the ratios PE including the LRN potential, the CDE, and
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FIG. 9. (Color online) Same as Fig. 6, but with all incident
laboratory energies considered.

the SRN potential set (V sh
0 , Wsh

0 , ash
0 = ash

W , and rsh
0 = rsh

W ).
From Fig. 6, we find that both the CDE potential and the LRN
potential have to be considered to explain the breakup reaction
(or the direct reaction) process for heavy-ion collisions by
Borromean nuclei. Figure 9 shows the ratios PE for all incident
energies; these are also well matched to the experimental data.

V. SUMMARY AND CONCLUSION

We investigated CDE and LRN potential effects on elastic
cross sections in low-energy heavy-ion collisions by Bor-
romean nuclei, 11Li and 6He. To take these effects into
account, we exploited the optical model analysis, in which
we included both a conventional SRN potential corrected by
the Coulomb potential and a Coulomb dynamic polarization
potential extracted by using the Coulomb dipole strength
B(E1) distributions. However, we found that these two
potentials are not enough to explain the relevant experimental
data. For a better understanding of the PE = dσel/dσC data,
we introduced a LRN potential in addition to the two potentials.
Using this dynamic imaginary polarization potential, we
performed a χ2 analysis for the elastic cross section data
obtained from heavy-ion collisions. From this analysis, we
learned that the LRN potential as well as the CDE potential
play a significant role in explaining the experimental data,
specifically the strong absorption in the long-range region, for
the heavy-ion collisions.

One more point to be noticed is that a surface-type potential
in the LRN potential turns out to be more reasonable rather than
a volume-type potential. We also found that the contribution
of the B(E1) distribution is not as significant in the high-
excitation-energy region. As a result, the simplest form among
the three B(E1) distribution models (M1) could be used safely
in our present work.

In conclusion, our dynamic polarization potentials furnish
a good description of the experimental data and both the CDE
potential and the LRN potential are needed to explain the
breakup reaction.
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