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Energy dependence of the nucleus-nucleus potential and the friction parameter in fusion reactions
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Applying a macroscopic reduction procedure to the improved quantum molecular dynamics (ImQMD)
model, the energy dependences of the nucleus-nucleus potential, the friction parameter, and the random force
characterizing a one-dimensional Langevin-type description of the heavy-ion fusion process are investigated.
Systematic calculations with the ImQMD model show that the fluctuation-dissipation relation found in symmetric
head-on fusion reactions at energies just above the Coulomb barrier fades out when the incident energy increases.
It turns out that this dynamical change with increasing incident energy is caused by a specific behavior of the
friction parameter which directly depends on the microscopic dynamical process, i.e., on how the collective
energy of the relative motion is transferred into the intrinsic excitation energy. It is shown microscopically that
the energy dissipation in the fusion process is governed by two mechanisms: One is caused by the nucleon
exchanges between two fusing nuclei, and the other is due to a rearrangement of nucleons in the intrinsic system.
The former mechanism monotonically increases the dissipative energy and shows a weak dependence on the
incident energy, while the latter depends on both the relative distance between two fusing nuclei and the incident
energy. It is shown that the latter mechanism is responsible for the energy dependence of the fusion potential and
explains the fading out of the fluctuation-dissipation relation.
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I. INTRODUCTION

The energy dissipation process observed in heavy-ion
reactions ranging from deep-inelastic collisions to sub-barrier
fusions has been described by various macroscopic transport
models [1–14]. Although many of these macroscopic models
are very successful in predicting the cross section of compound
nucleus formation, their microscopic foundation, e.g., how
the two colliding nuclei fuse and how the relative kinetic
energy dissipates into the intrinsic energy, still requires further
research.

Besides these macroscopic transport models, many micro-
scopic approaches such as the time-dependent Hartree-Fock
(TDHF) theory [15–28], the many-body correlation transport
theory [29], and the quantum molecular dynamics (QMD)
[30,31], the antisymmetrized molecular dynamics [32,33],
and the fermion molecular dynamics [34] models have been
developed. It is worth mentioning that, among the TDHF
approaches, there have been proposed new methods in recent
years such as the dissipative-dynamics (DD) TDHF [22,23]
and the density-constrained (DC) TDHF [35,36] theories,
which intend to explore how the macroscopic collective be-
havior of two colliding nuclei described by the Langevin-type
equation appears as a result of huge dimensional microscopic
dynamics. With the aid of these methods, the incident energy
dependences of the macroscopic potential, the collective
inertia parameter, as well as the friction force have been derived
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from microscopic TDHF simulations, the discussions of which
are made in relation to the internal structure change of the
colliding nuclei.

As is widely accepted, the above subject of heavy-ion fusion
processes is related to a more general problem, i.e., how to
get a deeper understanding of various macroscopic collective
behaviors of nonequilibrium systems—which are currently
studied in many fields of sciences, e.g., in physical and
chemical as well as biological systems—by exploiting state-
of-the-art ab initio numerical simulations of the molecular
dynamics model [37,38].

Recently, we proposed a macroscopic reduction proce-
dure based on the improved quantum molecular dynamics
(ImQMD) model, aiming at exploring how the macroscopic
Langevin-type equation emerges out of the microscopic
dynamics in a finite quantum many-body system such as an
atomic nucleus [39]. We found that the dissipation dynamics
of the relative motion between two fusing nuclei is caused
by a non-Gaussian distribution of the random force. A clear
non-Markovian effect was also observed in the time correlation
function of the random force. Note that the non-Gaussian
fluctuation is a general feature in nonequilibrium systems
ranging from cosmoscopic [40,41], to mesoscopic [42,43],
to microscopic systems [44]. Furthermore, as discussed in
Ref. [45], the non-Markovian dynamics were relevant in many
fields and applications.

In this paper, we further develop our macroscopic reduction
procedure applicable to the ImQMD model. An extension is
based on a new method [46] which projects the effects of
intrinsic degrees of freedom onto the collective subspace by
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transforming the time scale into a macroscopic collective space
scale. With the aid of this macroscopic scale transformation,
we explicitly extract the effects of intrinsic degrees of freedom
in a convenient form that is appropriate for discussing the
dynamical change of the fusion reaction from the adiabatic
regime to the diabatic one. Exploiting the representation
obtained after the transformation, one may clearly discuss how
the dynamical role of the intrinsic system changes when the
incident energy increases and how the energy transfers from
collective motion to the intrinsic one, which is found to be
carried out through both nucleon transfer between two fusing
nuclei and the rearrangement effects in the intrinsic system.

The paper is organized as follows. In Sec. II, we briefly
introduce the ImQMD model and recapitulate the macro-
scopic reduction procedure of the ImQMD model proposed
in Ref. [39]. Applying the macroscopic reduction method
of the ImQMD model to the 90Zr +90 Zr head-on fusion
reaction, in Sec. III, numerical results on the incident energy
dependences of the random force, the fluctuation-dissipation
relation, and the fusion potential are discussed. In Sec. IV,
we introduce various macroscopic quantities by further de-
veloping the macroscopic reduction procedure suitable for
exploring the macroscopic dissipative motion. Applying these
new quantities to the numerical simulations of the ImQMD
model, it is clearly shown that the energy dissipation is
characterized by two competitive microscopic processes. The
energy dependence of the fluctuation-dissipation relation and
that of the fusion potential are consistently explained as a result
of these competitive factors. Concluding remarks are given in
Sec. V. In the Appendix, we give the derivation of the energy
dissipation due to the nucleon exchange.

II. ImQMD MODEL AND THE MACROSCOPIC
REDUCTION PROCEDURE

A. ImQMD

As in the original QMD model [30] and in various modern
versions of QMD models [47–54], a trial wave function for a
nucleus in the ImQMD model [55–59] is restricted within a
parameter space {rj ,pj }, where rj and pj are mean values
of position and momentum operators of the j th nucleon
expressed by a Gaussian wave packet, and the total wave
function is a direct product of these wave functions of Gaussian
form. With the aid of a Wigner transformation, a nucleus
composed of distinguishable N nucleons is characterized by
the following one-body phase space distribution function,

f (r,p) =
∑

i

1

(π�)3
exp

[
− (r − ri)2

2σ 2
r

− 2σ 2
r

�2
(p − pi)

2

]
, (1)

and the density distribution function is expressed as

ρ(r) =
∫

f (r,p)dp

=
∑
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1(
2πσ 2
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)3/2 exp

[
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where σr represents the spatial width of the nucleon wave
packet.

The time evolution of the system in question is governed
by a set of canonical equations of motion

ṗi = −∂H

∂ri

, ṙi = ∂H

∂pi

, (3)

which is derived from the time-dependent variational principle
[30,32,34]. Upon that, collisions are included in the ImQMD
simulations and the scattering angle of a single nucleon-
nucleon collision is randomly chosen in such a way that the
distribution of the scattering angles of all collisions agrees
with the measured angular distribution for elastic and inelastic
collisions [30]. The Hamiltonian H consists of the kinetic
energy and an effective interaction potential energy,

H = T + Uloc + UCoul. (4)

Here, UCoul denotes the Coulomb energy and the nuclear
potential energy Uloc is expressed as

Uloc =
∫

Vloc[ρ(r)]dr,

Vloc[ρ] = α

2
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. (5)

In the present paper, Vloc[ρ] is defined by applying the effective
Skyrme interaction energy density functional without the spin-
orbit term. The isospin asymmetry δ = (ρn − ρp)/(ρn + ρp)
where ρ, ρn, and ρp are the nucleon, neutron, and proton
densities, respectively. In the present work, the parameter set
IQ2 is used [60].

After integration, one obtains the local interaction potential
energy:
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where
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and ti = +1 for protons and −1 for neutrons. The Coulomb
energy is expressed as the sum of the direct and the exchange
contributions:

UCoul = 1

2

∫∫
ρp(r)

e2

|r − r′|ρp(r′)dr′dr

+ e2 3

4

(
3

π

)1/3 ∫
ρ4/3

p dr. (8)
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For low-energy nuclear reactions, the Pauli principle plays
an important role [34,61]. In the ImQMD model, by using the
phase space occupation constraint method [62], the fermionic
properties of nucleons are approximately taken into account.

Many ImQMD simulations are made and each of them is
called one event. We examine the average properties of these
events and the deviation of each event from the average. For
each event, to prepare the initial nuclei for the projectile and
the target, the position and momentum of each nucleon are
randomly given under certain macroscopic conditions, such as
the binding energy and the radius. Numerical details can be
found in Refs. [63,64].

B. Macroscopic reduction procedure for the ImQMD model

Since we focus on symmetric fusion reactions with the
impact parameter equal to zero, we can introduce a separation
plane at the center of mass (CoM) of the whole system, and
divide the whole system into the left- (projectile-like) and
right- (target-like) half parts. The relative motion between two
CoMs of the left and right parts is chosen to be the relevant
degree of freedom to be described by the Langevin equation.

The one-dimensional generalized Langevin equation with
memory effects is given as [2,65–67]

dP (t)

dt
= −

∫ t

−∞
γ (t − t ′)P (t ′)dt ′ + δF (t) − dU (R)

dR
, (9)

where P (t) is the relative momentum between two parts,
δF (t) is the random force felt by either part, and U (R) is
the collective potential between two parts. The first term on
the right-hand side represents the retarded friction force.

Based on this stochastic equation, in the ImQMD simula-
tions, the mean value of the relative momentum 〈P 〉R between
two CoMs at a given R is defined as

〈P 〉R ≡ 1

n

n∑
i=1

Pi(ti)|{ti |Ri (ti )=R} , (10)

where Pi(t) and Ri(t) are the momentum and position of the
ith event at time t . The time ti for the ith event is chosen in
such a way that the relative distance takes a given value R, i.e.,
Ri(ti) = R. In the present work, various macroscopic variables
are discussed as a function of relative distance R instead of
time t , because R characterizes how near the two nuclei locate.
In Eq. (10) and hereafter, 〈Q〉 denotes an average of Q over all
events. When it does not cause any confusion, we hereafter use
the same notation Q(R) for a single event Qi(R) as well as for
the average 〈Q(R)〉 = ∑n

i=1 Qi(R)/n otherwise mentioned.
A collective potential for the relative motion is defined as

U (R) = Etot(R) − Eleft(R) − Eright(R), (11)

where Etot(R), Eleft(R), and Eright(R) represent the energy
of the total system and those of the left and right parts,
respectively. Each of them consists of the kinetic energy
and the nuclear and the Coulomb potential energies, and
numerical results of U (R) are shown in Figs. 2 and 3(b). The
DC- and DD-TDHF models have been applied to extract the
collective potentials between two nuclei [22,68], and gave

features similar to those obtained in the present work and in
other QMD simulations [69,70].

With the collective potential and the momentum, we define
the collective energy as

Ecoll(R) = Tcoll(R) + U (R),

Tcoll(R) = 〈P 〉2
R

2μ
,

(12)

where μ is the reduced mass of the system. After the two
nuclei contact each other, μ becomes dependent on the relative
distance R and Ec.m. [22,23,64]. As our discussion is limited
to regions of R and Ec.m. where μ does not change much, in
this work we take it to be a constant.

In the ImQMD simulations, the random force for the ith
event is defined as

δFi(R) ≡ F i(R) − 〈F (R)〉, (13)

F i(R) ≡
A∑

j=1

f
j
i (t)

∣∣∣
{t |R(t)=R}

, (14)

〈F (R)〉 ≡ 1

n

n∑
i=1

F i(R), (15)

where f
j
i (t) denotes, in the ith event, the force acting on the

j th nucleon due to all other nucleons in the two fusing nuclei,
A is the number of nucleons contained in the left (right) part,
and n is the total number of events.

The fluctuation-dissipation relation links the energy dissi-
pation of the collective energy Ecoll(R) to the fluctuation force
originated from the microscopic dynamics, both of which play
decisive roles in the macroscopic description of dissipation
phenomena. In the ImQMD simulations, the strength of the
fluctuation is characterized by

〈δF (R)δF (R)〉 ≡ 1

n

n∑
i=1

δF i(R)δF i(R). (16)

Assuming the work done by the collective motion against
the friction force is completely converted into the intrinsic
energy Eintr(R), we get a relation

Eintr(R) ≡ Ec.m. − Ecoll(R), (17)

where Ec.m. means the initial bombarding energy. With the aid
of the Rayleigh dissipation function [71,72] defined as

F ≡ μγ (R)(dR/dt)2, (18)

where γ (R) expresses the friction parameter without consid-
ering the non-Markovian effects, the rate of energy loss from
the collective motion (which is equivalent to the energy gain of
the intrinsic system under the above assumption) is expressed
as dEintr = Fdt . From these relations, one gets

dEintr(R)

dR
= μγ (R)

dR

dt
= γ (R)P. (19)

The friction parameter γ0 under the Markovian approximation
is expressed as

γ0(R) ≡ 〈Ffric(R)〉
〈P 〉R , Ffric(R) ≡ dEintr(R)

dR
. (20)
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FIG. 1. (Color online) Root mean square of the random force
distribution as a function of relative distance R. Each inset shows
a typical distribution in regions I, II, and III respectively. In the inset
corresponding to a typical distribution in region II, the distribution is
shifted so that the symmetric Gaussian distribution centers at δF = 0,
but the mean value of the random force is still zero. The pink diamond
is the root mean square of the random force after eliminating events
in the asymmetric tail as shown by the inset in region II.

It should be noticed that the R dependence of the friction pa-
rameter γ (R) contains sensitive information on the dynamics
of energy transfer from the collective motion to the intrinsic
degrees of freedom, because it depends on the derivative of
the collective potential U (R) with respect to R.

III. INCIDENT ENERGY DEPENDENCE OF
FLUCTUATION AND DISSIPATION

A. Random force in the ImQMD simulations

Figure 1 shows the width of the random force, which is
defined as the root mean square of δF (R), i.e., the square
root value of the strength of fluctuation defined in Eq. (16).
In the case of Ec.m. = 195 MeV, the width of the random
force turns out to be a smooth function of relative distance R,
reaching a peak at R ∼= 11 fm which locates slightly inside of
the Coulomb barrier and then levels out after a small down
slope. At R = 30 fm where we start our numerical simulation,
the fluctuation comes from the randomness of the position
and momentum of each particle at the initial time when each
event is initialized under the macroscopic conditions. This
fluctuation propagates following the equation of motion (3).
Since the scattering angles of the nucleon-nucleon collisions
are randomly chosen in such a way that the distribution of the
scattering angles of all collisions agrees with the measured
angular distribution for elastic and inelastic collisions in the
QMD model [30], the randomness coming from the scattering
may also contribute to the fluctuation. According to the shape
of the distribution of the random force, we divide the whole
process into three regions [39]. As is seen from Fig. 1, the width
is narrow and stays unchanged at 15 � R � 30 fm (region I),
indicating the stability of ImQMD simulations.

In region II (11 � R � 15 fm) where the two nuclei are
going to merge into one nucleus, one may see that the width has

FIG. 2. (Color online) The strength of random force 〈δF (R)
δF (R)〉tot [red dots, in (MeV/fm)2] and the friction coefficient γ0(R)
(blue squares, in 0.001 c/fm) at Ec.m. = 195, 205, 215, and 235 MeV,
respectively. The grey line shows the potential U (R). Pink diamonds
represent 〈δF (R)δF (R)〉sym which is obtained by eliminating events
in the asymmetric tail.

a growing asymmetric component in addition to the symmetric
Gaussian. It turns out [39] that the asymmetric distribution is
caused by a small number of events where a few nucleons are
exchanged between two nuclei; these nucleons play a role in
opening a window. In the majority of events which contribute
to the main part of the Gaussian distribution, all nucleons split
well into two separated groups, expressing a projectile nucleus
and a target nucleus and keeping their initial stable mean-fields.
As can be seen in Fig. 1, after eliminating those events where
a few nucleons are exchanged between two nuclei, one gets
a Gaussian distribution for the random force (the dark blue
part in the inset corresponding to R = 13.5 fm) and a smaller
root mean square of the random force displayed by the pink
diamond in region II.

After this merging stage, we may see that the width of the
random force in region III has again a Gaussian shape which
is, however, two order of magnitude wider than that in region
I. The main origin of this enlargement is caused by the above
discussed transferred nucleons that feel the nuclear force from
the other nucleus. It is an open question whether this factor is
related to the formation of a neck or not [4,8,9,12,73–79].

Figure 2 shows how the strength of random force and the
friction parameter γ0(R) defined in Eq. (20) change depending
on the initial bombarding energy Ec.m.. One may see that the
fluctuation 〈δF (R)δF (R)〉 and the friction coefficient γ0(R) at
Ec.m. = 195 MeV show similar shapes and their peaks locate at
the same point. Such a bumped shape in the friction parameter
near the Coulomb barrier energy is also observed in the DD-
TDHF calculations [23,24].

When Ec.m. increases, the friction parameter exhibits a
sizable energy dependence. Comparing the case of Ec.m. =
195 MeV with that of Ec.m. = 205 MeV [Figs. 2(a) and 2(b)],
one may recognize that the peak in the friction parameter
disappears, while the strength of the random force keeps
its shape almost unchanged. That is, a similarity between
these two curves at energies just above the Coulomb barrier
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gradually disappears as Ec.m. increases. When Ec.m. increases
more, the friction parameter shows a monotonically increasing
behavior [Figs. 2(c) and 2(d)]. At the region near the barrier
top, 11 � R � 12 fm, that is, the initial stage of fusion just
after the capture, the higher the incident energy, the smaller
the friction parameter, while the situation becomes reversed
when the two colliding nuclei come closer to each other.

Note that in the ImQMD simulations, the nucleon collision
effects are included in addition to the one-body dissipation.
From the above discussions, it is seen that the ImQMD model
gives energy dependence and magnitude of the friction pa-
rameter similar to those of the TDHF calculations [23,24,80],
indicating a dominance of one-body dissipation in the energy
region under discussion.

B. Incident energy dependences of collective
kinetic, potential, and intrinsic energies

Recently, it has become clear that the collective potential
U (R) exhibits rather sensitive energy dependence when Ec.m.

is near the Coulomb barrier energy [22,80,81]. It has been
discussed that this energy dependence might be related to
the dynamical change from an adiabatic to a sudden fusion
process: The two fusing nuclei have enough time to rearrange
their intrinsic structure when Ec.m. is just above the Coulomb
barrier energy, and the nonadiabatic effects gradually play
a role as Ec.m. increases. However, the above arguments are
mainly based on the bulk information such as the density distri-
bution of many nucleons, without referring to any microscopic
dynamics of individual nucleons. Next we investigate the
incident energy dependences of the collective kinetic energy
Tcoll(R) ≡ Ecoll(R) − U (R), the potential energy U (R), and
the intrinsic energy Eintr(R) with the microscopic ImQMD
model.

Figure 3(a) shows the R dependence of the collective
kinetic energy Tcoll(R) as a function of relative distance
at Ec.m. = 195 MeV and Ec.m. = 235 MeV. In the case of
Ec.m. = 195 MeV, the main part of the collective kinetic energy
has already changed into a form of collective potential energy
just after the collective motion overcomes the Coulomb barrier
at R ∼= 12.5 fm. Since there remains about 3 MeV of rather
constant collective kinetic energy in 8 � R � 11.5 fm as is
shown in the inset of Fig. 3(a), the fusing process takes
place very slowly. In the case of Ec.m. = 235 MeV, after
passing through the barrier, the collective kinetic energy takes
an almost ten times larger value than that in the case of
Ec.m. = 195 MeV, and shows continuous down slope without
reaching a constant value. Here, it should be mentioned that
the dissipated energy (equivalent to Eintr) at Ec.m. = 235 MeV
is much smaller than that at Ec.m. = 195 MeV in the region
9 � R � 11.5 fm, as shown in Fig. 3(c), for the same reason
that the friction parameter gets reduced as Ec.m. increases. This
point will be clarified in Sec. IV.

By comparing Eintr(R) in Fig. 3(c) with U (R) and Tcoll(R)
in Figs. 3(a) and 3(b), one finds that the dissipated energy
at Ec.m. = 235 MeV is around 30 MeV smaller than that at
195 MeV, while U (R) is around 30 MeV larger at R ∼= 10 fm.
This means that the friction force is not proportional but
inversely proportional to the momentum of the collective

FIG. 3. (Color online) (a) Collective kinetic energy Tcoll(R) =
Ecoll(R) − U (R), (b) potential energy U (R), and (c) intrinsic energy
Eintr(R) as functions of relative distance R. The red line represents
results at Ec.m. = 195 MeV and the blue line shows results at
Ec.m. = 195 MeV. In (a), the inset shows the kinetic energy from
8 to 10 fm at Ec.m. = 195 MeV. In (b), the light grey line shows the
potential energy calculated under the frozen approximation.

motion at the initial stage of fusion process at R ∼= 10 fm. In
Fig. 3(b), the grey line shows the potential energy calculated
under the frozen approximation, i.e., the potential calculated
by fixing the density distribution of the projectile and target
and making them overlap at a given R. The barrier height is
about 182 MeV. The deviation of U (R) from this potential
energy under the frozen approximation could be attributed to
the rearrangement effect of all the intrinsic degrees of freedom,
which will be discussed in the next section.

IV. MICROSCOPIC DYNAMICS OF ENERGY DISSIPATION

In the previous section, we discussed Ec.m. dependence
of the nucleus-nucleus potential U (R) as well as that of
the friction parameter γ0(R). Since the significant Ec.m.

dependence occurs near the Coulomb barrier energy where
the applicability of the adiabatic approximation is gradually
replaced by that of the sudden approximation when Ec.m.

increases, let us introduce new macroscopic quantities and
further develop the macroscopic reduction procedure.
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A. New quantities based on the macroscopic
reduction procedure

In this subsection, we discuss how the collective energy is
transferred into the intrinsic one by dividing the dissipation
into two processes. The first one is caused by the nucleon
transfer which takes place frequently between the left and
right parts of the whole system, and the amount of energy
transferred from the relative kinetic energy to the intrinsic one
up to a point R is given by Tdiss(R) in Eq. (A2) in the Appendix.

To discuss the second process of dissipation, we pay
attention to F i

intr(R) for the ith event which expresses the
difference between the force obtained by differentiating the
nucleus-nucleus potential U (R) in Eq. (11) and that obtained
by summing all the nucleon-nucleon forces in Eq. (14). F i

intr(R)
is defined as

F i
intr(R) ≡ F i

tot(R) − F i
coll(R),

= F i
tot(R) ≡ −∂Ui(R)

∂R
, F i

coll(R) ≡ F i(R), (21)

where Ui(R) and F i(R) for the ith event are given in Eqs. (11)
and (14), respectively. For the sake of convenience, F i

coll(R)
and F i

tot(R) will be called the collective force and the total
nucleus-nucleus force, respectively. Corresponding to the
collective force F i

coll(R), one may introduce another potential
Ui

coll(R) defined by

Ui
coll(R) ≡ −

∫ R

∞
F i

coll(R
′)dR′, Ui

coll(∞) = 0, (22)

which expresses the work done by the collective system against
F i

coll(R) up to the point R. Using Ucoll(R) together with U (R)
in Eq. (11), in addition to the difference in Eq. (21), one may
further introduce a difference

W (R) = −
∫ R

∞
dR′(F i

tot − F i
coll

)

= −
∫ R

∞
dR′Fintr(R

′). (23)

As is well known, the reduction of many-body dynamics
onto a one-dimensional collective space inevitably introduces
additional effects coming from the intrinsic degrees of free-
dom, besides the genuine effect within the collective space.
That is, F i

intr(R) and W (R) originally acting in the intrinsic
space are expressed as the additional force and additional
potential in the collective space because of eliminating the
intrinsic degrees of freedom, and of changing the time scale
into the collective space scale introduced in Eq. (10). More
generally, it is shown analytically [46] that the dynamics
in the collective system and that in the intrinsic system are
distinguishable when one applies the macroscopic reduction
procedure on the ImQMD simulations.

The additional potential W (R) is then regarded as the work
done by the intrinsic system to rearrange its state which has
been disturbed by the transferred nucleons. In other words,
−W (R) represents the second process which changes the
energy in the intrinsic system. With the aid of W (R) and
Tdiss(R), the total amount of energy transferred from the

relative motion to the intrinsic one is given by

Ediss(R) = Tdiss(R) − W (R), (24)

where the former is from the collective kinetic energy through
the nucleon transfer, and the latter is due to the rearrangement
of the intrinsic system.

To test our calculation, we may pay attention to a new
quantity defined through

Kdiss(R) ≡ Ec.m. −
{

P 2

2μ
+ Ucoll(R)

}
, (25)

where Ucoll(R) is defined in Eq. (22). It should be noticed that
there holds an energy conservation law within the collective
degree of freedom as

Ec.m.
∼= Tdiss(R) +

{
P 2

2μ
+ Ucoll(R)

}
, (26)

where Tdiss(R) means the dissipated energy due to nucleon
exchange defined in Eq. (A2) as mentioned at the beginning
of this subsection, provided that there holds the relation

Tdiss(R) ∼= Kdiss(R). (27)

In the following, the validity of Eq. (27) will be shown with
numerical simulations. By using Eq. (24), the approximate
energy conservation law in Eq. (26) is then expressed as

Ec.m.
∼= Ediss(R) + P 2

2μ
+ Ucoll(R) + W (R). (28)

Since the relation

Eintr(R) ≈ Ediss(R), (29)

is satisfied (cf. Fig. 5 and relevant discussions), Eq. (28) is
reduced to Eq. (17) which expresses an energy conservation
of the total system.

B. Two microscopic processes of energy dissipation

Making clear what information we get from the energy
dependence of the collective potential U (R), we first examine
Fintr(R). It expresses what happens in the intrinsic system
when many nucleons are exchanged between two nuclei, and
when two nuclei closely approach each other. It also tells us
how these effects subsequently develop inside of the intrinsic
system, which are usually considered as the rearrangement of
the intrinsic system.

As is seen from Fig. 4, our numerical simulation tells us
that Fintr(R) takes positive value in the range of 10.5 � R �
12.5 fm (10.0 � R � 12.5 fm) and negative value at R �
10.5 fm (R � 10 fm) in the case of Ec.m. = 195 (Ec.m. = 235)
MeV. It is also recognized from this figure that Fintr(R) in the
case of Ec.m. = 195 MeV shows much stronger R dependence
than that of Ec.m. = 235 MeV. A steep slope of Fintr(R) in
the region 9 � R � 11 fm at Ec.m. = 195 MeV indicates that
the rearrangement of the intrinsic system takes place more
strongly than in the case of Ec.m. = 235 MeV.

Since the intrinsic system is kept unchanged in the region
R > 12.0 fm irrespective of Ec.m., which is expected from
Fig. 3(c), it is reasonable that Fintr(R) does not take any appre-
ciable value in this region. In the case of Ec.m. = 195 MeV, the
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FIG. 4. (Color online) Fintr(R), the difference between the total
nucleus force Ftot = −∂U (R)/∂R and the collective force Fcoll(R)
for the cases of (a) Ec.m. = 195 MeV and (b) Ec.m. = 235 MeV. “I”
and “II” in each subfigure correspond to regions I and II defined in
Fig. 1.

adiabatic approximation is expected to be applicable because
of a strong rearrangement of the intrinsic system. In the case
of Ec.m. = 235 MeV, however, there appears a more gentle
slope which indicates a rather weak rearrangement effect in
the intrinsic system. In this case, the main parts of original
nuclei invade into each other with much shorter distance R
so that the frozen density and/or sudden approximation may
make more sense than in the case with Ec.m. = 195 MeV.

Let us discuss W (R), which is the integrated value of the
difference Fintr(R). Equation (24) tells us that the increase of
Ediss(R) comes from two sources, i.e., Tdiss(R) and W (R). As is
discussed in the Appendix, the former comes from the nucleon
transfer between two fusing nuclei, enhances the dissipation,
and might be related to the window effect. On the other hand,
the latter is caused by the rearrangement process of the intrinsic
system. Namely, the disturbance due to the nucleon exchange,
and the subsequent process of forming a new state like an
excited mean-field in the intrinsic system, play a role to first
enhance the dissipation and subsequently to suppress it.

In Fig. 5, two microscopic sources of dissipation Tdiss(R)
and W (R), and their combined effects Ediss(R) in comparison
with Eintr(R) defined in Eq. (17) are shown. Figures 5(c)
and 5(d) show that the relation given in Eq. (29) holds well
irrespective of the initial bombarding energy. From this figure,
one may conclude that the energy transfer from the collective
motion to the intrinsic one in the region 8 � R � 11.5 fm can
be understood microscopically as follows. First, the nucleon
exchange process always contributes largely to the dissipation,
and the dissipated energy Tdiss(R) can reach around 150 MeV.
Second, the rearrangement effect of the intrinsic system
may either enhance or suppress the dissipation, depending
on the relative distance R. Third, the rearrangement effect
is very sensitive to the incident energy. For the case of
Ecm = 195 MeV, the rearrangement effect is very pronounced
and −60 < W (R) < 40 MeV. This is because the fusion takes
place slowly and there is much time for the whole system

FIG. 5. (Color online) Two microscopic sources of dissipation
and their comparison with an increase of intrinsic energy. (a)
Tdiss(R) is from the nucleon exchange process. (b) W (R) is due
to the rearrangement effects in the intrinsic system. (c) and (d)
show the difference between two processes Ediss = Tdiss(R) − W (R)
compared to the intrinsic energy Eintr(R) at Ec.m. = 195 MeV and
Ec.m. = 235 MeV respectively.

to rearrange nucleons. In other words, the fusion process
occurs adiabatically. However, for the case of Ecm = 235
MeV, the rearrangement effect is less pronounced and −20 <
W (R) < 20 MeV. In this case, the fusion is mainly diabatic.
The adiabatic or diabatic characteristics in the fusion will be
discussed in more detail in next subsection.

From the above numerical results, one may see that the
nucleus-nucleus interaction Ftot(R) is reduced to the simple
summation of constituent forces Fcoll(R), provided there are no
internal correlations in the intrinsic system. Namely Fintr(R)
in Eq. (21) expresses the amount of correlations inside the
intrinsic system.

Concluding this subsection, we pay attention to another
approximate way of calculating Tdiss(R) given by Eq. (A2).
In Fig. 6, we show the calculated Ucoll(R) and Kdiss(R).
Comparing Fig. 6(b) with Fig. 5(a), one can draw a conclusion
that the relation in Eq. (27) holds. That is, the dissipation
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FIG. 6. (Color online) (a) Calculated value of Ucoll(R) as a func-
tion R. (b) Calculated value of Kdiss(R) = Ec.m. − P 2/2μ − Ucoll(R)
as a function R defined in Eq. (25).

energy due to the nucleon exchange Tdiss(R) is well reproduced
by Kdiss(R) defined in Eq. (25) which only takes account of the
potential Ucoll(R) without considering the internal correlation
W (R) of the intrinsic system.

C. Adiabatic versus diabatic processes

In the previous subsection, it is clearly shown that the fusion
potential U (R) observed in Fig. 3(c) can be divided into two
different components Ucoll(R) and W (R) which are depicted in
Figs. 6(a) and 5(b), respectively. Since the energy dependence
of W (R) is discussed in the previous subsection, let us explore
the energy dependence of Tdiss(R) which gives information on
the incident energy dependence of Ucoll(R). From Figs. 5(a)
and 6(b), the most important point to be explored on the energy
dependence of Tdiss(R) and Kdiss(R) is why the collective
energy dissipation through the nucleon transfer occurs more
frequently at remote distance in the case of Ec.m. = 195 MeV
than the case of Ec.m. = 235 MeV.

In Fig. 7(a), the nucleon exchange rate defined as the
number of nucleons which go through the separation plane
per unit time is shown as a function of R. In the region
9.5 � R � 13 fm, there is almost no appreciable incident
energy dependence in the nucleon exchange rate, though it
becomes larger in the case of Ec.m. = 235 MeV than the case
of Ec.m. = 195 MeV for R � 9.5 fm. In Fig. 7(b), the total
number of nucleons Nex(R) which have ever transferred up
to a distance R is shown. From Fig. 3(a), one may see that
the kinetic energy of relative motion around R ≈ 13 fm at
Ec.m. = 235 MeV is more than 40 MeV larger than that at
Ec.m. = 195 MeV. Namely, the velocity in the former case
is a few times faster than that in the case of Ec.m. = 195
MeV. From Figs. 3(a) and 7(b), one may recognize that, at
Ec.m. = 235 MeV, the nuclei approach each other too fast to
exchange a comparable amount of nucleons as that in the
case of Ec.m. = 195 MeV. In other words, the two nuclei at
Ec.m. = 235 MeV keep a much larger part of their original

FIG. 7. (Color online) (a) Nucleon exchanging rate as a function
of relative distance. (b) Total number of nucleons which have ever
transferred from the left (or right) part to the right (or left) part. The
red and blue lines represent two cases with Ec.m. = 195 and 235 MeV,
respectively.

shapes into a small relative distance R than at Ec.m. = 195
MeV. This mechanism explains the rather slow startup of the
Tdiss(R) and Kdiss(R) in the case of Ec.m. = 235 MeV observed
in Figs. 5(a) and 6(b). Since the relation given in Eq. (25)
holds, the above discussed diabatic aspect of the nucleon
transfer process and the large collective momentum in the
region 8 � R � 11 fm for the case of Ec.m. = 235 MeV are
two microscopic ingredients to determine the amount of work
Ucoll(R) done by the collective degrees of freedom.

In order to show whether or not our microscopic discussion
based on the role of Fintr(R) [and W (R)] is consistent with the
understanding obtained by the density profile, the densities
at Ec.m. = 195 MeV and Ec.m. = 235 MeV, as well as those
corresponding to the frozen density at different R are depicted
in Fig. 8(a). The density profile under the frozen density
approximation is obtained by fixing the density distribution
of the projectile and target and making them overlap at a given
R by hand. An obvious difference in the density distribution
among these three cases is observed at the central part or the
“neck” region of the system. This situation is displayed more
clearly by the densities along the reaction axis shown in Fig.
8(b), which shows the nucleon number densities along the
reaction axis Z with X = Y = 0 at R = 10.5 fm. From these
figures, one may learn that the density at Ec.m. = 195 MeV
in the neck region is obviously higher than the case at
Ec.m. = 235 MeV, and the latter case gives a profile similar
to that of the frozen density. This lower density at the neck
region in the latter case just corresponds to the smaller number
of transferred nucleons, which explains the slower startup of
the transfer process Tdiss(R) in the case of Ec.m. = 235 MeV.

D. Friction parameter

We are now in the position to discuss the energy dependence
of the friction parameter γ0(R) shown in Fig. 2. According to
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FIG. 8. (Color online) (a) Density profiles obtained in ImQMD
for different relative distances R at Ec.m. = 195 MeV and 235 MeV
and those with the frozen density. The abscissa axis is the reaction
axis Z and the vertical axis is axis Y . (b) Nucleon number density
along the reaction axis Z with X = Y = 0 at relative R = 10.5 fm
obtained by the ImQMD model. The red line represents the density
at Ec.m. = 195 MeV, the blue line at Ec.m. = 235 MeV. The dark
grey dashed line is the density with frozen density; the light grey
dashed-dotted lines are densities for projectile and target.

the macroscopic reduction procedure, the friction parameter is
derived in Eq. (20). Consequently, the energy dependence of
the friction parameter is directly related to that of the nucleus-
nucleus fusion potential, which is shown in Fig. 3(b). From
Figs. 3(b) and 3(c), one may recognize that the U (R) and
Eintr(R) at Ec.m. = 195 MeV show an inflection point at R ≈
11.5 fm, while at Ec.m. = 235 MeV such an inflection point
does not exist. This inflection point is responsible for the peak
structure of the friction parameter shown in Fig. 2(a).

Using Eintr(R) � Ediss(R), and from Eqs. (20) and (24), the
friction parameter can also be expressed as

γ0(R) = 1

〈P 〉R

〈(
dTdiss(R)

dR
− ∂W (R)

∂R

)〉
. (30)

which tells us that the friction parameter is determined by
two microscopic processes, i.e., the nucleon exchange and the
rearrangement. Since the R dependence of Tdiss(R) does not
have the inflection point irrespective of the incident energy
in Fig. 5(a), one may see that the first derivative of Tdiss(R)

FIG. 9. (Color online) R dependence of the friction parameter
caused by two competitive microscopic processes at (a) Ec.m. =
195 MeV and (b) Ec.m. = 235 MeV. The blue dashed line shows
effects of nucleon exchange. The pink dashed line shows effects of
rearrangement in the intrinsic system.

with respect to R does not show a strong incident energy
dependence. On the other hand, −W (R) shown in Fig. 5(b)
has a strong incident energy dependence.

In Fig. 9, the R dependence of the friction parameter is
shown together with the two components originating from
two different microscopic processes. The bumped structure of
the friction parameter in the case of Ec.m. = 195 MeV can be
understood to be a pronounced intrinsic effect at R � 11 fm
[cf. Fintr(R) shown in Fig. 4]. This bumped structure disappears
rather quickly as Ec.m. increases, because the rearrangement
effects of the intrinsic system around R ∼= 11.0 fm become
small, which is observed from Fig. 4.

Concluding this ubsection, some comments on the validity
of the fluctuation-dissipation relation should be addressed.
As is mentioned above, the Ec.m. dependence of the friction
parameter is directly related to the rearrangement effects in
the intrinsic system expressed by Fintr(R). On the other hand,
the fluctuation δF (R) is related to Fcoll(R) which does not
depend on the rearrangement taking place in the intrinsic
system, and the shape change in the correlation function of
the fluctuation does not show an energy dependence as is seen
from Fig. 2. According to these different microscopic effects
on the friction parameter and on the fluctuation force, the
fluctuation-dissipation relation realized at Ec.m. = 195 MeV
breaks down when the incident energy increases.

V. CONCLUDING REMARKS

In this paper, we have systematically studied the incident
energy dependence of the nucleus-nucleus potential, that of
the friction parameter, as well as that of the random force in
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heavy-ion fusion reactions, by applying the macroscopic re-
duction procedure based on the ImQMD numerical simulation.
Making the discussion clear, we focus our attention on the
head-on fusion reaction of the symmetric 90Zr+90Zr system at
energies above the Coulomb barrier and pay special attention
to the fluctuation-dissipation relation.

It should be mentioned that our discussion is based on
a separation of the total nucleus-nucleus force Ftot(R) into
the collective part Fcoll(R) and the intrinsic part Fintr(R).
Although the latter also depends on the relative distance R
rather than the intrinsic coordinates, one may regard W (R) as
the work performed by the intrinsic system against Fintr(R).
A theoretical justification of this point will be given in Ref.
[46], where a reduction of the many-body dynamics onto one-
dimensional collective space is discussed. In the present paper,
it is numerically shown that the relation given in Eq. (27) holds,
i.e., Tdiss(R) ≈ Kdiss(R) which gives another justification for
the above separation. By exploiting the procedure appropriate
for the ImQMD numerical simulations, the first step is made
toward the understanding of macroscopic fusion dynamics, as
a result of clarifying the microscopic nucleonic motion.

We note that more study should be performed with
nonzero impact parameters and for different reaction systems,
particularly for asymmetric reactions. The spin-orbit coupling
has been shown to be very important in low-energy heavy-ion
fusion reactions [19,27]. Furthermore, it was also found
that the negative shell correction energies lower potential
barriers [53]. Therefore, more dissipations are expected if
these effects are included in the ImQMD simulations. Finally,
detailed investigations should also be made about the influence
of two-body collisions on the dissipation process in fusion
reactions at energies around the Coulomb barrier.
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APPENDIX: DERIVATION OF Tdiss(R)

Let us discuss the nucleon exchange process between two
nuclei with mass M = Am where m denotes the nucleon mass
and A the number of nucleons in the nucleus. Since we are
interested in head-on symmetric heavy-ion collisions, we focus

FIG. 10. (Color online) The basic processes of nucleon exchange
between two fusing nuclei.

on the one-dimensional case depicted in Fig. 10 in which only
the right part of the system is shown.

At certain time t0, the right part with mass mA is assumed
to move toward the left part with the momentum P0, and the
kinetic energy T

(0)
R = P 2

0 /2mA. In the fusion reaction, there
occur many nucleon transfers between two nuclei which are
characterized by two basic processes depicted in Fig. 10. The
one denoted as Process A is to get an additional nucleon with
a momentum p1 heading to the right, which is originally from
the left part of the system. The other shown as Process B is
to lose one nucleon with a momentum p1 heading to the left.
After the ith nucleon transfer process, the kinetic energy of
the right part denoted as T

(i)
R is expressed as

T
(i)
R = P 2

i

2mAi

, Pi = Pi−1 − pi, Ai = Ai−1 + πi,

πi =
{+1, nucleon from the left involved,
−1, nucleon from the right involved,

i = 1,2, . . . , A0 = A, (A1)

where i counts the number of nucleon transfer processes after
t0. The difference between the kinetic energy at the initial
time t0 and that after the ith nucleon transfer process is then
expressed as Tdiss(i) = P 2

0 /2mA − P 2
i /2mAi . We denote the

number of nucleons which have been exchanged up to a given
relative distance R as Nex(R). Then one-half of the total
dissipation energy of the collective motion at R is expressed
as

Tdiss(R) = P 2
0

2mA
− P 2

Nex(R)

2mANex(R)
,

PNex(R) = P0 −
Nex(R)∑
i=1

pi, (A2)

ANex(R) = A0 +
Nex(R)∑
i=1

πi.

Here, it should be mentioned that the sum of the dissipation
energy in Eq. (A2) and the amount of increased energy in the
intrinsic kinetic energy of the right (left) part is easily proven to
be zero. Namely, the amount of energy lost from the collective
motion through the nucleon exchange is just the same amount
as that which is increased in the intrinsic system.
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