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Fission dynamics at low excitation energy
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The mass asymmetry in the fission of 236U at low excitation energy is clarified by the analysis of the trajectories
obtained by solving the Langevin equations for the shape degrees of freedom. It is demonstrated that the position
of the peaks in the mass distribution of fission fragments is determined mainly by the saddle point configuration
originating from the shell correction energy. The width of the peaks, on the other hand, results from the shape
fluctuations close to the scission point caused by the random force in the Langevin equation. We have found out
that the fluctuations between elongated and compact shapes are essential for the fission process. According to our
results the fission does not occur with continuous stretching in the prolate direction, similarly to that observed in
starch syrup, but is accompanied by the fluctuations between elongated and compact shapes. This picture presents
a new viewpoint of fission dynamics and the splitting mechanism.
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I. INTRODUCTION

Since the discovery of fission of uranium in 1938 [1,2],
the principle of this phenomenon was studied owing to its
scientific interest. The application of fission process to the
supply of power was realized soon after its discovery. However,
the mass-asymmetric fission remained a puzzle as far as nuclei
were described in the analogy with the liquid drop [3]. The
origin of the asymmetry in the mass distribution of fission
fragments (MDFFs) nowadays is related to the shell structure
of the fissioning nucleus. Many theoretical dynamical models
have been applied to nuclear fission at low excitations in an
attempt to explain its mechanism [4–9].

To investigate the time evolution of the nuclear shape during
the fission process a dynamical approach using the Langevin
equation can be used. In our previous study [10] this approach
was applied to the fission of 234,236U and 240Pu at low excitation
energies with account of the shell structure of these nuclei. In
these calculations we obtained an asymmetric MDFF and the
total kinetic energy (TKE) of the fission fragments that agreed
well with the experimental data.

In the present work, we attempt to clarify the origin of the
asymmetric MDFF of 236U at a low excitation energy by the
analysis of the time evolution of nuclear shape and trajectories
calculated within the Langevin approach. We have found the
factors determining the positions and widths of the peaks in
the MDFF: The former is mainly related to the positions of
the fission saddle, which is influenced by the shell correction
energy, and the latter is related to the thermal fluctuation caused
by the random force in the Langevin equation close to the
scission point.

In addition, we observed a new phenomenon in the
mechanism of fission dynamics: the fluctuation of the shape
of fissioning nucleus between the compact and elongated
configurations on the way to the scission point. By comparing
the TKE of the fission fragments obtained experimentally and
by our calculation, we confirmed that such a configuration
is realized there. This leads to the picture in which the fission

does not occur in the manner of starch syrup, which grows with
continuous stretching until the neck radius gets very small.

Below we present the arguments in favor of this new
interpretation of fission dynamics at low excitation energy. The
paper is organized as follows. In Sec. II, we describe in detail
the framework of the model. In Sec. III, we discuss the potential
energy landscape and reveal the effect of the shell structure
on the mass-asymmetric fission of 236U at E∗ = 20 MeV by
analyzing the dynamical trajectories. In Sec. IV, we investigate
the configuration at the scission point. In Sec. V, the TKE of
the fission fragments is discussed. A short summary of this
study and further discussion are presented in Sec. VI.

II. THE MODEL

We use the fluctuation-dissipation model and employ the
Langevin equations [11] to investigate the dynamics of the
fission process. The nuclear mean field is defined by the two-
center shell-model potential [12,13] which includes the central
part, ls and l2 terms. The central part consists of two oscillator
potentials smoothly joined by the fourth order polynomial.
Within the two-center shell-model parametrization (TCSMP)
the shape is characterized by five deformation parameters: the
distance z0 between the centers of left and right oscillator
potentials, the deformations δ1 and δ2 of the left and right
oscillator potentials, the neck parameter ε, and the mass
asymmetry α = (A1 − A2)/(A1 + A2), where A1 and A2

denote the mass numbers of heavy and light fragments [11] (in
case of the shape separated into two fragments) or the masses
of the right and left parts of the compact nucleus. Please note
that within TCSMP the shape is divided in parts by the point
z = 0.

The formal definition of these parameters is given in the
Appendix and demonstrated in Fig. 9.

To reduce the computation time we use in this work the
restricted deformation space. We assume that the parameters
δ1 and δ2 are the same, δ1 = δ2 = δ. The parameters δ1 and δ2
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fix the deformation of potential in the “outer” region, namely
for z � z1 or z2 � z (see Fig. 9). The deformation of fragments
depends not only on δ1 and δ2 but on all other parameters, z0,ε,
and α. Changing elongation or mass asymmetry one can get
the fragments with different deformation even if δ1 is put equal
to δ2.

The neck parameter ε is kept fixed. Here, like in the previous
works, we use the value ε = 0.35, which was recommended
in Ref. [14] for the fission process. Keeping ε fixed does not
mean that the neck radius is fixed. It is clearly demonstrated by
Fig. 9 in the Appendix. The neck radius in TCSMP depends on
all deformation parameters. When we change the elongation,
mass asymmetry or deformation of fragments the neck radius
changes, too.

Thus, with three deformation parameters z0,α, and δ we
take into account the three most important degrees of freedom
for the fission process: elongation, mass asymmetry, and the
neck radius.

For the sake of convenience, like in previous works,
instead of z0 we employ the scaled coordinate z̄0 defined as
z̄0 = z0/(RCNB), where RCN denotes the radius of a spherical
compound nucleus and B is defined as B = (3 + δ)/(3 − 2δ).
The three deformation parameters z̄0,α, and δ are considered
as the dynamical variables.

These three collective coordinates may be abbreviated as q,
with q = {z̄0,α,δ}. For a given value of the intrinsic excitation
energy characterized by the temperature T the potential energy
is defined as the sum of the liquid-drop (LD) part and the
microscopic (SH) part,

V (q,T ) = VLD(q) + VSH(q,T ),

VLD(q) = ES(q) + EC(q),

VSH(q,T ) = [�Eshell(q) + �Epair(q)]�(T ),

�(T ) = exp(−āT 2/Ed). (1)

In (1) the VLD is the potential energy calculated with the finite-
range liquid drop model [15], given by the sum of the surface
energy ES and the Coulomb energy EC. The microscopic
energy VSH at T = 0 is calculated as the sum of the shell
correction energy �Eshell and the pairing correlation correction
energy �Epair. We assume that the angular momentum of
fissioning nucleus at the low excitation energy is not large,
so the rotational energy is not included in (1).

The �Eshell is calculated by Strutinsky method [16,17]
from the single-particle levels of the two-center shell model
potential [12,18,19] as the difference between the sum of
single-particle energies of occupied states and the averaged
quantity.

The Epair was evaluated in the BCS approximation follow-
ing [17,20]. The averaged part of the pairing correlation energy
was calculated assuming that the density of single-particle
states is constant over the pairing window. The pairing strength
constant was related to the average gap parameter �̃ by solving
the gap equation in the same approximation and adopting for
�̃ the value �̃ = 12/

√
A suggested in [20] by considering the

empirical results for the odd-even mass difference.
The Ed in (1) is the damping parameter of the shell

correction chosen to be equal to 20 MeV like in [21]. In the
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FIG. 1. Deformation dependence of the potential energy of 236U
at T = 0 calculated by TWOCTR with fixed δ = 0,α = 0, and ε =
0.35. The VLD and VLD + VSH are denoted by the dashed and solid
lines, respectively. The short-dashed line shows the VLD + �Eshell.

level density parameter [22] both the shell effects [21,23] and
the dependence of average part ã on the deformation were
taken into account,

ā =
{

1 + VSH(T = 0)

Eint

[
1 − exp

(
− Eint

Ed

)]}
ã(q),

(2)
ã(q) = a1A + a2A

2/3Bs(q),

with A being the mass number of fissioning nucleus and Bs

the reduced surface energy (see [24]). The Eint in (2) is the
intrinsic excitation energy [see (6) below], calculated at each
step of integration of equations of motion.

To calculate the potential energy, we employed the
macroscopic-microscopic method and TWOCTR code of the
two-center shell model [18,19,25]. In this code, the parameters
of the finite-range liquid drop model [15] are used r0 = 1.20
fm, a = 0.65 fm, as = 21.836 MeV, and κs = 3.48, where r0

and a are the nuclear-radius constant and the range of the
Yukawa folding function, as and κs are the surface energy
constant and the surface-asymmetry constant, respectively.
The potential energy VLD and VLD + VSH (denoted by the dash
and solid lines, respectively) for 236U with δ = 0,α = 0, and
ε = 0.35, calculated by TWOCTR is presented in Fig. 1.

We assume that the temperature dependence of the mi-
croscopic energy VSH is expressed by the factor �(T ) in
Eq. (1). This dependence was suggested long ago [6] and
was confirmed by many years of experience. We are aware
that temperature dependence of �Eshell and �Epair is not
the same (see also [26,27]). Within the BCS approximation
the pairing correlations disappear above critical temperature
Tcrit ≈ 0.5 ÷ 0.6 MeV while the �Eshell becomes negligible
small at T ≈ 2 MeV. In the present calculations at E∗ =
20 MeV in most cases the local temperature is larger than the
Tcrit. However, even at T = 0 the �Epair is small compared
with �Eshell; see Fig. 1 (the short-dashed line shows the
VLD + �Eshell). So, the use of approximation (1) should not
lead to a large inaccuracy of calculated results.

054609-2



FISSION DYNAMICS AT LOW EXCITATION ENERGY PHYSICAL REVIEW C 90, 054609 (2014)

In our previous study [10], we discussed the temperature
dependence of the shell correction energy and the effect of this
dependence on the fission process and the MDFF for 236U at
E∗ = 20 MeV. Using the several values of the shell damping
energy, we investigated the affection of the MDFF. We have
found out that the gross features of MDFF did not change so
much in this system.

The multidimensional Langevin equations [11] are given as

dqi

dt
= (m−1)ijpj ,

(3)
dpi

dt
= Ki − 1

2

∂

∂qi

(m−1)jkpjpk

− γij (m−1)jkpk + gijRj (t),

where qi = {z̄0,δ,α} and pi = mijdqj/dt is a momentum
conjugate to coordinate qi . The summation is performed over
repeated indices. The conservative force in (3) is represented
by the derivative of free energy with respect to deformation,
Ki ≡ −∂F/∂qi , with F (q,T ) = V (q,T ) − āT 2.

The mij and γij in (3) are the shape-dependent collective
inertia and the friction tensors, respectively. The wall-and-
window one-body dissipation [28–30] is adopted for the
friction tensor which can describe the pre-scission neutron
multiplicities and total kinetic energy of fragments simul-
taneously [31]. A hydrodynamical inertia tensor with the
Werner-Wheeler approximation for the velocity field [32] was
used here.

The normalized random force Ri(t) is assumed to be that
of white noise, i.e.,

〈Ri(t)〉 = 0, 〈Ri(t1)Rj (t2)〉 = 2δij δ(t1 − t2). (4)

The strength of the random force gij is related to the friction
tensor γij by the classical Einstein relation,∑

k

gikgjk = γijT . (5)

In principle, the inertia and friction tensors may contain
the shell effects, too. To account for these effects one could
consider the microscopic transport coefficients calculated,
for example, within the linear response theory and local
harmonic approximation [33–35]. It turns out that friction
tensor calculated by the microscopic model is temperature
dependent and much smaller than that calculated by the
macroscopic model at low temperature. As it follows from
the present calculations, the MDFF does not depend much on
the magnitude of the friction tensor [10]. So, in the present
work we use the macroscopic friction and inertia tensors. The
investigation of the role of shell effects in the collective inertia
and friction coefficients will be the subject of future work.

The temperature T is related to the intrinsic excitation
energy of the composite system as Eint = āT 2, where Eint

is calculated at each step of a trajectory calculation as

Eint = E∗ − 1
2 (m−1)ijpipj − V (q,T = 0). (6)

The excitation energy of compound nucleus E∗ is given by
E∗ = Ecm − Q, where Q denotes the Q value of the reaction.

The calculation starts from the ground state, which is lo-
cated at z̄0 = 0.0,δ = 0.2,α = 0.0. For the initial distribution
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FIG. 2. The comparison of the mass distribution of fission
fragments calculated with (dashed line) and without (solid line)
account of the āT 2 term in (3).

of collective velocities we assume that at the initial moment
the collective kinetic energy of the system is zero. Very soon
after the start of the calculation the state of the system becomes
close to the statistical equilibrium. Such initial conditions are
very close to that used in earlier dynamical calculations [36].

The fission events are determined in our calculations by
classification of different trajectories in the deformation space.
Fission from a compound nucleus is defined as the case that a
trajectory overcomes the scission point on the potential energy
surface. The scission point is assumed here to be given by the
configuration with zero neck radius.

In Fig. 2 we demonstrate the role of āT 2 in the potential
energy in Langevin equations (3). As it is seen from the figure
the use of the energy instead of free energy in (3) does not
influence much the MDFF of 236U at E∗ = 20 MeV. So, in
all calculations reported below, the term āT 2 in the potential
energy in Langevin equations (3) was neglected.

III. THE ORIGIN OF THE MASS-ASYMMETRIC FISSION

In our previous study [10], we investigated the fission
of 236U at the excitation energy E∗ = 20 MeV and have
calculated the MDFF, which turned out to agree well with
experimental data showing that the mass-asymmetric com-
ponent of the distribution of fission fragments is dominant.
In the present paper we try to clarify the origin of the
mass-asymmetric fission events of 236U at low excitation
energy by analyzing the dynamical trajectories in our model.

To understand the behavior of trajectories and their contri-
bution to the MDFF, we first consider the simple case when
the shell effects are neglected and only the liquid drop energy
VLD contributes to the potential energy surface (PES).

Figure 3 shows the trajectories calculated with and without
account of random force. To demonstrate the relation to the
potential energy the trajectories are placed on the potential
energy surface VLD projected onto the z̄0-α plane (top) and
onto the z̄0-δ plane (bottom).
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FIG. 3. (Color online) The examples of trajectories of the fission
process of 236U at E∗ = 20 MeV projected onto the z̄0-α plane of VLD

δ = 0.24 (top) and on the z̄0-δ plane of VLD at α = 0 (bottom). The
trajectories calculated without random force start at the saddle point.

The trajectories calculated without account of random force
(heavy solid blue line) start at the saddle point deformation and
move down to the separation region along the potential slope
because of the drift force −∂F/∂qi in Eq. (3). However, the
trajectory does not move along the line of steepest descent.
This is a dynamical effect from the coupling between z̄0

and δ degrees of freedom and the fact that the z̄0z̄0 and
δδ components of mass tensor are very different. When the
nondiagonal components of mass tensor are neglected (dash
red line) the trajectory moves, indeed, along the line of steepest
descent (see bottom part of Fig. 3).

In case that the random force is taken into account, the
trajectories (thin solid white lines) show the oscillations in the
direction of −45◦ on the z̄0-δ plane.

We have analyzed the reason for this special direction
and found out that it originates from the properties of the
friction tensor, mainly the nondiagonal terms, via the Einstein
relation. The detailed explanation will be given separately in
a forthcoming paper.
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FIG. 4. (Color online) Sample trajectory projected onto the z̄0-
α plane at δ = 0.2 (top) and the z̄0-δ plane α = 0.0 (bottom) of
VLD + E0

shell with ε = 0.35 for 236U. The trajectory starts at the ground
state {z̄0,δ,α} = {0.0,0.2,0.0} at E∗ = 20 MeV. The fission saddle
points are indicated by the symbol ×. The scission lines are denoted
by the white lines.

Figure 4 shows the sample trajectories to the mass-
asymmetric fission region calculated with account of both of
the shell effects and random force, placed on the potential
energy surface VLD + E0

shell and projected onto the z̄0-α plane
(top) and z̄0-δ plane (bottom). Similarly to the calculation
in Ref. [10], the trajectories start at {z̄0,δ,α} = {0.0,0.2,0.0},
which corresponds to the ground state of the potential energy
surface. One can see that trajectories remain at the ground
state (the first minimum) and the second pocket for quite a
long time. They even reach large z̄0 values of z̄0 = 1.5 − 1.75.
However, they do not move along a straight line to the
separation region on the mass-symmetric fission path. Instead,
the trajectories pass through the saddle points before moving
to the scission region. It is seen that the trajectories leading
to mass-asymmetric fission escape from the region around
{z̄0,α} ∼ {0.8, ± 0.2}. In Fig. 4, the fission saddle points are
indicated by the symbol ×.

It is seen that the mass-asymmetric fission originates from
the trajectories that overcome the fission saddle points located
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FIG. 5. Nuclear shapes around the scission point of 236U. The dot,
solid, and dashed line corresponds to the nuclear shape at {z̄0,δ,α} =
{2.5, −0.2,0.2}, {2.5,0,0.2},and {2.5,0.2,0.2}.

at the mass asymmetry corresponding to the position of the
peak of the MDFF, where A ∼ 140. One can note also that the
trajectory on the z-δ plane fluctuates in the direction of −45◦,
as shown in Figs. 3 and 4. Even after overcoming the fission
saddle point, such oscillations are observed up to the scission
point.

The reason of these fluctuations may be understood in the
following way.

We know from the analysis in [37] that the mass distribution
of fission fragments of 236U can be described in terms of three
fission modes. Two of them are mass asymmetric, the so-called
standard and super-short modes. They differ by the elongation
of the shape in the scission region. In principle, there should be
two mass-asymmetric valleys in the potential energy surface
shown in the bottom part of Fig. 4. In principle, by fluctuations
the system can jump from one valley to another. We do not
see the two valleys in PES, but the landscape of potential
energy is very flat in the direction smaller elongation ⇐⇒
larger elongation (−45◦). Within TCSM smaller elongation
⇐⇒ larger elongation corresponds to positive δ ⇐⇒ negative
δ (please, see the demonstration in Fig. 5).

If the potential PES is flat even small random force can
cause the shape fluctuations of large amplitude. Something
like this is observed in present calculations.

So, we would interpret the fluctuations on the way to the
scission point observed in our calculations as the transitions
between compact and elongated shapes, that both contribute
to the mass distributions and TKE.

IV. THE WIDTH OF PEAK IN MDFF

The oscillations of the trajectories is a very important
feature of the fission dynamics. After overcoming the fission
saddle point, as shown in Fig. 4, the trajectories fluctuate
frequently and move down the potential slope step by step. The
direction of the oscillation is neither parallel nor perpendicular
to the contour lines of the potential energy surface. The
trajectories climb and descend the potential slope in the
result of the random force and drift force, respectively.
Correspondingly, the nuclear shape fluctuates around some

average value as demonstrated in Fig. 5. The edges of nuclear
shape with δ < 0 (dotted line in Fig. 5) are oblate, the curvature
of the edge sides is smaller as compared with the spherical
shape (δ = 0). In spite of the negative δ parameter, the total
shape of heavy and light fragments is, of course, prolate
(quadruple moments of left and right parts of fissioning nucleus
close to the scission point are positive).

Because of fluctuations, the nuclear fission does not occur
with continuous stretching, as exhibited by starch syrup.
Beyond the saddle and around the scission point the vibration
of the length and breadth of the fissioning fragments takes
place until the nucleus is split suddenly into two pieces by a
strong vibration of the length (−δ direction), which reduces the
density in the neck region [38]. We can conclude that the width
of the peaks of the MDFF is determined by such fluctuations
near the scission point. Because the calculation in [10] MDFF
is in good agreement with the experimental data, it supports our
conclusion that the vibration of the nuclear shape is essential
to describe nuclear fission correctly.

V. NUCLEAR SHAPE AT SCISSION POINT AND THE
TOTAL KINETIC ENERGY

In Sec. IV, we pointed out that the nuclear shape with
a negative δ, particularly around the scission point, is very
important in fission dynamics. The motion of trajectories in
the negative δ direction driven by the random force leads to
the splitting into fragments. The examples of nuclear shapes
around the scission point are presented in Fig. 5. The shape
denoted by the dotted line is close to that obtained using the
statistical scission model in Fig. 5 of Ref. [39].

The distribution of the deformation parameter δ at the
scission point for the fission of 236U at E∗ = 20 MeV is shown
in Fig. 6. One can see that the contribution of fragments with
negative values of δ is dominant.

To clarify the configuration at the scission point, we
investigate the TKE of the fission fragments. The scission
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FIG. 6. The calculated distribution of fission events in the
deformation parameter δ at the scission point for the fission of 236U
at E∗ = 20 MeV.
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FIG. 7. The TKE distribution of the fission events of 236U at
E∗ = 20 MeV.

configuration is defined as the shape with neck radius equal to
zero [10], and the TKE is assumed to be given by

TKE = VCoul + Epre , (7)

where VCoul and Epre are the Coulomb repulsion energy of
point charges of fragments and the pre-scission kinetic energy.
The VCoul is defined as VCoul = Z1Z2e

2/D, where Z1 and Z2

are the charges of each fragment, and D is the distance between
centers of mass of the left and right parts of the nucleus at the
scission point. We do not assume that the distance between
centers of mass is that of the nascent fragments, like it is done
in the statistical models to calculate the TKE.

The precision kinetic energy Epre is the kinetic energy,

Ekin = 1
2 (m−1)ijpipj , (8)

calculated at the scission point. The average of Epre over all
fission events is equal to 7.03 MeV. So, the main contribution
to the total kinetic energy comes from the Coulomb repulsion
of fission fragments.

For the average value of TKE of the fission fragments
〈TKE〉 of 236U at E∗ = 20 MeV we obtained 〈TKE〉 =
169.5 MeV, what is in agreement with the experimental data
(168.2 ∼171 MeV) [40]. Because of this agreement with
the experimental data for the TKE, we conclude that the
configuration at the scission point is compact, such as that
shown by the dotted line in Fig. 5.

The TKE distribution of the fission fragments of this system
is shown in Fig. 7. The distribution is approximately Gaussian.

Figure 8 shows the distribution of fission events in the total
kinetic energy and parameter δ. From this figure one can see
the correlation between the TKE and the value of parameter
δ at the scission line. The configuration with a negative δ
corresponds to the compact shape. The TKE of such fragments
is higher than that of fragments with a positive δ. The fissioning
fragments with the compact configuration are dominant in this
system.
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FIG. 8. (Color online) The distribution of fission events of 236U
at E∗ = 20 MeV in the TKE and the parameter δ.

VI. SUMMARY

In the present paper we investigated the fission process
at low excitation energy using the Langevin equations. By
analyzing the trajectories calculated within our model [10],
we have clarified the contributions of the mass-asymmetric
fission events of 236U at low excitation energy. In this way we
gave an explanation for the mass-asymmetric fission of 236U
by the dynamical approach based on the fluctuation-dissipation
theorem.

The mass distribution of fission fragments of 236U at
E∗ = 20 MeV is mass asymmetric. We have found out that
the position of the peak is related to the position of the saddle
point, which is defined mainly by the shell correction energy.
To escape from the potential pocket around the ground state
or the second minimum, almost all trajectories pass through
the fission saddle point and move to the mass-asymmetric
fission region. After overcoming the fission saddle points,
the trajectories fluctuate frequently from the random force
in the Langevin equation and approach the scission point. The
fluctuation around the scission point determines the widths of
the peaks of the MDFF.

By analyzing the fission process and investigating the shape
evolution, we have found that the motion in the negative δ
direction around the scission point is essential for the fission
process. We stress that nuclear fission does not occur with
continuous stretching, such as that observed in starch syrup.
Rather, because of the shape vibration of the length and breadth
of the fissioning fragments, the nucleus is suddenly split by a
strong vibration in the negative δ direction. Such a mechanism
in fission dynamics and the configuration with negative δ
values at the scission point are supported by the fact that the
calculated MDFF and TKE show good agreement with the
experimental data in Ref. [10].

In addition, we pointed out that the trajectories do not
always move along the bottom of the potential energy valley
owing to the random force, nor fluctuate around the trajectory
without the random force (mean trajectory). Although the
analysis of the fission process using the static potential energy
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surface gives reasonable results in some cases, it is not enough
to describe the complicated dynamics of the fission process. In
this paper, we stress the importance of the dynamical treatment
of the fission process.

As further study, we plan to improve the model by
increasing the number of variables, namely by introducing
independent deformation parameters δ1 and δ2 for each frag-
ment. We have also to consider the effects of nuclear structure
on the transport coefficients and the fact that Einstein relation
that does not hold true at low excitation energies [33–35].
Moreover, the neutron emission from the fissioning system
and from the fission fragments should be included in the
model. With such improvements of the model, we aim to
diminish the differences between the calculated MDFF and
the experimental data.

ACKNOWLEDGMENTS

The present study comprises the results of the “Comprehen-
sive study of delayed-neutron yields for accurate evaluation of
kinetic of high-burn up reactors” entrusted to Tokyo Institute
of Technology by the Ministry of Education, Culture, Sports,
Science and Technology of Japan (MEXT). The authors are
grateful to Dr. A. Iwamoto, Professor M. Ohta, Professor
T. Wada, Dr. K. Nishio, Dr. A. V. Karpov, and Professor
V. I. Zagrebaev for their helpful suggestions and valuable
discussions. Special thanks are given to Mr. K. Hanabusa (HPC
Systems Inc.) for his support in operating the high performance
computer.

APPENDIX

The momentum independent part V (ρ,z) of the TCSM
Hamiltonian is formed by the two deformed oscillator po-
tentials joined smoothly by the fourth order polynomial in z,

V (ρ,z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2mω2

z1 (z − z1)2 + 1
2mω2

ρ1 ρ2, z � z1
1
2mω2

z1 (z − z1)2f1(z,z1)

+ 1
2mω2

ρ1 ρ2f2(z,z1), z1 � z � 0
1
2mω2

z2 (z − z2)2f1(z,z2)

+ 1
2mω2

ρ2 ρ2f2(z,z2), 0 � z � z2
1
2mω2

z2 (z − z2)2 + 1
2mω2

ρ2 ρ2, z2 � z;

(A1)

see Fig. 9. Here m is a nucleon mass and ωz,ωρ are the
oscillator frequencies in z and ρ directions. The functions
f1 and f2 are given by

f1(z,zi) = 1 + ci(z − zi)/zi + di(z − zi)
2/z2

1 ,

f2(z,zi) = 1 + gi(z − zi)
2/z2

1 . i = 1,2. (A2)

The potential V (ρ,z) is characterized by 12 parameters
[see (9)]. After imposing the condition that the parts of
potential are joined smoothly at z = z1,z = z2, and z = 0
the number of independent parameters is reduced to five: the
distance z0 = z2 − z1 between centers of oscillator potentials,
the mass asymmetry α, the deformation δ1 and δ2 of the left
and right oscillator potentials, and the neck parameter ε. The
neck parameter ε is given by the ratio of the potential height

E

E
0

V(z)

zz
0

ε=E/E0

b
2 b

1
a

2

z
0

a
1

FIG. 9. The z dependence of the potential V (ρ,z) (9) (top) and
the example of the equipotential surface of potential V (ρ,z) (bottom).
The neck parameter ε is defined as the ratio of the smoothed potential
height E at z = 0 to the original one E0.

E at z = 0 to the value E0 of left and right harmonic oscillator
potentials at z = 0 (which should be the same) (see Fig. 9).

All the parameters appearing in (A1) are expressed in terms
of these five deformation parameters,

z1 = −z0 ωz2/(ωz1 + ωz2), z2 = z0 ωz1/(ωz1 + ωz2),

c1 = c2 = 2 − 4ε, d1 = d2 = 1 − 3ε (A3)

g1 = −ω2
ρ1 − ω2

ρ2

ω2
ρ1

ωz2

ωz1 + ωz2
, g2 = ω2

ρ1 − ω2
ρ2

ω2
ρ2

ωz1

ωz1 + ωz2
.

The ratio of oscillator frequencies ωρ/ωz or the ratio of
semiaxes in the ρ and z directions are related to the deformation
parameters δi ,

ωρi

ωzi

= ai

bi

=
(

1 − 2

3
δi

)/(
1 + 1

3
δi

)
; (A4)

see Fig. 9. Notice that δi < 1.5 because ai > 0 and bi > 0.
The ratio ωρ1/ωρ2 should be found numerically from the

condition (VL − VR)/(VL + VR) = α, where VL and VR are
the volumes of the left and right parts of the nucleus. In TSCM
parametrization the shape is divided in parts by the point z = 0.

The parameter ε is defined in the same way as in
Refs. [12,41]. With ε < 1, the surface of two fragments shows
the smooth curve at the connecting point of them. On the other
hand, in the case of ε = 1, the two fragments are connected
with a sharp point like the top of a cone.

We define the sharp surface shape of the fissioning nuclei
ρ(z) as that given by the equipotential surfaces of potential
V (ρ,z), i.e., by the equation,

V (ρ(z),z) = V0. (A5)
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FIG. 10. The examples of shapes (13) for a few values of z0 at
fixed α = 0, δ1 = δ2 = 0, ε = 0.35.

The constant V0 in (13) is found from the requirement that the
volume inside the equipotential surface is equal to the volume
of the spherical nucleus.

The advantage of the two-center shell model parametriza-
tion is that in addition to the degrees of freedom for the
elongation, mass asymmetry and neck radius commonly used
in the theory of nuclear fission it allows the independent
variation of the deformation of the left and right parts of the
nucleus (fragments). In addition, this parametrizaton describes
both the compact shapes and the separated fragments which
makes it possible to describe fusion and fission processes
within the same shape parametrization.

Please note that the neck radius depends on all five
deformation parameters. Even keeping neck parameter ε fixed
one can get a full variety of fission shapes from the sphere to
the two separated fragments (see Fig. 10).
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