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Mixing of parity of a nucleon pair at the nuclear surface due to the spin-orbit potential in 18F
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We investigate the structure of 18F with the microscopic wave function based on the three-body 16O + p + n

model. In the calculation of the generator coordinate method of the three-body model, T = 0 energy spectra of
J π = 1+, 3+, and 5+ states and T = 1 spectra of J π = 0+, 2+ states in 18F are described reasonably. Based on
the dinucleon picture, the effect of the spin-orbit force on the T = 0 and T = 1 pn pairs around the 16O core
is discussed. The T = 1 pair in the J π = 0+ state gains the spin-orbit potential energy involving the odd-parity
mixing in the pair. The spin-orbit potential energy gain with the parity mixing is not so efficient for the T = 0
pair in the J π = 1+ state. The parity mixing in the pair is regarded as the internal symmetry breaking of the pair
in the spin-orbit potential at the nuclear surface.
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I. INTRODUCTION

Motivated by the progress of experimental research on
unstable nuclei, the interest in proton and neutron (pn) pair
correlations has been revived in recent years, and pn pairing
in proton-rich nuclei near the Z = N line has been intensively
investigated. The importance of the pn pairing has been
discussed for a long time (see Refs. [1–3] and references
therein). In the recent studies of the pn pairing, the competition
between isoscalar T = 0 pairing and isovector T = 1 pairing
has been attracting a great interest. Moreover, the possibility of
the T = 0 and T = 1 mixed pairing has been studied with the
recently developed mean-field approaches including isospin
mixing [4–6]. The pn pairing also has been discussed in
relation with the Wigner energy in even-even nuclei, and more
explicitly, its role in four-nucleon α-like correlations has been
investigated in recent works [7,8].

The competition between T = 0 pairing and T = 1 pairing
is one of the essential problems in Z ∼ N nuclei. As is well
known, the nuclear interaction in free space is more attractive
in the T = 0 spin-triplet even (3E) channel than in the T = 1
spin-singlet even (1E) channel, as shown by the fact that the
T = 0 pn system forms a bound state, a deuteron. Because
the T = 0 interaction is considered to be stronger than the
T = 1 interaction also in nuclear medium and at the nuclear
surface, it is expected naively that the deuteronlike T = 0
pair is more favored than the T = 1 pair. Nevertheless, as
seen in the ground-state spins of the odd-odd nuclei, the
T = 1 pairing is often favored over the T = 0 pairing except
for light nuclei [9]. Many theoretical calculations have been
achieved to investigate the competition between the T = 0
and T = 1 pairing and suggested that the T = 1 pairing rather
than the T = 0 pairing occurs in the ground states of many
Z = N medium-mass nuclei [5,10–17]. The origin of the
suppression of the T = 0 pairing has been discussed from the
standpoint of the coupling of single-particle angular momenta,
and the important role of the spin-orbit force in the T = 0 and
T = 1 pair competition has been pointed out [5,12,15–18].
Namely, the spin-orbit potential tends to suppress more the

T = 0, J = 1 pairing than the T = 1, J = 0 pairing because
the S-wave component of the relative motion between two
nucleons in the j 2 configuration is much smaller for the T = 0,
J = 1 pair than for the T = 1, J = 0 pair.

However, it has been theoretically suggested that, in
rotational states, the T = 0 pairing is more favored than the
T = 1 pairing in the high-spin region [19–24]. Recently, a
spin-aligned pn pair in medium-mass N = Z nuclei has been
reported in the experimental work [25], which has stimulated
the subsequent theoretical studies [26,27].

The trend of the pn pairing condensation can be understood
by the feature of one pn pair. That is, a T = 0 pn pair
is suppressed in low-spin states, while it can persist in a
rotating system. In the recent work by Tanimura et al. [28],
the pn correlation in a single pair around a core has been
systematically studied within the three-body potential model
calculation, and it has been shown that the spin-orbit potential
plays an important role in the suppression of the pn pair in the
T = 0, Jπ = 1+ state. It means that the properties of a pn pair
around a core reflects the basic feature of the pn correlation,
and the study of one pn pair can be helpful to understand the
pn pairing phenomena in nuclei.

Our aim is to investigate features of a pn pair around a core
nucleus and clarify the mechanism how the spin-orbit field
affects the pn pair. In the present work, we discuss the effect
of the spin-orbit force from the standpoint of the two-nucleon
cluster (dinucleon) picture. A proton and a neutron bound in
the potential from the core nucleus are expected to form a
deuteronlike T = 0 pair at the nuclear surface because of the
nucleon-nucleon attraction in the 3E channel. Similarly to the
T = 0 pair, because of the 1E attraction a proton and a neutron
may also form a T = 1 pair, which is the analog state of the nn
pair in a system of two neutrons around a core. The T = 0 and
T = 1 pn pairs are not necessarily the same as the two-nucleon
(quasi)bound states in free space, but the pair called dinucleon
is regarded as a virtual bound state of spatially correlating two
nucleons confined in the central potential from the core.

In the central potential without the spin-orbit potential, the
lowest T = 0 and T = 1 states of two nucleons are the pure
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FIG. 1. Schematic figures for two nucleons in the pair in the spin-
orbit potential at the nuclear surface. The effect of the spin-orbit field
on the ↑Y ↓Y pn pair (the opposite boost in the antiparallel-spin pair)
and that on the ↑Y ↑Y pn pair (the rotation boost of the parallel-spin
pair) in the body-fixed frame XYZ are shown in the top and bottom
panels, respectively.

even-parity (T S) = (01) and (T S) = (10) states without the
odd-parity mixing because the Hamiltonian for two nucleons
is invariant with respect to the exchange of the coordinates of
nucleons r1 ↔ r2 in the pair and conserves the internal parity
of the pair. Then, considering the spin-orbit potential as a per-
turbative field, we discuss how the T = 0 and T = 1 pn pairs
are affected by the external perturbative field. This dinucleon
picture is different from the usual mean-field picture in the jj
coupling scheme, in which the central and spin-orbit potentials
are considered to be unperturbative fields and pair correlations
are caused by the residual pn interaction (see Appendix A).

The present work is based on the following idea in the
dinucleon picture. Suppose that two nucleons in the (T S) =
(01) pair located at a position on the Z axis have intrinsic
spins oriented to the Y axis, as shown in bottom panels of
Fig. 1. When the perturbative field of the spin-orbit potential
is imposed, two nucleons in the pair are boosted to have
finite momenta along the X axis, i.e., the finite orbital angular
momenta around the core so as to gain the spin-orbit potential
energy. The boosting of two nucleons in the same direction
does not change the internal structure of the pair but it
causes the rotation of the center-of-mass (c.m.) motion of the
pair around the core. It means that high-spin states gain the
spin-orbit potential energy without the internal energy loss
of the pair, while the zero orbital angular momentum L = 0
state cannot gain the spin-orbit potential. Thus, the dinucleon
picture provides a simple interpretation for the reason why the
T = 0 pn pair can persist in a rotating system although the
T = 0 pn pair may be relatively unfavored by the spin-orbit
force in the low-spin state.

Moreover, we find further interesting phenomenon of the
symmetry breaking, that is, the parity mixing in the T = 1 pn
pair. Suppose that two nucleons in the (T S) = (10) pair have

antiparallel intrinsic spins oriented to the Y axis as shown in the
top panels of Fig. 1. In the potential with the spin-orbit field,
the internal parity symmetry is explicitly broken because the
spin-orbit potential is not invariant with respect to r1 ↔ r2 for
the spin-up and -down nucleons in the pair. Two nucleons in the
pair are boosted along the X axis in the opposite direction so as
to gain the spin-orbit potential energy. As a result of the oppo-
site boost, the parity mixing of the (T S) = (10) and (11) occurs
in the T = 1 pair. In other words, the role of the spin-orbit force
on the T = 1 pair is the internal parity mixing owing to the op-
posite boost of antiparallel-spin nucleons in the pair (“opposite
boost” in the pair), while that on the T = 0 pair of parallel-spin
nucleons is “rotation boost” of the pair for high L states.

Similar phenomenon of parity mixing of pairs has been
discussed recently in the condensed-matter physics [29]. The
parity mixing of Cooper pairs has been suggested to occur
because of the spin-orbit interaction in noncentrosymmetric
superconductors having the breaking of inversion symmetry
in the crystal structure. The mechanism of the parity mixing
is analogous to that of the two-nucleon pair caused by the
spin-orbit field at the nuclear surface.

In this paper, we investigate the structure of 18F with the
microscopic wave function based on a three-body 16O + p + n
model and discuss the behavior of the pn pair around 16O.
In the present model, two nucleons are treated as Gaussian
wave packets around 16O, which is assumed to be the inert
core written by the harmonic oscillator (H.O.) p-shell closed
configuration. The antisymmetrization between 18 nucleons
and the recoil effect of the core are exactly taken into
account, and the energy spectra of 18F are calculated using
phenomenological effective nuclear forces. In that sense,
the 18F wave function used in the present work is a fully
microscopic one. One of the advantages of the present model
is that the expression of the Gaussian wave packets for valence
nucleon wave functions provides the direct link with the (0s)2

pn cluster formation and its breaking at the nuclear surface.
Moreover, the internal wave function and the c.m. motion of
the pair are separable. It is also helpful to consider a classical
picture for the position and momentum of valence nucleons in
the pair. Based on the dinucleon picture, we analyze the effect
of the spin-orbit potential on the pn pair around the 16O core
and discuss the parity mixing of the pn pair considering the
spin-orbit potential from the core as the perturbative external
field. We also discuss the effect of the spin-orbit potential on
the four-nucleon correlations, i.e., the breaking of the α cluster
around 16O in association with that on the pn pair.

This paper is organized as follows. In the next section,
we describe the present model of the microscopic three-body
16O + p + n model. In Sec. III, the calculated results for 18F
obtained by the GCM calculations of the 16O + p + n model
are shown. We discuss the behavior of the pn pair focusing on
the effect of the spin-orbit potential in Sec. IV. We also study
the four-nucleon correlation at the surface of the 16O core based
on the 16O + ppnn model in Sec. V. A summary is given in
Sec. VI. In the appendixes, the mechanism of the breaking
of the parity symmetry in the pair in the spin-orbit potential
is described in Appendix A, and the mathematical relation
between the pn cluster wave function and the shell-model
wave function is described in Appendix B.

054332-2



MIXING OF PARITY OF A NUCLEON PAIR AT THE . . . PHYSICAL REVIEW C 90, 054332 (2014)

II. FORMULATION

To investigate the structure of 18F system focusing on the
internal structure of the pn pair at the surface around the 16O
core, we adopt a three-body cluster model of 16O + p + n with
the form of Gaussian wave packets for two valence nucleons,

�16O+pn(R1,R2) = A{�16Oψpσ (R1)ψnσ ′(R2)}, (1)

ψτσ (Rj ; r i) = φ(Rj ; r i)χτσ , (2)

φ(Rj ; r i) =
(

2ν

π

)3/4

e−ν(r i−Rj )2
. (3)

Here �16O is the 16O wave function given by the H.O. p-
shell closed configuration with the width b = 1/

√
2ν fixed to

be ν = 0.16 fm−2 to reproduce the root-mean-square radius
of 16O. In the practical calculation, �16O is approximately
written by the 4α Brink-Bloch wave function with the α-α
distance small enough to express the shell-model limit. χτσ is
the spin-isospin function labeled by τ = proton or neutron and
σ = ↑ or ↓, and A is the antisymmetrizer for all nucleons. The
total wave function is the microscopic 18-body wave function.
The spatial parts of single-particle wave functions for valence
nucleons are specified by the complex parameters Rj (j =
1,2), which stand for the centers of Gaussian wave packets in
the phase space. One of the merits of the present model with
the wave-packet form is that the internal wave function and
the c.m. motion of the pair are separable,

φ(R1; r1)φ(R2; r2) = φg(Rg; rg)φin(R; r), (4)

φg(Rg; rg) =
(

4ν

π

)3/4

e−2ν(rg−Rg)2
, (5)

φin(R; r) =
(

ν

π

)3/4

e− ν
2 (r−R)2

, (6)

Rg = R1 + R2

2
, R = R1 − R2, (7)

and, therefore, the internal structure of the pair can be easily
analyzed if we omit the antisymmetrization effect from the
core. Moreover, the recoil effect on the core is exactly taken
into account by shifting R1,2 → R1,2 − Rg/9 and also the
mean position of the c.m. of 16O to −Rg/9. Note that the
valence nucleon wave function given by the localized Gaussian
form can be expanded by the H.O. shell-model basis around
the origin and, in the |Rj | → 0 limit, the single-nucleon wave
function after the antisymmetrization becomes equivalent to a
H.O. sd orbit around the 16O core, as explained in Appendix B.
By transforming the one-center coordinates r1 and r2 to the
Jaccobi coordinates r and rg , we can switch over from the
single-particle orbit picture to the pn cluster picture.

Another merit of the wave-packet form is that the mean
position and momentum of a nucleon are described simply
by the real part dj and the imaginary part kj /2ν of the
Gaussian center parameter Rj = dj + ikj /2ν (dj and kj are
real vectors),

〈φ(Rj )|r i |φ(Rj )〉 = dj , (8)

〈φ(Rj )| pi |φ(Rj )〉 = �kj , (9)

and also those for the c.m. of the pn pair,

Rg = Dg + i K g/4ν, (10)

Dg = 〈φg(Rg)|rg|φg(Rg)〉, (11)

�K g = 〈φg(Rg)| pg|φg(Rg)〉. (12)

In the case of R1 = R2 = Rg , which corresponds to R = 0,
the wave function describes the simplest case that two nucleons
form the ideal pn cluster having the (0s)2 configuration. The
superposition of the (0s)2 pn cluster wave functions with vari-
ous Rg parameters is equivalent to the the generator coordinate
method (GCM) of the two-body 16O + (pn) cluster model, in
which Rg is treated as the generator coordinate describing the
relative motion between the pn cluster and 16O. Because of the
Fermi statistics, the (0s)2 pn cluster with the isospin T = 0 is
the pure spin-triplet (S = 1) state, while that with T = 1 is the
spin-singlet (S = 0) state. In the two-body 16O + (pn) cluster
model, the T = 0 and T = 1 states of 18F are composed of the
(T S) = (01) and (10) pn clusters, respectively.

In reality, the ideal (0s)2 pn cluster is broken at the nuclear
surface because of the effect from the core. Therefore, we ex-
tend the two-body 16O + (pn) cluster model to the three-body
16O + p + n model by taking into account R1 �= R2 cases and
treat the parameter R = R1 − R2 as an additional generator
coordinate to incorporate more general states of the pn pair
having internal excitations. In the present calculation, we
perform the GCM calculation of the three-body cluster model
for 18F by superposing the wave function �16O+pn(R1,R2).
Let us consider the body-fixed frame XYZ. We choose the Rg

vector on the Z axis as Rg = (0,0,Dg) and the nucleon-spin
(σ ) orientation to the Y axis as spin-up (↑Y ) or spin-down (↓Y )
in the intrinsic wave function before projections. In the present
GCM calculation for 18F, we restrict the R vector on the XY
plane and treat it as the generator coordinate as well as the
coordinate Dg . Namely, the parameters chosen in the present
GCM calculation are

R =
(

i

ν
kX,2dY ,0

)
, (13)

Rg = (0,0,Dg). (14)

Here kX, dY , and Dg are real parameters which are treated as the
generator coordinates. Then the J+ states of 18F with T = 0
and T = 1 are given by the linear combination of the parity
and total-angular-momentum eigenwave functions projected
from �16O+pn(R1,R2),

�18F(T ,J π ) =
∑

kX,dY ,Dg

c
T ,J π

kX,dY ,Dg
P Jπ

MK�16O+pn(R1,R2),

(15)

�16O+pn(R1,R2) = A{�16Oψp↑Y
(R1)ψn↓Y

(R2)}, (16)

R1 =
(

i
kX

2ν
,dY ,Dg

)
, (17)

R2 =
(

− i
kX

2ν
, − dY ,Dg

)
. (18)

Here P Jπ
MK is the parity and total-angular-momentum projec-

tion operator. Although each intrinsic wave function contains
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both T = 0 and T = 1 components, the isospin symmetry is
restored by the K projection, and T = 0 and T = 1 states
are obtained by projecting onto odd and even K states,
respectively. In the present work, K = +1 and K = −1 states
are mixed for T = 0 states, and K = 0 is chosen for T = 1
states by ignoring the isospin breaking in the wave function.
We omit high-K components to save the computational cost
and avoid the numerical error in the total-angular-momentum
projection. The coefficients c

T,J π

kX,dY ,Dg
are determined by solving

the Hill-Wheeler equation so as to minimize the energy of
�18F(T ,J π ).

In the three-body cluster GCM calculation, choosing
Im[RX] as the generator coordinate is equivalent to choosing
Re[RX] as the generator coordinate. We here adopt the
imaginary part Im[RX] = kX/ν as the generator coordinate as
given in Eqs. (17) and (18) because it is suitable to consider the
↑Y and ↓Y nucleons boosted by the spin-orbit potential at the
nuclear surface to have finite momenta along the X direction.
Thus, we take into account the degrees of RX, RY but fix only
RZ = 0 to save the numerical cost. The c.m. motion of the
pn pair is fully taken into account in the present calculation
with the total-angular-momentum projection and the generator
coordinate Dg .

To calculate the Gamow-Teller transition strengths from the
18O to 18F, we also perform the GCM calculation of 18O by
using the three-body 16O + n + n model in the same way,

�18O(T ,J π ) =
∑

kX,dY ,Dg

c
T ,J π

kX,dY ,Dg
P J+

MK�16O+nn(R1,R2),

(19)

�16O+nn(R1,R2) = A{�16Oψn↑Y
(R1)ψn↓Y

(R2)}, (20)

R1 =
(

i
kX

2ν
,dY ,Dg

)
, (21)

R2 =
(

−i
kX

2ν
, − dY ,Dg

)
. (22)

In a similar way to the 16O + p + n wave function, we also
consider the 16O + 4N model to study the α cluster breaking
at the surface of the 16O core,

�16O+4N (R1,R2,R3,R4)

= A{�16Oψp↑Y
(R1)ψp↓Y

(R2)ψn↑Y
(R3)ψn↓Y

(R4)}. (23)

III. RESULTS

A. Effective nuclear force

The present model is based on the microscopic A-body
wave function with the assumption of the inert core. In the
model, the Hamiltonian consists of the one-body kinetic term
and the effective two-body nuclear forces and Coulomb force,

H =
∑

i

ti − TG +
∑
i<j

veff
ij +

∑
i<j

vCoul
i,j . (24)

Here TG is the kinetic energy of the total c.m. motion. We adopt
the Volkov No. 2 force [30] for the effective central forces and
supplement the spin-orbit force with the same form as the
spin-orbit term of the G3RS force [31]. Then, the central and

spin-orbit forces are expressed by two-range Gaussian forms,

veff
ij = vc(rij )

[
(1 − m) + bP σ

ij − hP τ
ij − mP σ

ij P τ
ij

]
+ vls(rij )P (3O)(l ij · Sij ), (25)

rij = |r i − rj |, (26)

vc(r) =
∑
k=1,2

vc
ke

− r2

a2
k , (27)

vls(rij ) =
∑
k=1,2

vls
k e

− r2

a′2
k , (28)

where P σ
ij and P τ

ij are the spin and isospin exchange operators,
P (3O) is the projection operator onto the triplet odd (3O)
state, l ij is the angular momentum for the relative coordinate
r ij ≡ r i − rj , and Sij is the sum of the nucleon spins Sij =
si + sj . The constant values vc

1,2 and a1,2 are the strength and
range parameters, respectively, of the central force given in the
Volkov No. 2 force, and vls

1,2 and a′
1,2 are those of the spin-orbit

force in G3RS.
We choose the Majorana parameter m = 0.62, which is

the same parameter used in Ref. [32], to reproduce the
20Ne energy spectra measured from the threshold energy
in the 16O + α cluster model calculation. The b and h for
Bartlett and Heisenberg terms are the adjustable parameters
that change the relative strength of the nuclear forces in
the 3E and the 1E channels. In the present calculation, we
mainly use b = h = 0.125, which reproduces the deuteron
binding energy in the 3E channel as well as the unbound
feature of two nucleons in the 1E channel. The ratio f of the
S-wave NN force in the 3E channel to that in the 1E channel
is f = (1 + b + h)/(1 − b − h) = 1.67 for b = h = 0.125.
Although those parameters describe reasonably the properties
of two-nucleon systems in free space, they are found to
overestimate excitation energies of the T = 1 states relative
to the T = 0 states in 18F. Therefore, we also demonstrate
the results calculated with the parameter set b = h = 0.06
with the weaker ratio f = 1.23. We use the labels “bh125”
and “bh06” for the interaction parameters b = h = 0.125 and
b = h = 0.06, respectively.

For the strength of the two-body spin-orbit force, vls
1 =

−vls
2 ≡ uls = 820 MeV is chosen to reproduce the low-lying

energy spectra of 17O in the 16O + n model calculation (see
Fig. 2). To discuss the effect of the spin-orbit force on the
pn pair in 18F, we perform calculations with and without the
spin-orbit force.

For the two-body Coulomb force

vCoul
i,j =

∑
i<j

1 + P τ
i

2

1 + P τ
j

2

e2

rij

, (29)

the function 1/r is approximated by a sum of seven Gaussians.

B. Energy levels of 18F

We perform the GCM calculation of the three-body 16O +
p + n model. The generator coordinates, Dg , kX, and dY are
discretized as Dg = 1,2,3,4,5 fm, kX/2ν = 0,0.5, . . . ,amax

X

fm with amax
X = min(1 + Dg,2.5 fm), and dY = 0,1,2 fm. We
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FIG. 2. Energy levels of 17O. Theoretical energies are calculated
by the GCM calculation of the two-body 16O + n model using the
bh125 interaction with the spin-orbit force with the strength uls =
820 MeV.

check the convergence for the maximum values of these
parameters, and it is found that, when basis wave functions
with the maximum values are excluded, the change of the
excitation energy is less than 0.1 MeV.

The calculated energy levels of 18F are shown in Fig. 3
compared with the experimental data. In the result calculated
with the spin-orbit force, we obtain Jπ = 1+, 3+, 5+ states,
as well as the 2+ state in the T = 0 channel and Jπ = 0+ and
2+ states in the T = 1 channel. The calculated energy spectra
in each T = 0 and T = 1 channel are in good agreement with
the experimental data. However, in the result with the bh125
interaction, the relative energies of T = 1 states to the T = 0
states are overestimated compared with the experimental data.
In the calculation with the bh06 interaction the experimental
energy spectra of T = 0 and T = 1 states are reproduced
reasonably. As mentioned before, the bh125 interaction is a
reasonable effective nuclear force for two S-wave nucleons in
free space. In the present three-body model for 18F, we need
to empirically modify the b and h parameters to reproduce
the relative energy between T = 0 and T = 1 states. We do
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FIG. 3. Energy levels of T = 0, J π = 1+, 2+, 3+, and 5+ states
and T = 1, J π = 0+ and 2+ states in 18F obtained with the GCM
calculation of the three-body 16O + p + n model in comparison with
the experimental levels for the corresponding states. The results
obtained with the bh125 and bh06 interactions are shown. The
energies without the spin-orbit force measured from the T = 0,
J π = 1+ energy obtained with the spin-orbit force are also shown.

not know the fundamental reason for the modification, but
it may originate in the limitation of the effective two-body
interaction in the microscopic calculation with the inert 16O
core assumption. It is found that structures of the ground and
excited states do not depend so much on the choice of the
bh125 and bh06 interactions except for the T = 0 and T = 1
relative energy. Therefore, in this paper, we mainly discuss the
results calculated with the original bh125 interaction.

We also show the energy spectra calculated by switching off
the spin-orbit force. The energies are measured from the Jπ =
1+ ground-state energy obtained with the spin-orbit force. In
the energy spectra without the spin-orbit force, the intrinsic
spin S decouples from the orbital-angular momentum L. As
a result, the T = 0 levels can be understood by the simple
L = 0, 2, and 4 spectra for J = L ± 1 states in the LS coupling
scheme. In the present calculation, slight coupling of L and S
remains because of the truncation of the model space.

Comparing the spectra with and without the spin-orbit
force, it is found that the T = 0 spectra are drastically changed
by the spin-orbit force. The total energy gain due to the
spin-orbit force is very small in the Jπ = 1+ state, while that
in the 3+ state is as large as about 1 MeV, and it is largest in
the 5+ state at about 3 MeV. Naively, the intrinsic spin S = 1
and the orbital angular momentum L of the (T S) = (01) pn
pair are parallel in the J = L + 1 states and two nucleons in
the pn pair in high-spin states feel the attractive spin-orbit
potential as understood by the rotation boost of the T = 0 pair
while the pair in the L = 0 state feels no spin-orbit potential
(see bottom panels of Fig. 1). This is the reason for the larger
energy gain in higher spin states than lower spin states in the
T = 0 energy spectra.

In the T = 1 energy spectra, the total energy gain due to the
spin-orbit force is about 1 MeV in the Jπ = 0+ and 2+ states.
Compared with the drastic change in the T = 0 spectra, the
0+-2+ level spacing in the T = 1 spectra are not changed so
much by the spin-orbit force. The spin-orbit potential energy
gain of the T = 1 pn pair is caused by the opposite boost in
the pair of the spin-up and -down nucleons (see top panels of
Fig. 1).

Because of the larger energy gain with the spin-orbit force
in the T = 1, Jπ = 0+ state than the T = 0, Jπ = 1+ state,
the excitation energy of the T = 1, Jπ = 0+ state becomes
lower than the case without the spin-orbit force. This result is
consistent with the studies of the T = 0 pairing based on shell-
model calculations and mean-field calculations in preceding
works [5,12,15–18] that suggested the unlikely T = 0, Jπ =
1+ pair compared with the favored T = 1, Jπ = 0+ pair in
the spin-orbit potential. It should be noted that in high-spin
states the T = 0 pair is favored by the spin-orbit field. Detailed
discussions of the energy gain mechanism of T = 0 and T = 1
pn pairs in the spin-orbit potential are given in the next section.

C. Spin components in 18F

In 18F, the S = 1 (S = 0) component mixes in the dominant
S = 0 (S = 1) component in the T = 1 (T = 0) pair because
of the spin-orbit force. Namely, the odd-parity mixing in the
pn pair occurs. The mixed odd-parity component Podd in the
pair can be measured by the expectation values of the squared
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TABLE I. The expectation values 〈S2〉 of the squared intrinsic
spin of the T = 0 and T = 1 states of 18F obtained by the GCM
calculations of the three-body 16O + p + n model. The results
calculated with the bh125 and the bh06 interactions with the spin-orbit
force and the results of the bh125 force without the spin-orbit force
are listed. The odd-parity component Podd in the pn pair for each
state is also shown.

J π , T bh125
bh125 bh06 without ls

〈S2〉 Podd 〈S2〉 Podd 〈S2〉 Podd

0+, T = 1 0.23 0.11 0.19 0.09 0.00 0.00
2+, T = 1 0.27 0.14 0.21 0.11 0.00 0.00
1+, T = 0 1.91 0.05 1.89 0.06 2.00 0.00
3+, T = 0 1.95 0.02 1.94 0.03 2.00 0.00
5+, T = 0 2.00 0.00 2.00 0.00 2.00 0.00
2+, T = 0 1.95 0.03 1.93 0.04 2.00 0.00

intrinsic spin 〈S〉2 as Podd = 1 − 〈S2〉/2 for the T = 0 states
and Podd = 〈S2〉/2 for the T = 1 states.

The calculated values of 〈S2〉 and Podd for the 18F states
obtained by the GCM calculation are shown in Table I. In
the results obtained with the spin-orbit force, the odd-parity
mixing is found to be larger in the T = 1 states than in the
T = 0 states. In other words, the parity mixing occurs in the
T = 1 pair, while the parity mixing is suppressed in the T = 0
pair. It is simply understood by the roles of the spin-orbit
potential that cause the opposite boost in the T = 1 pair with
the parity mixing and the rotation boost of the T = 0 pair with
no internal structure change.

D. M1 and GT Transitions of 18F

To check the reliability of spin configurations in the present
calculation, we show the calculated values of the magnetic
moments, the M1 transition strength, and the GT transition
strength of 18F and compare them with the experimental data
in Table II. For B(GT), we perform the GCM calculation of the
16O + n + n model to obtain the 18O ground state in the same
way as that in the 16O + p + n model for 18F. The calculated
results are in reasonable agreement with the experimental data.

As discussed before, the dominant components of the
T = 0, Jπ = 1+, 3+, and 5+ states are the S = 1 states

TABLE II. The magnetic moments of 18F(1+), 18F(3+), and
18F(5+), the B(M1) for the transition 18F(0+) → 18F(1+), and the
B(GT) for the transition 18O(0+) → 18F(1+). The results calculated
with the bh125 and bh06 interactions with the spin-orbit force, and
the bh125 interaction without the spin-orbit force are shown. The
experimental data are taken from Refs. [33,34].

Exp. bh125 bh06 w/o ls

μ(1+) (μN ) – 0.82 0.82 0.82
μ(3+) (μN ) 1.77(12) 1.86 1.85 1.84
μ(5+) (μN ) 2.86(3) 2.88 2.88 2.88
B(M1; 0+)

(
μ2

N

)
19.5(3.8) 17.0 17.4 14.1

B(GT)
(
g2

A/4π
)

3.18 5.0 5.2 10.7

coupling with the orbital angular momentum L = 0, 2, and 4,
and the mixing of the S = 0 component is minor. Therefore,
the magnetic moments of these states are not sensitive to the
interaction because the intrinsic spin configurations do not
depend so much on the interaction.

The results of B(M1) for 18F(0+) → 18F(1+) and B(GT)
for 18O(0+) → 18F(1+) obtained using the bh125 interactions
with the spin-orbit force are similar to those using the
bh06 interaction with the spin-orbit force. However, they are
somewhat different from the result obtained without the spin-
orbit force because the spin structure changes significantly
in the T = 1, Jπ = 0+ state reflecting the S = 1 mixing, i.e.,
the parity mixing in the T = 1 pair. In the result without
the spin-orbit force, B(GT) is remarkably large, showing
that the transition is the superallowed transition given by the
spin-isospin flip from the S = 1 pn pair in 18F(1+) to the S = 0
nn pair in 18O(0+). With the spin-orbit force, B(GT) becomes
small because the spin structure of the nn pair in 18O(0+) is
changed by the spin-orbit force.

IV. DISCUSSION

We discuss here the effect of the spin-orbit potential on
the pn pair at the nuclear surface, in particular, the effect
on the internal structure of the pair and that on the c.m. motion
of the pair. We show that the symmetry breaking, i.e., the
odd-parity mixing in the pair occurs due to the spin-orbit field
from the core nucleus.

A. Basic idea of effect of spin-orbit field
on a pn pair at nuclear surface

As shown before, the 18F energy spectra obtained without
the spin-orbit force can be understood by the dinucleon picture
for (T S) = (10) and (T S) = (01) pairs moving in L waves
around the 16O core. In the case with the spin-orbit force,
T = 1 states are favored by the spin-orbit field involving the
odd-parity mixing in the pair, while the T = 0 pair in high-L
states is favored largely without the odd-parity mixing in the
pair. These are consistent with the naive expectation from the
opposite boost in the T = 1 pair and the rotation boost of the
T = 0 pair by the spin-orbit force.

To understand features of the pn pair around the 16O
core in more detail, we consider a single wave function
�16O+pn(R1,R1) which expresses a pn pair localized around a
certain position Rg at the surface of the core in the body-fixed
XYZ frame defined in Sec. II. Starting from the ideal dinu-
cleon of the (0s)2 pn pair in the case without the spin-orbit field
and considering the spin-orbit force as the perturbative external
field from the core, we discuss how the pair behavior is affected
by the spin-orbit field. The ideal (0s)2 pn pair localized
around the position (0,0,Dg) is written by �16O+pn(R1,R2)
with R1 = R2 = (0,0,Dg). We consider the parallel-spin pair
as consisting of a ↑Y proton and a ↑Y neutron and the
antiparallel-spin pair as consisting of a ↑Y proton and a
↓Y neutron in the intrinsic frame XYZ. The former is the
(T S) = (01) state, and the latter contains the T = 0 and T = 1
components. In the following, we first discuss the pair behavior
in the intrinsic frame, and later we discuss it in the laboratory
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frame and consider the decomposition of the ↑Y ↓Y pair into
T = 1 and T = 0 components by the JZ = K projection.

When the spin-orbit force is switched on, the one-body
spin-orbit field from the 16O core causes the rotation boost of
the ↑Y ↑Y pair and the opposite boost in the ↑Y ↓Y pair as shown
in Fig. 1. The boost mechanism by the spin-orbit potential
can be understood by the following classical picture of the
Gaussian wave packet for each nucleon moving on the XY
plane passing through the (0,0,Dg). The nucleon at the position
(0,0,Dg) having the finite momentum ki = (kjX,kjY ,0) has
the angular momentum l i = Dg(−kjY ,kjX,0). Assuming the
averaged one-body spin-orbit potential around the position
(0,0,Dg) as −Ūls l i · si with a constant positive value Ūls , the

spin-orbit potential energy gain is given as − ŪlsDg

2 kjX for the

↑Y nucleon and ŪlsDg

2 kjX for the ↓Y nucleon. It means that the
spin-orbit potential energy gain is proportional to the nucleon
momentum kjX and it makes kjX of the ↑Y (↓Y ) nucleon to be
positive(negative) and causes the rotation boost for the ↑Y ↑Y

pair and the opposite boost for the ↓Y ↑Y pair.
As for the ↑Y ↑Y pair for the T = 0 pair, the ideal case

for the rotation boost is described by taking the parameter
set R1 = R2 = (iκX/2ν,0,Dg) in the �16O+pn(R1,R2) model
wave function. (Here we define the nucleon momenta κX =
k1X = k2X for the ↑Y ↑Y pair.) The internal pair wave function
φin(R; r) in Eq. (6) for the case R = R1 − R2 = 0 is consistent
with the (0s)2 pn pair, while the c.m. wave function of the
pair φg(Rg; rg) in Eq. (5) for the case Rg = (iκX/2ν,0,Dg)
indicates the pn pair localized around the position Dg =
(0,0,Dg) with the finite momentum K g = (2κX,0,0). It means
that the rotation boost of the pair occurs keeping the internal
pair wave function unchanged.

However, for the ↑Y ↓Y pair the spin-orbit potential causes
the opposite boost in the pair with the P -wave mixing to the
dominant S-wave component in the internal wave function of
the pair. In the �16O+pn(R1,R2) model wave function, the odd-
parity mixing is clearly described by the nucleon momentum,
which is interpreted as the order parameter of the symmetry
breaking as follows. The ideal case of the opposite boost is
described by taking the parameter set R1 = (ikX/2ν,0,Dg)
and R2 = (−ikX/2ν,0,Dg) in the �16O+pn(R1,R2) model. The
↑Y ↓Y pair with the opposite nucleon momenta kX is no longer
the (0s)2 pair, but it contains the odd-parity mixing in the
dominant even-parity component as shown in the internal pair
wave function φin(R; r) of Eq. (6) for the case R = R1 − R2 =
(ikX/ν,0,0),

φin(R; r) =
(

ν

π

)3/4

e− ν
2 (x−ikX/ν)2− ν

2 y2− ν
2 z2

, (30)

and more explicitly in the Taylor expansion with respect to kX,

φin(R; r) ∝
(

ν

π

)3/4[
1 + ikXx + O(

k2
X

)]
e− ν

2 r2

= (0,0,0)ho + i

√
1

2ν
kX(1,0,0)ho + O(

k2
X

)
. (31)

Here (nX,nY ,nZ)ho is the H.O. solution for the width b2 =
1/ν. The square of the coefficient k2

X/2ν of the second
term is estimated as k2

X/2ν � 0.125 for the typical value

kX � 0.2 fm−1 optimized for the pn pair in the intrinsic
frame of the 16O + pn system, as shown later. Therefore,
the second term is minor compared with the leading term
(the first term). This means the minor mixing of the P -wave
(1,0,0)ho component in the dominant S-wave (0,0,0)ho state.
Namely, the parity mixing, i.e., the symmetry breaking in
the ↑Y ↓Y pair occurs because of the external spin-orbit field.
Here the parameter kX is regarded as the order parameter for
the symmetry breaking. The energy gain is the second-order
perturbation caused by the transition from the S-wave state
to the P -wave state. The spin-orbit potential energy gain of
the ↑Y ↓Y pair is proportional to kX and it is mainly given
by the nondiagonal matrix elements of the spin-orbit potential
between the S-wave and P -wave states in the pair. Because the
odd-parity mixing inevitably causes the internal energy loss of
the pair, the mixing ratio of the odd-parity component to the
even-parity component in the ↑Y ↓Y pair is determined by the
competition between the spin-orbit potential energy gain and
the internal energy loss. The parity-mixing mechanism in the
dinucleon pair is also explained in Appendix A.

We consider the correspondence of the pn pair around
the 16O core in the intrinsic frame to the 18F states in the
laboratory frame where the rotational symmetries in the total
system are restored by the parity and total-angular-momentum
projections. For the ↑Y ↑Y pair, the spin-orbit field causes
the rotational excitation of the c.m. motion of the pair
in the body-fixed frame. It means that, in the laboratory
frame, the (T S) = (01) pair in high L states is favored by
the spin-orbit field. This is a naive explanation for the larger
energy gain of the spin-orbit in the higher spin states in the
T = 0 spectra of 18F in the GCM calculation shown in Fig. 3.
However, for the ↑Y ↓Y pair, the spin-orbit potential changes
the internal structure of the pair involving the odd-parity
mixing while the c.m. motion of the pair in the body-fixed
frame is not affected by the spin-orbit force. In the laboratory
frame, it leads to less sensitivity of the the 0+-2+ level spacing
in the T = 1 spectra of 18F on the spin-orbit force in the GCM
calculation.

The ↑Y ↓Y pair localized around (0,0,Dg) contains the T =
1 and T = 0 components, which are decomposed by the JZ =
K projection. In the case of the high-spin Jπ = 3+ and 5+
states, the ↑Y ↑Y pair moving in L = 2 and L = 4 wave is
naively expected to be favored because it gains the spin-orbit
potential energy without the internal energy loss. For the Jπ =
1+ state, we can consider the T = 0 component projected from
the ↑Y ↓Y pair instead of the ↑Y ↑Y pair because there is no
energy gain for the ↑Y ↑Y pair in the L = 0 wave. However, in
the T = 0 component of the ↑Y ↓Y pair, the odd-parity mixing
in the pair is unfavored because it suffers from the larger
internal energy loss compared with the T = 1 component of
the ↑Y ↓Y pair because of the following reason. The T = 1 and
T = 0 components of the ↑Y ↓Y pair are obtained by the K = 0
and K = 1 projections, respectively. For a given finite value
of kX, the odd-parity mixing becomes half of the intrinsic state
in the K = 0 projected state for the T = 1 component but it
is not the case in the K = 1 state for the T = 0 component as
explained in Appendix A. As a result of the less internal energy
loss in the T = 1 pair than the T = 0 pair, the T = 1 pair
efficiently gains the spin-orbit potential involving the parity
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mixing. In other words, the total energy gain of the ↑Y ↓Y pair
with the odd-parity mixing in the spin-orbit potential is not
so efficient for the T = 0 pair in the Jπ = 1+ state as the
T = 1 pair in the Jπ = 0+ state. More quantitative discussion
is given in the later analysis.

This mechanism of the unfavorable T = 0, Jπ = 1π pair
in the spin-orbit potential is consistent with that argued by
Bertsch [18]. It is also consistent with the discussions in
Refs. [5,12,15–17], where the relation between the jj coupling
and the LS coupling schemes was discussed. One of the new
standpoints in the present dinucleon picture is that we focus
on the internal pair wave function and discuss its change
involving the odd-parity mixing because of the spin-orbit
force. That is to say, starting from the S = 0 pair with the
pure even-parity component in the case without the spin-orbit
field, we consider the odd-parity (S = 1) mixing in the pair
caused by the perturbative spin-orbit field. This is an alternative
interpretation of the mean-field picture in the jj coupling
scheme where even-parity (S = 0) and odd-parity (S = 1)
components are already mixed in the j 2 state in no correlation
limit and the enhancement of the even-parity component by
the pair correlation is taken into account.

Generally, in Jπ states after the parity and total-angular-
momentum projections, internal degrees of freedom in the
pair and the c.m. motion of the pair are not separable. Note
that the odd-parity component in the pair couples with the
odd-parity wave of the pair c.m. motion around the core in
the J+ states in the laboratory frame. Moreover, because
of the effect of the antisymmetrization from the core, the
single-particle wave functions of nucleons in the pair are not
localized Gaussian wave packets in the total system, and the
internal pair wave function is not the pure S-wave state even in
the kX = 0 case when we take into account the orthogonality
to the occupied orbits as explained in Appendix B. Strictly
speaking, it is not able to define the internal wave function
separately from the c.m. motion because of the projections
and the antisymmetrization, and the partial-wave expansion
of the internal wave function in Eq. (31) is not valid any
more. Nevertheless, because the Hamiltonian for two nucleons
around the 16O core is still invariant for the rotation around
the Z axis, it is able to consider the symmetry breaking,
i.e., the odd-parity mixing in the antiparallel-spin pair by
the spin-orbit field in a way similar to the present idea as
explained in Appendix A, and we can measure the mixing
of the odd-parity components by the spin-singlet and spin-
triplet components in the physical T = 0 and T = 1 states of
18F, respectively, according to Fermi statistics of nucleons.
Although the relation between the parameter kX and the
odd-parity component Podd in the �16O+pn(R1,R2) model
wave function is not as simple as the one derived from Eq. (31)
after the antisymmetrization and the projections, kX and Podd

have the one-to-one correspondence for Jπ -projected states
for each spin and parity, as shown later. It means that the
odd-parity mixing in the pair can be defined and has the
physical meaning even in 18F states in the laboratory frame, and
kX in �16O+pn(R1,R2) can be regarded as an order parameter
of the parity mixing.

It should be commented that the dinucleon cluster in 18F
has a large spatial overlap with the 16O and the single-particle

wave functions of two nucleons in the dinucleon are dominated
by (sd)2 configurations. In such a case, the parameter Dg in
�16O+pn(R1,R2) does not necessarily mean the distance of
the pair from the 16O core, though it relates to the spatial
development of the pn pair from the core which can be
expressed by the mixing of higher configurations beyond the
sd shell. Even though the one-center basis representation
in terms of shell-model configurations is useful to discuss
single-particle motion, it is not suitable to discuss the internal
wave function of the pair. In the analysis below, we discuss
the pn pair behavior based on the dinucleon picture because
this picture is useful to discuss the internal structure of the
pn pair and helpful to understand the pn pair correlation at
the surface of the 16O core. The parameters Dg and kX in the
�16O+pn(R1,R2) model wave function are indicators for the
degree of the spatial development of the pair from the core and
that of the odd-parity mixing in the pair, respectively.

B. Analysis based on a single 16O + pn cluster wave function

As mentioned, the spin-orbit force changes the internal
structure of the ↑Y ↓Y pair and the c.m. motion of the ↑Y ↑Y pair
in the body-fixed frame. We here demonstrate how the parity
mixing of the T = 1 pair occurs in the microscopic 18F system
based on two-body effective nuclear forces. We analyze the
energy expectation value of a single three-body 16O + p + n
wave function �16O+pn(R1,R2) and quantitatively discuss the
effect of the spin-orbit force on the T = 1 and the T = 0 pairs.

In the wave function �16O+pn(R1,R2), single-nucleon wave
functions for two nucleons in the pn pair are specified by the
complex parameters R1 and R2, which express the centers
of single-nucleon Gaussian wave packets in the phase space.
To see the behavior of the pn pair localized around a certain
position Rg = (R1 + R2)/2 = (0,0,Dg) with the distance Dg

from the core, we vary the parameters R1 and R2 on the
XY plane passing through the (0,0,Dg) and obtain the energy
minimum solution under the constraints R1X = −R2X, R1Y =
−R2Y , and R1Z = R1Z = Dg .

We first perform the energy variation with respect to the
intrinsic state �16O+pn(R1,R2) without the parity and the total-
angular-momentum projections,

δ
〈�16O+pn(R1,R2)|H |�16O+pn(R1,R2)〉
〈�16O+pn(R1,R2)|�16O+pn(R1,R2)〉 = 0. (32)

The ↑Y ↓Y and ↑Y ↑Y pairs are considered. The former contains
the T = 0 and T = 1 components, while the latter is regarded
as the T = 0 pair. In the total-angular-momentum projection,
the isospin symmetry is restored in the K projection.

After the variation, the energy minimum state in the intrinsic
system is obtained. In the result of the ↑Y ↓Y pair without
the spin-orbit force, the optimized parameters for the energy
minimum solution are R1 ≈ R2 ≈ (0,0,Dg), indicating that
the (0s)2 pn pair is formed in the intrinsic system. When
the spin-orbit force is switched on, the optimized Rj has
the finite imaginary part as R1 ≈ (ikX/2ν,0,Dg) and R2 ≈
(−ikX/2ν,0,Dg), indicating the opposite boost in the pn
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FIG. 4. The Dg dependence of kjX obtained by the energy
variation for the intrinsic wave function �16O+pn(R1,R2) without
the parity and total-angular-momentum projections. (Top) kjX for the
↑Y ↓Y pn pair. (Bottom) kjX for the ↑Y ↑Y pn pair. In the bottom
panel, two lines for protons and neutrons overlap with each other
because k1X ≈ k2X . The bh125 interaction with the spin-orbit force
is used.

pair around (0,0,Dg) of ↑Y and ↓Y nucleons having the
finite momentum kX. The kX for the nucleon momentum
in the X direction is regarded as the order parameter as
explained before, and the finite momentum kX means that the
parity symmetry in the pair is broken because of the external
spin-orbit field. In Fig. 4(a), we show the Dg dependence of
the nucleon momentum kjX in the ↑Y ↓Y pn pair. kX = k1X =
−k2X is the largest at the distance Dg = 2 fm from the core and
it gradually decreases as Dg increases because the spin-orbit
potential from the core gets weak with the increase of Dg .

For the ↑Y ↑Y pair, we take off the constraint Im[RgX] =
0 and perform the energy variation with the constraints
Re[R1X] = −Re[R2X], R1Y = −R2Y , and R1Z = R1Z = Dg

because two nucleons cannot be boosted in the same direction
under the constraint of Im[RgX] = 0. As expected from the
role of the spin-orbit field boosting nucleons at the surface,
we obtain the minimum energy solution with R1 ≈ R2 ≈
(iκX/2ν,0,Dg), indicating two nucleons boosted in the same
direction corresponding to the rotation boost of the (0s)2

pn pair with the finite momentum KgX = 2κX. The Dg

dependence of the optimized kjX for the ↑Y ↑Y pair is shown
in Fig. 4(b). κX = k1X = k2X decreases as Dg increases.
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FIG. 5. R1 and R2 in �16O+pn(R1,R2) for the ↑Y ↓Y pn pair
around Dg = 2 fm obtained by the VAP calculation for (a) the
T = 1, J π = 0+ state and (b) the T = 0, J π = 1+ state. The real
parts (djX,djY ) are shown as the positions on the XY plane, and the
imaginary parts (kjX/2ν,kjY /2ν) are illustrated by the lengths of the
arrows. The bh125 interaction with the spin-orbit force is used.

We also perform the energy variation for the parity and
total-angular-momentum projected states,

δ
〈�|H |�〉
〈�|�〉 = 0, (33)

� = P J+
MK�16O+pn(R1,R2). (34)

Here K = 0 and K = 1 are chosen for T = 1 and T = 0 states,
respectively. This is the variation after the projection (VAP).
After the variation, the optimized parameters R1 and R2 of the
energy minimum state for the Jπ state are obtained. The VAP
is performed for the ↑Y ↓Y pair under the constraints R1X =
−R2X, R1Y = −R2Y , and R1Z = R2Z = Dg . Dg is fixed to
be 2 fm. The obtained results of Rj = dj + ikj /2ν for the
T = 1, Jπ = 0+ state and those for the T = 0, Jπ = 1+ state
are shown in Fig. 5. The position dj and the momentum kj

are projected onto the XY plane. Similarly to the variation
without the projection, the kjX values obtained in the VAP for
the 1+ and 0+ states are finite and they are opposite for two
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nucleons in the ↑Y ↓Y pair so as to gain the spin-orbit potential.
It is consistent with the simple picture of the opposite boost
in the ↑Y ↓Y pair. In addition, the 1+ and 0+ states obtained
in the VAP have the finite djY and kjY values, respectively.
It indicates that the internal structure of the pair in the Jπ

states somewhat changes from the ideal (0s)2 configuration
because of core effects such as the central potential and also the
antisymmetrization effects as well as the spin-orbit potential.
This means that the GCM calculation with only one generator
coordinate of RX is not sufficient but that with two generator
coordinates of RX and RY is effective. Note that finite djY

and kjY are obtained only in the VAP but not in the variation
without the projections in which the axial symmetry tends to
be favored. The finite djY in the T = 0, Jπ = 1+ state may
indicate that the size of the T = 0 pn pair is not so compact
as that of the (0s)2 cluster.

In spite of the finite RjY for the ↑Y ↓Y pair, the momentum
kX = k1X = −k2X in the X direction is regarded as the order
parameter for the symmetry breaking caused by the spin-orbit
field from the core. To clarify the role of the spin-orbit force in
the pn pair, we perform further analysis of the kX dependence
of the total energy of �16O+pn(R1,R2) with fixed parameters
RjY = 0 and RjZ = Dg . In the following, we choose Dg =
2 fm for the center position of the pair.

We show in Figs. 6(a)–6(c) the energy of �16O+pn(R1,R2)
for the ↑Y ↓Y pn pair with the parameters R1 = (ikX/2ν,0,Dg)
and R2 = (−ikX/2ν,0,Dg) (Dg = 2 fm) as functions of kX.
It corresponds to the opposite boost in the pair (see the top
panels of Fig. 1). The intrinsic wave function �16O+pn(R1,R2)
for the ↑Y ↓Y pair contains the T = 1 and T = 0 components
which are decomposed by the K = 0 and K = 1 projections.
Energies for the intrinsic (no-projected) state are shown in
Fig. 6(a), and those for the Jπ -projected states are shown in
Figs. 6(b) and 6(c). The Jπ -projected energy is calculated by
P Jπ

MK�16O+pn(R1,R2) with K = 0 for the Jπ = 0+ and 2+
states in the T = 1 channel and K = 1 for the Jπ = 1+ and
3+ states in the T = 0 channel.

In the case without the spin-orbit force, the energy is
minimum at kX = 0 corresponding to no symmetry breaking,
i.e., no parity mixing in the pair for the intrinsic state and
all Jπ projected states for the ↑Y ↓Y pair. In the case with
the spin-orbit force, the energy minimum of the intrinsic state
shifts to the finite kX region, indicating that the symmetry is
broken by the spin-orbit potential. The total energy gain due
to the spin-orbit force, which is estimated by the difference
between the energy minima for the results with and without
the spin-orbit force, is found to be large in the T = 1, Jπ = 0+
and 2+ projected states [see Fig. 6(b)]. In particular, the T = 1,
Jπ = 0+ state largely gains the energy due to the spin-orbit
force. The energy curve without the spin-orbit force is more
soft against the finite kX in the T = 1, Jπ = 0+ and 2+ states
[Fig. 6(b)] than in the T = 0 states [Fig. 6(c)], indicating that
the internal energy loss in the T = 1 pair with the finite kX is
milder than in the T = 0 pair. For the T = 1, Jπ = 0+ and 2+
states [Fig. 6(b)], there is no spin-orbit potential contribution
at the kX = 0 for the pure (T S) = (10) state with which the
expectation value of the spin-orbit potential vanishes, but the
spin-orbit potential energy efficiently contributes to the total
energy gain in the finite kX region involving the parity mixing
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FIG. 6. The energy of the �16O+pn(R1,R2) wave function for the
↑Y ↓Y pair of two nucleons boosted in the opposite direction and
that for ↑Y ↑Y pair of two nucleons boosted in the same direction.
The parameters R1 = (ikX/2ν,0,Dg) and R2 = (−ikX/2ν,0,Dg)
are used for the ↑Y ↓Y pair, and R1 = (iκX/2ν,0,Dg) and R2 =
(iκX/2ν,0,Dg) are used for the ↑Y ↑Y pair. Dg is fixed to be 2 fm.
(Left) The energy for the ↑Y ↓Y pn pair of (a) the intrinsic state
without the J π projection, (b) the J π = 0+ and 2+ projected states
with T = 1, and (c) the J π = 1+ and 3+ projected states with T = 0.
(Right) The energy for the ↑Y ↑Y pn pair of (d) the intrinsic state
and (e) the J π = 1+ and 3+ projected states with T = 0. The bh125
interactions with and without the spin-orbit force are used.

in the pair. As a result, the finite kX state is favored and the
large energy gain is obtained in the spin-orbit potential in the
T = 1, Jπ = 0+ and 2+ states. The Jπ = 0+ and 2+ states
with the finite kX receive similar effects of the spin-orbit force
to each other. This is the reason why the 0+-2+ level spacing is
almost unchanged in the GCM calculations with and without
the spin-orbit force, as described previously in Sec. III (Fig. 3).

However, in the T = 0, Jπ = 1+ state for the ↑Y ↓Y pair,
the energy without the spin-orbit force rapidly increases as
kX increases, indicating the large internal energy loss in the
pair as shown in Fig. 6(c). It means that the finite kX states
are unfavored in the T = 0, Jπ = 1+ state. In the results with
the spin-orbit force, the internal energy loss compensates the
spin-orbit potential gain in the finite kX state. As a result, the
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kX value for the energy minimum with the spin-orbit force is
small compared with the T = 1 states. Moreover, there is only
a small difference between the energy minima for the results
with and without the spin-orbit force. Also in the T = 0, Jπ =
3+ state, the rapid increase of the energy curve without the
spin-orbit shows the large internal energy loss in the pair and
indicates that the finite kX states are not so favored. Namely,
for the T = 0 states, the parity mixing in the pair does not
contribute so much to the total energy gain in the spin-orbit
potential. It should be commented that the T = 0, Jπ = 3+
state at kX = 0 gains the spin-orbit force significantly because
it is the S = 1 state coupling mainly with the L = 2 wave of the
pair c.m. motion and feels the attractive spin-orbit potential.
In other words, the Jπ = 3+ projected state of the T = 0 pair
gains the spin-orbit force without the internal structure change
of the pair consistently to the rotation boost in the intrinsic
frame. It is different from the T = 0, Jπ = 1+ state at kX = 0
of the pure S = 1 state coupling mainly with the L = 0 wave of
the pair c.m. motion which feels almost no spin-orbit potential.

Let us discuss the κX dependence of the energy for the
T = 0 ↑Y ↑Y pair before and after the Jπ projection. Note that
the Jπ projected states for the ↑Y ↑Y pair are almost equivalent
to the T = 0, Jπ projected states for the ↑Y ↓Y pair with kX = 0
because both of them are pure S = 1 states having the ideal
(0s)2 pn pair. We show in Figs. 6(d) and 6(e) the energies of
the intrinsic and the Jπ projected states of �16O+pn(R1,R2) for
the ↑Y ↑Y pair with the parameters R1 = R2 = (iκX/2ν,0,Dg)
(Dg = 2 fm), which corresponds to the rotation boost of the
T = 0 (0s)2 pair around the core. When the spin-orbit force
is switched on, the energy minimum position of the intrinsic
state shifts to the finite κX region, indicating the rotational
excitation of the pair by the spin-orbit field in the intrinsic
frame [see Fig. 6(d)]. Because κX changes only the proportion
of the Jπ components contained in the intrinsic state, the Jπ

projected energy does not depend on κX, as shown in Fig. 6(e)
of the Jπ = 1+ and 3+ projected energies for the ↑Y ↑Y pair. In
the projection, we choose the total angular momentum aligned
to the intrinsic spin orientation in the projection as JY = J .

Let us come back to the ↑Y ↓Y pn pair around the 16O core.
We discuss the Dg dependence as well as the kX dependence
of the energies of the T = 1, Jπ = 0+ and T = 0, Jπ = 1+
states projected from �16O+pn(R1,R2) for the ↑Y ↓Y pn pair.
We use the parametrization R1 = (ikX/2ν,0,Dg) and R2 =
(−ikX/2ν,0,Dg). The energies with and without the spin-orbit
force are shown in Fig. 7 for the T = 1, Jπ = 0+ state and in
Fig. 8 for the T = 0, Jπ = 1+ state. The contribution of the
spin-orbit force evaluated by the energy difference with and
without the spin-orbit force is also shown. As shown in the
bottom panels of Figs. 7 and 8, the spin-orbit force contribution
is attractive in the finite kX region in both states, and the kX

dependence of the attraction is not so different between the
0+ state and the 1+ state at least in Dg � 2 fm region. The
remarkable difference between the 0+ and 1+ states is found in
the energy without the spin-orbit force. In contrast to the large
energy loss of the 1+ state in the finite kX region, the energy
loss of the 0+ state is milder. As a result, in the total energy
with the spin-orbit force, the minimum energy state for the 0+
state appears in the finite kX region and shows the significant
reduction of the total energy because of the spin-orbit force.
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FIG. 7. (Color online) kX and Dg dependence of the energy of
the �16O+pn wave function for the ↑Y ↓Y pn pair projected onto the
T = 1, J π = 0+ state. The energy (a) with the spin-orbit force and
(b) without the spin-orbit force, and (c) the contribution of the
spin-orbit force evaluated by the energy difference between with
and without the spin-orbit force.

Thus, the parity symmetry is broken in the T = 1 pn pair by
the spin-orbit field. In contrast, for the 1+ state, the energy
minimum state in the total energy exists near the kX = 0 line,
suggesting smaller symmetry breaking in the T = 0 pn pair
because of the large energy loss in the finite kX region.

As discussed in the previous section, the GCM calculation
shows the smaller odd-parity component Podd of the pn pair
in the T = 0, Jπ = 1+ state than that in the T = 1, Jπ = 0+
state (see Table I). It is consistent with the above analysis
of the kX dependence of the energy with and without the
spin-orbit force. The feature that the T = 0, Jπ = 1+ state is
not favored in the spin-orbit potential originates in the internal
energy loss caused by the parity mixing in the T = 0 pair.
Although the kX dependence of the spin-orbit contribution is
not so different between the 1+ and 0+ states, the internal
energy increases rapidly in the T = 0, Jπ = 1+ state than in
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FIG. 8. (Color online) kX and Dg dependence of the energy of
the �16O+pn wave function for the ↑Y ↓Y pn pair projected onto the
T = 0, J π = 1+ state. The energy (a) with the spin-orbit force and
(b) without the spin-orbit force, and (c) the contribution of the
spin-orbit force evaluated by the energy difference between with
and without the spin-orbit force.

the T = 1, Jπ = 0+ state as kX increases even in the case with
the equal 3E and 1E central forces. As explained before, for the
↑Y ↓Y pair in the spin-orbit potential, the finite kX is favored to

gain the spin-orbit potential energy by roughly −2 ŪlsDg

2 kX in
the intrinsic frame. However, the finite kX inevitably causes the
internal energy loss because of the mixing of the odd-parity
component in the pair. The T = 1 and T = 0 components
of the ↑Y ↓Y pair are decomposed by the K = 0 and K = 1
projections, respectively. For a given finite value of kX, the
internal energy loss of the pair is less in the T = 1 pair than in
the T = 0 pair because the odd-parity mixing becomes about
half of the intrinsic state in the K = 0 projection for the T = 1
component but it is not the case in the K = 1 projection for the
T = 0 component, as explained in Appendix A. This means
that, the finite kX state is unlikely in the T = 0 pair because of
the larger internal energy loss than in the T = 1 pair though the
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FIG. 9. kX dependence of the odd-parity component Podd in the
�16O+pn wave function for the ↑Y ↓Y pn pair projected onto the T = 1,
J π = 0+ and 2+ states and the T = 0, J π = 1+ and 3+ states. Dg is
fixed to be 2 fm.

kX dependence of the spin-orbit potential energy gain is almost
equal in the T = 1 and T = 0 components. As a result, in the
energy minimum T = 0, Jπ = 1+ state with the spin-orbit
potential, the parity mixing is suppressed and the total energy
gain due to the spin-orbit potential is small.

We compare the kX dependence of the odd-parity com-
ponent Podd in the T = 1 and T = 0 states projected
from �16O+pn wave function for the ↑Y ↓Y pair in Fig. 9.
We use the parametrization R1 = (ikX/2ν,0,Dg) and R2 =
(−ikX/2ν,0,Dg) with the fixed Dg = 2 fm. It is found that, as
kX increases, the odd-parity component in the T = 0, Jπ = 1+
state increases more rapidly than that in the T = 1, Jπ = 0+
state. In the small kX region, the odd-parity component in the
T = 1, Jπ = 0+ state is about half of that in the T = 0, Jπ =
1+ consistently with the reduction of the odd-parity component
in the K projection described in Appendix A. The increase of
the odd-parity component directly causes the internal energy
loss of the pair. This is consistent with the arguments of
Refs. [12,15–17] discussed from the mean-field picture that
the T = 0 pairing is unfavored because of the small overlap
between the jj coupling pair and the LS coupling pair in the
T = 0, Jπ = 1+ channel than the T = 1, Jπ = 0+ channel.

V. FOUR-NUCLEON CORRELATION
AT NUCLEAR SURFACE

We discuss here the effect of the spin-orbit force on the
α cluster breaking in analogy to the effect on the dinucleon
pair. As discussed before, the spin-orbit force changes the
internal structure of the T = 1 ↑Y ↓Y pair and the c.m. motion
of the T = 0 ↑Y ↑Y pair in the intrinsic frame. The former
contributes to the energy gain in the T = 1, Jπ = 0+ state
and the latter affects the energy gain of the T = 1, Jπ = 3+
and 5+ states. In contrast, the spin-orbit force gives minor
contribution to the energy of the T = 0, Jπ = 1+ state. For
the α cluster around the 16O in the T = 0, Jπ = 0+ state, a
↑Y ↑Y pn pair in a finite L wave can couple with a ↓Y ↓Y pn
pair in the L wave in the opposite direction to form the α
cluster in the total orbital angular momentum L = 0 state (see
Fig. 10). Therefore, the α cluster in the L = 0 wave may gain
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FIG. 10. Schematic figures for four nucleons in the spin-orbit
potential at the nuclear surface.

the spin-orbit potential energy involving the cluster breaking
from the (0s)4 configuration. It may be useful to discuss the
effect of the spin-orbit force on the breaking in analogy to
the effect on the pn pair, although the α cluster breaking is
expected to be suppressed because of the larger binding energy
of the α cluster than the pn pair.

We perform an analysis of four nucleons around the 16O by
using the 16O + 4N wave function given in Eq. (23) in a way
similar to how we analyze the pn pair. The adopted effective
nuclear interaction is the bh125 interaction with and without
the spin-orbit force. We consider the α cluster localized around
the position (0,0,Dg) on the Z axis,

Rg ≡ R1 + R2 + R3 + R4

4
= (0,0,Dg), (35)

with a real value Dg for the distance from the 16O core. If
we take R1 = R2 = R3 = R4 = Rg , four nucleons form the
(0s)4 α cluster.

Let us consider the α cluster breaking in the spin-orbit field
at the nuclear surface. We fix the Z component RjZ = Dg and
vary RjX and RjY to get the energy minimum state under the
constraints,

R1X + R2X

2
= R3X + R4X

2
= 0, (36)

R1Y + R2Y

2
= R3Y + R4Y

2
= 0. (37)

This is equivalent to the constraints RgX = 0 and RgY = 0
without the dipole excitation. This model is regarded as a
special case of the d-constraint method in antisymmetrized
molecular dynamics (AMD) [35]. After the energy variation,
we obtain the optimum parameter set RjX and RjY which mini-
mizes the energy of the wave function �16O+4N (R1,R2,R3,R4)
under the constraints.

We first perform the variation with respect to the intrinsic
energy without the parity and the total-angular-momentum
projections. In the result without the spin-orbit force, the
optimum parameters in the minimum energy state are found
to be

R1 = R2 = R3 = R4 = (0,0,Dg), (38)

indicating that the ideal (0s)4 α cluster is formed at the
surface. When the spin-orbit force is switched on, the
optimum Rj in the minimum energy state has the finite
imaginary part as R1 = R3 ≈ (ikX/2ν,0.Dg) and R2 = R4 ≈
(−ikX/2ν,0.Dg). It means that spin-up and -down nucleons in
the α cluster are boosted in the opposite direction along the X
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FIG. 11. Optimized Rj in �16O+4N for the α cluster around the
16O core. (a) Dg dependence of kjX obtained by the energy variation
without the projection. The kjX values for the ↑Y and ↓Y neutrons are
consistent with the values for protons. (b) Rj obtained by the VAP
calculation for the J π = 0+ state are projected onto the XY plane.
The real parts (djX,djY ) for four nucleons are shown as the position
on the XY plane, and they are located at the origin in the present
result. The imaginary parts (kjX/2ν,kjY /2ν) for four nucleons are
illustrated by the lengths of the arrows. The bh125 interaction with
the spin-orbit force is used.

axis in the spin-orbit field from the 16O as shown in Fig. 10.
The present result without the projections is consistent with the
cluster breaking discussed in the AMD calculation of 28Si [36].
It is also consistent with the simplified model for the α-cluster
breaking proposed by Itagaki et al. [37]. The parameter kX

in the present model relates to the parameter � introduced
in the simplified model as � = kX/2νDg , and it is regarded
as the order parameter which indicates the cluster breaking
at the nuclear surface. In Fig. 11(a), the Dg dependence of
the nucleon momentum kjX obtained by the energy variation
without the projections is shown. kX = k1X = −k2X = k3X =
−k4X is largest at Dg = 2 fm and it becomes small with the
increase of the distance Dg from the core.

We also perform the energy variation for the Jπ = 0+ state
projected from the �16O+4N wave function with Dg = 2 fm.
The parameters Rj for nucleons in the α cluster obtained by
the VAP are shown in Fig. 11(b). In the VAP result, kjY is also
finite as well as kjX, indicating further breaking of the (0s)4 α
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FIG. 12. kX dependence of the energy of the �16O+4N wave
function with Dg = 2 fm. (a) The energy of the intrinsic state and (b)
that of the J π = 0+ and 2+ projected states. The bh125 interactions
with and without the spin-orbit force are used.

cluster in addition to the breaking described by the parameter
kjX. Qualitatively, the breaking of the (0s)4 α cluster breaking
around 16O core is similar to that of the (0s)2 pn pair in the
T = 0, Jπ = 0+ state. However, quantitatively, the α cluster
breaking is smaller than the pn pair breaking because the α
cluster has the larger internal binding energy than the pn pair
and its breaking is unlikely.

To see the energy gain of the spin-orbit potential in �16O+4N

with the cluster breaking, we analyze the kX dependence of
the energy assuming Re[RjX] = 0 and RjY = 0 for simplicity.
The calculated energies of the body-fixed intrinsic state and
that of the 0+ state are shown in Fig. 12. It is found that the en-
ergy minimum shifts to the finite kX region, indicating that the
α breaking occurs because of the spin-orbit field, in particular,
in the Jπ = 0 projected states. Compared with the kX depen-
dence of the energy of the ↑Y ↓Y pn pair, the energy without
the spin-orbit force is very steep with respect to the cluster-
breaking parameter kX because of the large internal energy loss
of the α cluster. As a result, the α cluster breaking in the 0+ state
is not as significant as the ↑Y ↓Y pn pair though the spin-orbit
force gives some attractive effect in the finite kX region.

It is interesting to consider the analogy of the effect of
the spin-orbit force on the α cluster breaking with that on
the pn pair discussed in the previous section. The α cluster
is composed of four nucleons, spin-up and -down protons
and neutrons. In the spin-orbit field, the spin-up and -down
nucleons are boosted in the opposite direction. It means that,
in the body-fixed frame, the α cluster can be regarded as a
composite of the ↑Y ↑Y pn pair and the ↓Y ↓Y pn pair, which
are boosted in the opposite direction (see Fig. 10). We also
consider an alternative interpretation of the α cluster as the
composite of two T = 1 pairs, ↑Y ↓Y pp and nn pairs. Then,
the behavior of the T = 1 pairs in the α cluster is qualitatively
consistent with the ↑Y ↓Y pn pair having the parity mixing in
the intrinsic frame discussed before.

It should be commented that one should not directly link the
Jπ = 0+ pp and Jπ = 0+ nn pairs with the α cluster because
the α cluster consists of correlating two pairs and it contains
not only Jπ = 0+ pairs but also finite J pairs. In other words,
Jπ = 0+ pp and nn pairs have no spacial correlation between
each other and they are different from the correlating four
nucleons in the α cluster. We can connect the 4N correlation
with the 2N correlation only in the intrinsic body-fixed frame
before the J projection or with the correlating pairs having
finite momenta.

VI. SUMMARY

We investigated the structure of 18F with the microscopic
wave function based on the three-body 16O + p + n model to
discuss the behavior of the pn pair around the 16O. Particular
attention was paid to the effect of the spin-orbit force on the
pn pair behavior.

In the GCM calculation, the T = 0 energy spectra of Jπ =
1+, 3+, and 5+ states and the T = 1 spectra of Jπ = 0+, 2+
states in 18F are described reasonably. The spin-orbit potential
from the core plays an important role in the energy spectra.
The spin-orbit potential energy gain is largest in the T = 0,
Jπ = 5+ state while it is small in the T = 0, Jπ = 1+ state.
The significant energy gain of the spin-orbit potential is caused
in the T = 1, Jπ = 0+states.

We discuss the effect of the spin-orbit force on the T = 0
and T = 1 pn pair around the 16O based on the dinucleon
picture. For the parallel-spin ↑Y ↑Y pair for the T = 0 states,
the spin-orbit potential boosts the c.m. motion of the pair
in the rotational mode (the rotation boost of the pair), keeping
the internal structure of the pair unchanged. It results in the
larger energy gain in the higher spin J states in the T = 0
spectra. For the antiparallel-spin ↑Y ↓Y pair in the body-fixed
frame, the parity mixing in the pair occurs because of the
external spin-orbit field. In other words, the pn pair gains the
spin-orbit potential energy involving the odd-parity mixing,
i.e., the symmetry breaking in the pair. The spin-orbit potential
energy gain with the odd-parity mixing is efficient in the T = 1
pair in the Jπ = 0+ state, but it is not so efficient in the T = 0
pair in the Jπ = 1+ state because of the large internal energy
loss of the T = 0 pair. The main origin of the smaller internal
energy loss of the T = 1 pair than the T = 0 pair is that
the odd-parity component is reduced in the projection onto
the T = 1, Jπ = 0+ eigenstate but there is no reduction in
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the T = 0, Jπ = 1+ projection. Thus, the parity mixing is
likely in the T = 1 pair in the Jπ = 0+ state but it is unlikely
in the T = 0 pair in the Jπ = 1+ state. Because the T = 1,
Jπ = 0+ pair is favored by the spin-orbit potential while the
T = 0, Jπ = 1+ pair is not favored, the T = 1, Jπ = 0+ state
comes down to the low-energy region though the T = 0, Jπ =
1+ state is still the lowest state in 18F because of the stronger
3E nuclear force than the 1E force.

The mechanism of the unfavorable T = 0 pair in the
spin-orbit potential is consistent with the discussions in
Refs. [5,12,15–18]. One of the new standpoints in the present
work is that we focus on the internal pair wave function and
discuss its change involving the odd-parity mixing because of
the spin-orbit force. In the present picture, the parity mixing
in the pair is regarded as the symmetry breaking in the pair by
the symmetry variant external spin-orbit field.
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APPENDIX A: DINUCLEON CLUSTER PICTURE
AND PARITY MIXING IN THE PAIR

We consider two nucleons around the core nucleus and
describe how the parity symmetry in the pair is broken by the
spin-orbit external field.

We introduce a simplified potential model where all core
effects are assumed to be renormalized in the one-body
effective central and spin-orbit potentials, while the recoil
effect is omitted. In the simplified model, the Hamiltonian
is given as

H = t1 + t2 + Uc(r1) + Uc(r2) + Uls(r1)l1 · s1

+Uls(r2)l2 · s2 + vNN (r), (A1)

which describes interacting two nucleons in the external field
from the core. We first explain the mean-field picture and then
describe the dinucleon picture based on this model for a pair
around the core.

In the mean-field approximation, the Hamiltonian is rewrit-
ten as

H = h1 + h2 + vNN (r), (A2)

hi = ti + Ui, (A3)

Ui = Uc(ri) + Uls(ri)l i · si . (A4)

The one-body parts of the Hamiltonian is considered to be
the unperturbative Hamiltonian H0 = h1 + h2 and the residual
interaction H ′ = vNN is regarded as the perturbative Hamilto-
nian which causes the two-body correlation. In the leading term
H0, two nucleons behave as independent particles in the mean
field Ui containing the spin-orbit potential, and the correlated
wave function is expressed by the linear combination of the

single-particle configurations. It corresponds to the expression
of the jj coupling scheme.

When we respect the internal symmetry of the pair, the
picture based on the LS coupling scheme is useful rather than
the jj coupling scheme because the Hamiltonian without the
spin-orbit potential has the symmetry for the internal parity of
the pair, which is explicitly broken by the spin-orbit potential.
For the LS coupling picture, we consider another choice of
the unperturbative Hamiltonian by regarding the spin-orbit
potential as the perturbative external field for two nucleons,

H = H̃0 + H̃ ′, (A5)

H̃0 = t1 + t2 + Uc(r1) + Uc(r2) + vNN (r), (A6)

H̃ ′ = Uls(r1)l1 · s1 + Uls(r2)l2 · s2. (A7)

In H̃0, two nucleons bound in the central potential form the
pn pair at the surface because of the S-wave attraction of the
nuclear force vNN . The (T S) = (01) and (10) pairs are formed
by the attractions in the 3E and 1E channels, respectively.
Because the total intrinsic spin S and the total orbital angular
momentum L are conserved, this picture is called the “LS
coupling” scheme. In the internal wave function of the pair,
the parity transformation r → −r (r ≡ r1 − r2) is equivalent
to the exchange r1 ↔ r2, and therefore, the internal parity of
the pair is conserved in the unperturbative system because H̃0

is invariant under the internal parity transformation, r1 ↔ r2.
Based on the two-nucleon pair with the parity symmetry in

the LS coupling scheme, we consider the spin-orbit potential
as the perturbative external field that explicitly breaks the
parity symmetry in the pair. The total Hamiltonian H =
H̃0 + H̃ ′ is no longer invariant under the transformation
r1 ↔ r2. As a result, the odd-parity component mixes in the
dominant even-parity component in the internal pair wave
function. Because of the Fermi statistics, it means that the
spin-singlet odd (1O) component is mixed in the 3E component
in the T = 0 pair and the 3O component is mixed in the 1E
component in the T = 1 pair.

To consider the breaking of the parity symmetry in the
pn pair, we discuss a ↑Y ↓Y pn pair localized around a
certain position (0,0,Dg) on the Z axis. Ignoring the degree
of freedom along Z axis for simplicity, we look only into
the two-dimensional (2D) problem on the XY plane passing
through (0,0,Dg). For a simple explanation of the parity
mixing in the pair due to the spin-orbit potential, we introduce
a toy model which mimics the 2D problem for the pair.
Namely, we assume the 2D H.O. potential around the origin
of the coordinates ρ = (X,Y ) and add the perturbative field
contributed by the spin-orbit potential:

H2D = H
(0)
2D + H ′

2D, (A8)

H
(0)
2D = 1

2m

(
p2

1X + p2
1Y

) + mω2

2
ρ2

1 + 1

2m

(
p2

2X + p2
2Y

)

+ mω2

2
ρ2

2, (A9)

H ′
2D = − V̄ls

�
(p1Xs1Y − p1Y s1X) − V̄ls

�
(p2Xs2Y − p2Y s2X).

(A10)
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Here the contributions from the nucleon-nucleon interaction
as well as the central potential in H̃0 are assumed to be
renormalized in the H.O.-type mean potential H

(0)
2D . The spin-

orbit potential contribution is approximated by the averaged
strength −V̄ls ≈ Uls(Dg)Dg , assuming the coordinate r i in
the spin-orbit potential to be constant r i ≈ (0,0,Dg). V̄ls

is a positive constant value. The H.O. assumption for the
unperturbative potential is not essential but it can be another
potential form with the 2D-rotational symmetry (the axial
symmetry in 3D). The present H.O. assumption is used just for
the convenience that the internal wave function and the c.m.
wave function of the pair are separable in the lowest state of
the H.O. potential.

The lowest state of two nucleons, ↑Y p and ↑Y n, for H 2D
0

is the (0s)2
2D configuration in 2D,

�0(1,2) = 1
2A{φ0(ρ1)χp↑Y

φ0(ρ2)χn↓Y
}, (A11)

φ0(ρi) = φ2D
0s (b; ρi), (A12)

b =
√

�

mω
, (A13)

where φ2D
0s (b; ρ) is the function for the 0s state of the 2D H.O.

with the size parameter b,

φ2D
0s (b; ρ) ≡

(
1

πb2

)1/2

e
− ρ2

2b2 . (A14)

The spatial part of the wave function of the (0s)2
2D state is

expressed by a product of the c.m. wave function φ2D
g,0 and the

internal wave function φ2D
in,0,

φ0(ρ1)φ0(ρ2) = φg,0(ρg)φin,0(ρ), (A15)

φ2D
g,0 = φ2D

0s

(
b√
2

; ρg

)
, (A16)

φ2D
in,0 = φ2D

0s (
√

2b; ρ), (A17)

with the c.m. and relative coordinates, rg ≡ (r1 + r2)/2
and r ≡ r1 − r2 of the pair. Needless to say, the internal
wave function φ2D

in,0 of the pair contains only the even-parity
component.

Because of the spin-momentum coupling term H ′
2D origi-

nating in the spin-orbit potential, the parity mixing occurs in
the ↑Y ↓Y pair. The total Hamiltonian for the ↑Y ↓Y pair can be
written as

H 2D = 1

2m

{
(p1X − �kX)2 + p2

1Y

} + mω2

2
ρ2

1

+ 1

2m

{
(p2X + �kX)2 + p2

2Y

} + mω2

2
ρ2

2 + C, (A18)

kX ≡ m

2�2
V̄ls, (A19)

C = − m

4�2
V̄ 2

ls . (A20)

The energy shift C of the lowest state is proportional to
V̄ 2

ls instead of V̄ls because the leading order of the energy
perturbation vanishes, 〈�0|H ′

2D|�0〉 = 0. Single-particle wave
functions for the spin-up (↑Y ) and -down (↓Y ) nucleons in the

lowest state are those shifted in the momentum space in the
opposite direction along the X axis,

φ(ρ1) =
(

1

πb2

)1/2

e
− ρ2

1
2b2 eikXX1 , (A21)

φ(ρ2) =
(

1

πb2

)1/2

e
− ρ2

2
2b2 e−ikXX2 . (A22)

In other words, two nucleons are boosted with the momentum
kX in the opposite direction by the spin-momentum coupling
field. As a result the odd-parity mixing occurs in the internal
wave function of the pair as

φ(ρ1)φ(ρ2) = φ2D
g,0(ρg)φ2D

in (ρ), (A23)

φ2D
in (ρ) =

(
1

2πb2

)1/2

e
− ρ2

4b2 eikXX

= φ2D
0s (

√
2b : ρ) + ikXbφ2D

0pX
(
√

2b; ρ) + O(
k2
X

)
.

(A24)

Here φ2D
0pX

indicates the 0pX state in the 2D H.O. In the
limit of the small perturbation, the odd-parity component is
k2
X/4b2 = m2V̄ 2

ls/16�
4b2, which is proportional to the square

of the strength of the spin-orbit field.
Clearly shown in this schematic model, the parity symmetry

in the pair breaks because of the spin-orbit field. The
order parameter kX relating to the odd-parity component is
determined by the competition between the spin-orbit potential
energy gain and the energy cost to break the symmetry. The
energy cost comes from the energy loss to excite the lowest
0p state to the 0p state in the pair, and it is proportional to the
0p mixing (parity mixing) component. In the following, we
show that the ratio of the 0p component to the dominant 0s
component in the pair changes in the JZ = K projection which
is equivalent to the T projection. Namely, the 0p component
is quenched in the T = 1 projection, resulting in the smaller
internal energy loss in the T = 1 pair. Similar discussions can
be found in Ref. [18].

The ↑Y ↓Y pn pair contains T = 0 and T = 1 components
as

χp↑Y
χn↓Y

= X01

2
+ X10

2
+ X00

2
+ X11

2
, (A25)

where XT S is the isospin-spin T S state of two nucleons. The
parity-mixed pn pair can be decomposed into T = 0 and T =
1 eigenstates as

�(1,2) = 1

2
A{φ(ρ1)χp↑Y

φ(ρ2)χn↓Y
}

= φ2D
g,0(rg) ·

{
φ2D

0s (
√

2b; ρ)
X01

2
+ ikXbφ2D

0pX
(
√

2b; ρ)

×X00

2
+ φ2D

0s (
√

2b; ρ)
X10

2

+ ikXbφ2D
0pX

(
√

2b; ρ)
X11

2

}
+ O(

k2
X

)
. (A26)

In the 2D system in the intrinsic frame, there is no difference
in the ratio of the even-parity and odd-parity components
between T = 0 and T = 1 states. However, because the
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2D Hamiltonian has the rotational symmetry around the Z
axis (the axial symmetry) and as a result of the symmetry
restoration, the JZ = K eigenstate projected from the intrinsic
state should be considered. The K = 0 and K = ±1 projected
pairs correspond to the T = 1 and T = 0 pairs, respectively,
and they are naively expected in the T = 1, Jπ = 0+ and T =
1, Jπ = 1+ states. Choosing the Z axis as the quantization
axis, the orbital angular momentum 0pX state can be rewritten
in terms of |llZ〉l as

|0pX〉 = 1√
2

(|1 − 1〉l − |1 + 1〉l), (A27)

and also the S = 1 component of the SY = 0 state in XT 1 can
be rewritten in terms of |SSZ〉s as

|XT 1〉 = i√
2

(|1 − 1〉s + |1 + 1〉s)|T 〉. (A28)

For the T = 1 pair, the odd-parity term φ2D
0pX

(2b)X11

can be decomposed by |1 − 1〉l|1 − 1〉s , |1 + 1〉l|1 + 1〉s ,
|1 − 1〉l |1 + 1〉s , and |1 + 1〉l|1 − 1〉s components. It means
that the odd-parity term of the T = 1 component contains the
K = 0 and K = 2 components in equal weight, while the even-
parity term φ2D

0s (2b)X10 contains only the K = 0 component.
As a result, the odd-parity component is suppressed in the
K = 0 projected state, and the ratio of the odd-parity to
the even-parity components in the T = 1 pair is reduced to
be half of the intrinsic state. However, for the T = 0 pair, there
is no reduction of the odd-parity component in the K = ±1
projection, and the ratio in the T = 0 pair is the same as that in
the intrinsic state. In other words, the even-parity component is
relatively enhanced in the K = 0 projection for the T = 1 state,
while such an enhancement of the even-parity component does
not occur in the K = ±1 projection for the T = 0 state.

APPENDIX B: RELATION BETWEEN pn CLUSTER WAVE
FUNCTION AND SHELL-MODEL WAVE FUNCTION

In this work, we use the three-body cluster model of
16O + p + n with the form of Gaussian wave packets for two
nucleons. We here show that this wave function becomes an
sd-shell configuration of the H.O. shell model in a certain
limit.

In a basis cluster wave function �16O+pn(R1,R2) of Eq. (1),
the spatial part of the single-particle wave function for the ith
valence nucleon is described with a Gaussian wave packet of
Eq. (3),

φ(Rj ; r i) =
(

2ν

π

)3/4

e−ν(r i−Rj )2
. (B1)

Using the expansion e−t2+2xt = ∑∞
n=0 Hn(x)tn/n! with the

Hermite polynomial Hn(x), this Gaussian wave packet can
be rewritten by an expansion of the H.O. shell-model single-
particle wave function (nx,ny,nz)ho for the width parameter
b = 1/

√
2ν as

φ(Rj ; r i) =
∑

nx,ny ,nz

Nnxnynz
(Rj )(nx,ny,nz)ho, (B2)

Nnxnynz
(Rj ) = e− ν

2 R2
j

∏
σ=x,y,z

(√
ν

2
Rjσ

)nσ 2nσ /4

(nσ !)3/4
. (B3)

Note that the coefficient Nnxnynz
(Rj ) is the order of |Rj |N

(N ≡ nx + ny + nz) in the small |Rj | limit.
Because N � 1 orbits are already occupied by nucleons

in the 16O core, only N � 2 orbits are allowed for valence
nucleons in the the total wave function �16O+pn(R1,R2). It
means that N � 1 shell-model configurations vanish in the
total wave function after the antisymmetrization and N � 2
configurations remains. Defining the orthogonal component
of φ(Rj ; r i) to the forbidden N � 1 orbits as

φ̃(Rj ; r i) =
∑
N�2

Nnxnynz
(Rj )(nx,ny,nz)ho, (B4)

we can rewrite the 16O + p + n wave function as

�16O+pn(R1,R2) = A{�16Oψ̃pσ (R1)ψ̃nσ ′(R2)}, (B5)

ψ̃τσ (Rj ; r i) = φ̃(Rj ; r i)χτσ . (B6)

In the limit of |Rj | → 0, the lowest order φ̃(Rj ; r i) term
becomes dominant in φ̃(Rj ; r i) as

φ̃(Rj ; r i) =
∑
N=2

Nnxnynz
(Rj )(nx,ny,nz)ho (B7)

+O(|Rj |3). (B8)

This means that the 16O + p + n cluster model wave function
becomes an (sd)2 configuration of the H.O. shell-model wave
function in the small |Rj | limit.
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