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We analyze the properties of the Gogny interaction in homogeneous matter, with special emphasis on the
isovector sector. We provide analytical expressions for both the single-particle and the bulk properties of
symmetric and asymmetric nuclear matter. We perform an extensive analysis of these properties using eleven
parametrizations extracted from the literature. We find that most Gogny interactions have low values for the
slope of the symmetry energy, outside the range of empirically extracted values. As a test of extreme isospin
dependence, we also study the neutron star mass-radius relations implied by the different Gogny equations of
state. Our results call for a more careful fitting procedure of the isovector properties of Gogny functionals.
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I. INTRODUCTION

The Gogny force is a well-known and extensively used
effective nuclear interaction [1]. Unlike the Skyrme density
functional, which parametrizes the dependence on the relative
distance by contact interactions and derivatives, the Gogny
force has a built-in finite range [2]. This brings the Gogny
force closer in spirit to realistic interactions. Moreover, the
nonzero range is essential to avoid spurious truncations in
the pairing channel within Hartree–Fock–Bogoliubov (HFB)
nuclear structure calculations, and it was the main motivation
behind its inception in the 1980s by the Bruyères group [3].
In the decade that followed, Gogny forces were particularly
used in nuclear fission studies [4]. In this context, Gogny
interactions are still a popular starting point for a variety
of reasons [5]. Heavy nuclei, deformation, and multipolar
collective degrees of freedom have also been studied by using
Gogny HFB [6–8]. Recently, even Gogny time-dependent
calculations have become available [9].

Here, we explore the predictions of the Gogny functional
in a different context. Infinite nuclear matter has usually
been taken as a reference in the fitting procedure of Gogny
functionals [2] (see below for a more detailed discussion).
This includes isoscalar properties, such as saturation energies
and saturation density. The compressibility of nuclear matter,
of crucial importance for a variety of nuclear structure
observables, has also been extensively studied with the Gogny
functional [10]. In contrast, the isovector properties of the
Gogny parametrizations have hardly ever been discussed.
Typically, only the symmetry energy is considered, if any-
thing [3]. The remaining isovector dependence is expected to
be captured by the fit to finite nuclei. Recent studies with
the Skyrme functional, however, indicate that, in addition
to nuclei, neutron-rich infinite matter is also needed to
constrain the isovector sector [11,12]. One could therefore
put into question the predictive power of Gogny interactions
in isovector-dominated properties, such as neutron skins or
neutron-rich systems.

The isovector properties of Skyrme functionals have been
extensively studied [13,14], with a very wide variety of criteria
to characterize their quality [15]. Here, we aim at providing a
generic description of isospin asymmetric nuclear matter with
the Gogny interaction. Because only eleven functionals are

available in the literature, one might think that this study is
limited in the amount of variability, which is often referred
to as systematic uncertainty in the context of energy density
functionals (EDFs) [16,17]. However, we find that, even within
a relatively narrow set of Gogny functionals, there is a large
variation in isospin properties. In particular, we observe that
the density dependence of the symmetry energy provided by
Gogny forces is too soft and lies outside of currently accepted
values [18,19]. This points to poor constraints in the isovector
sector, which should be improved in future fitting protocols.

We aim at finding general trends and, by providing
analytical expressions, we hope to find specific combinations
of parameters that might be responsible for critical behavior.
Where we can, we have compared with existing values of
isoscalar and isovector properties [20,21]. As a specific aspect
of the isovector sector, we discuss neutron star properties as
predicted by the present generation of Gogny forces. On the
one hand, this might go beyond the scope of applicability
of part of the Gogny functionals. On the other hand, a new
generation of observations is starting to put severe constraints
on the equation of state of neutron-rich matter [22–24].
Ideally, these constraints should also be considered in fitting
procedures of energy density functionals [11]. In line with the
poor reproduction of bulk isovector properties, our calculations
indicate that it is difficult to produce sufficiently massive
neutron stars with the present generation of Gogny functionals.

II. GOGNY INTERACTIONS

In terms of its functional form, the Gogny force is a natural
extension of the early Brink and Boeker interaction [25]. The
finite-range part is modelled by two Gaussians, including a
variety of spin-isospin exchange terms, as well as a zero-
range density-dependent term that is helpful in reproducing
saturation:

V (�r) =
∑
i=1,2

(Wi + BiPσ − HiPτ − MiPσPτ )e− r2

μi

+
∑
i=1,2

t i0
(
1 + xi

0Pσ

)
ραi δ(�r )

+ iW0(σ1 + σ2)[�k′ × δ(�r )�k]. (1)
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The first contribution includes the finite-range dependence,
because �r is the relative distance between two nucleons. All
Gogny forces contain two terms (denoted by i = 1,2) with
effective ranges μ1 ≈ 0.5 to 0.7 fm and μ2 ≈ 1 to 1.2 fm,
which in principle mimic a short- and a long-range compo-
nent, respectively.1 The spin-isospin structure of the force
is relatively rich and includes spin and isospin exchange
operators, Pσ and Pτ , respectively. The second contribution
is a zero-range, density-dependent component that accounts
for three-body correlations.2 The force further incorporates a
spin-orbit component, proportional to W0. This is a function
of the relative momentum, �k = ( �∇1 − �∇2)/2i, acting either on
the bra or the ket ( �k′) of two-nucleon states. Tensor terms in
the Gogny functional have also been considered for a variety
of applications [27–29]. Both terms depend on gradients of
the density and are therefore irrelevant for nuclear matter bulk
properties. We will not consider them hereafter.

There are about 14 to 17 numerical parameters to be fit in a
Gogny functional, although more often than not some of these
are fixed at the outset of the fitting procedure. In the following,
we give results for the eleven Gogny parametrizations that
we have been able to find in the literature. The original
force, D1, was fit to the properties of closed-shell nuclei, 16O
and 90Zr, as well as to nuclear matter saturation properties,
including a relatively low saturation symmetry energy of
S = 30.7 MeV [3]. A new parametrization, D1S, was devised
shortly after specifically for the study of fission [4] and
has been used extensively further [5,7,30,31]. In an effort
to pin down the bulk isoscalar properties of nuclear matter
from nuclear data, including pairing correlations, Blaizot
and collaborators formulated a series of Gogny interactions
(D250, D260, D280, and D300) with a wide range of
compressibilities [10]. These have not been used extensively
in the literature but provide an interesting testing ground for
isoscalar-dependent properties [32].

Farine and collaborators conceived D1P as an extension
of the usual Gogny functionals, increasing the number of
zero-range terms to two [26]. Among other things, this
extension improves the neutron-matter equation of state by
fits to realistic many-body calculations. Not surprisingly,
we find that D1P performs well in the isovector sector. A
similar idea is behind the D1N parametrization of Chappert
et al. [33,34], which also reduces the difference between
theoretical and experimental masses in the actinide region.
D1AS is an extension of D1, which has been used in the context
of transport calculations [35]. A major motivation for this
force was to provide a stiffer symmetry energy, but its nuclear
structure properties have not been explored to our knowledge.
GT2, in contrast, was developed to provide realistic nuclear
structure calculations including a tensor term, to account for
changing shell structure in neutron-rich systems [27]. Finally,
D1M provides a global fit to masses of comparable quality to

1Note that these are generally fixed at the start of the fitting protocol
and hence cannot be considered as fit parameters.

2Note that, in most cases, the force contains a single t0 term. The
exception is the D1P parametrization, which includes two zero-range
terms to make the fitting procedure more flexible [26].

mass formulas within the HFB approach, including quadrupole
correlation energies [36,37].

The finite range of the Gogny force is a more realistic
feature that is now customarily used in nuclear structure
studies. In contrast, momentum dependence is incorporated
into transport studies on a more intermittent basis [38]. In
that context, one usually employs the so-called “momentum-
dependent interactions (MDI),” which are vaguely related to
Gogny forces. In particular, the momentum dependence and
the isospin dependence are parametrized differently. In the
following, we focus strictly on Gogny functionals, but some
of the conclusions can be relevant for MDI-type interactions.

For nuclear systems with different isospin contributions,
like isospin-polarized matter, one can group the spin-isospin
prefactors in the Gogny matrix elements into different terms.
The zero-range contribution has a direct and an exchange part
that, in practice, are computed together. For the finite-range
terms, however, it is convenient to split the contribution into
direct terms, which will be proportional to densities, and
exchange terms, which involve more complicated functions
of Fermi momenta. For the zero-range and direct terms, for
instance, we differentiate between isoscalar (0 subscript):

Ai
0 = π3/2μ3

i

4
[4Wi + 2Bi − 2Hi − Mi], (2)

Ci
0 = 3

4
t0, (3)

and isovector (1 subscript):

Ai
1 = π3/2μ3

i

4
[−2Hi − Mi], (4)

Ci
1 = −1

4
t0(1 + 2x0), (5)

contributions. For the finite-range exchange contribution, it is
useful to consider terms associated with equal and unequal
isospin pairs:

Bi
nn = Bi

pp = − 1√
π

[Wi + 2Bi − Hi − 2Mi], (6)

Bi
np = 1√

π
[Hi + 2Mi]. (7)

In discussing isoscalar and isovector single-particle properties,
we also introduce the exchange isoscalar and isovector terms:

Bi
0 = Bi

nn + Bi
np = − 1√

π
[Wi + 2Bi − 2Hi − 4Mi], (8)

Bi
1 = Bi

nn − Bi
np = − 1√

π
[Wi + 2Bi]. (9)

In infinite matter, and within the Hartree–Fock approximation
employed in this work, the single-particle (bulk) properties
have contributions associated with the exchange term which
are proportional to single (double) integrals of Gaussians over
the Fermi surfaces of neutrons and protons. These integrals can
be computed analytically and give rise to a series of polynomial
and Gaussian functions. To avoid cluttering our discussion
with equations, we provide all analytical expressions in the
Appendixes.
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FIG. 1. (Color online) Matrix elements of Eqs. (2) to (7) for the
eleven Gogny functionals under consideration. The first (second)
coefficient of every couple corresponds to i = 1 (i = 2). For the
zero-range terms C0 and C1, we only present i = 1. The units are
MeV fm3 for Ais; MeV for Bis, and MeV fm3αi+3 for Cis.

The numerical parameters appearing in Eq. (1) are obtained
by a fitting procedure of the Gogny functional. With these,
one can compute the different matrix elements. We note that
the parameters can be degenerate, in the sense that only
linear combinations enter the fitting procedure. In addition, the
separation of matrix elements in zero-range, direct finite-range,
and exchange terms is arbitrary. Hence, the independent values
of these matrix elements are not necessarily meaningful. Some
specific parameters, however, do determine physical properties
(see below for how Bnn is entirely responsible for the effective
mass splitting), and hence it can be interesting to find out
their values. While a detailed analysis is beyond the scope of
this work, we provide a plot with the values of these matrix
elements in Fig. 1. This provides, at a glance, an explanation of
the different isovector and isoscalar parameters for the eleven
functionals under consideration.

There are, for instance, common trends that can impact
isoscalar and isovector properties of matter. Most forces prefer
a large positive A1

1 and a negative A2
1, suggesting cancellations

in the isovector, direct finite-range part of the functional. In
contrast, the majority of forces prefer negative B1,2

xy , which
suggests that the exchange terms act as overall attractive
contributions. The isospin singlet zero-range term C0 is
repulsive, as expected from the usual density-dependent terms
of the functionals. In contrast, all forces, except for D1AS,
present attractive C1 contributions. This suggests a dominance
of attractive terms in the isovector channels which, as we shall
see, hampers the development of stiff symmetry energies.

In addition, we find a relatively large spread for most
parameters. This is a sign of large functional dependence or
systematic uncertainty [16]. In particular, all the short-range

parameters A1
x and B1

x present a much larger variability
than their long-range counterparts, A2

x and B2
x . In terms of

functionals, D1M is an outlier as compared to most other
parametrizations, with extreme values of finite-range exchange
parameters, B1

nn and B1
np. The specific optimization procedure

of this force should most likely account for these large
differences [36]. Similarly, GT2 also shows a distinct behavior
for A

1,2
1 and B1,2

nn , as already acknowledged in the original
publication [27]. The isoscalar zero-range matrix elements
C1

0 are, as expected, all repulsive, whereas their isovector
counterparts, C1

1 , are attractive and of a similar order of
magnitude.3 We do not show the C2

x parameters, since they
are zero for all forces except for D1P, where they are repulsive
Cx

2 ≈ 192 MeV fm4.

III. MICROSCOPIC PROPERTIES

A. Single-particle potentials

We start our discussion by looking at a series of single-
particle properties of asymmetric nuclear matter as obtained
by different Gogny functionals at different densities. All these
properties characterize, in one way or another, the single-
particle potential of a neutron or a proton with momentum
k, denoted by Uτ (k). The isospin index τ corresponds to
a neutron, τ = +, or a proton, τ = −. We work within
the Hartree–Fock approximation and, in asymmetric infinite
matter, the single-particle potential is the result of an integral
and spin average over the neutron and proton Fermi surfaces:

Uτ (k) = 1

2

∑
σ ′,τ ′

σ

∫
d3k′

(2π )3
〈kστ ; k′σ ′τ ′|V |kστ ; k′σ ′τ ′〉A,

(10)

so that the integral runs only for k′ < kτ ′
F . The subscript A

denotes an antisymmetrization in the matrix element.
Using the expression for the Gogny functional in Eq. (1),

one can find analytical expressions for Uτ (k). The zero-range
and the direct terms, for instance, are momentum independent
and can be integrated straight away. This gives rise to two
terms proportional to the density, or to ραi+1, in the case of
the zero-range contribution. The exchange term, arising from
the antisymmetrization, is more cumbersome. It involves an
integral over a Gaussian momentum factor, which includes at
least one angular integration. This integral can be computed in
a closed form, and we provide the explicit expression in the Ap-
pendix [Eq. (A1)]. The isovector contribution is proportional
to the isospin-asymmetry fraction β = ρn−ρp

ρ
. The result of the

integral in the exchange finite-range contribution depends on
the Fermi momenta of each species, kτ

F = ( 3π2

2 ρ[1 ± β])1/3.
We do not provide the rearrangement term, Eq. (A5), explicitly
here, but we include it in all figures that need it. The function
u(q,qF ), given in Eq. (A2), involves Gaussians and error
functions. This encodes the momentum dependence of the

3All forces have αi = 1
3 except for D250 and D300 which have

αi = 2
3 .
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FIG. 2. (Color online) Single-particle potential of neutrons (solid
triangles) and protons (solid circles) as a function of momentum for
six different isospin asymmetries: β = 0 (solid line), 0.2 (long dashed
line), 0.4 (short dashed line), 0.6 (dotted line), 0.8 (dashed-dotted
line), and 1.0 (double-dotted dashed line). The results were obtained
at ρ = 0.16 fm−3. The symbols denote the single-particle potential
of a neutron (triangles) or a proton (circles) at the respective Fermi
momentum kτ

F .

single-particle potential, as all the other terms are constants as
a function of k.

We show the single-particle potentials Uτ (k) as a function
of momentum in Fig. 2. The different panels correspond to 10
different Gogny parametrizations.4 The results have all been
computed at ρ = 0.16 fm−3 at different isospin asymmetries
(see figure caption for details). We highlight with symbols
the neutron (triangles) and proton (circles) potentials at the

4We ignore D1AS for the time being, because its momentum
dependence is identical to D1.

respective Fermi surfaces. These contributions are relevant for
our understanding of the evolution of isospin in single-particle
properties.

The single-particle potential for symmetric matter (solid
lines) is rather well constrained at low momenta. All forces
predict values Uτ (0) ≈ 70 to 80 MeV at zero momentum and
ρ = 0.16 fm−3. At low momentum, below about 2 fm−1, the
symmetric-matter single-particle potentials are similar. As a
function of momentum, U (k) generally increases with k in
this region. Above k ≈ 2 fm−1, for some functionals (D1N,
D1P, or GT2) the potential saturates, decreases (D1S, D1M,
D250), or increases (D260, D280, D300). For symmetric
matter, the momentum dependence is dictated by the sum of
two terms, governed by Bi

0 and the function u(q,qF ) evaluated
at the Fermi momentum, qF = μikF , of symmetric matter.
We note that in the k 	 1 limit, the momentum-dependent
exchange term becomes negligible and the direct plus zero-
range terms dominate. Hence, the high-momentum value is
entirely dominated by momentum-independent terms.

The interplay between asymmetry and momentum is also
relevant, particularly in transport calculations [21,39,40]. The
data presented in Fig. 2 shows that, at low momentum, the
isospin asymmetry dependence of single-particle potentials is
relatively well constrained, at least around saturation density.
In all cases, we observe an increase of the neutron Un(k) as a
function of asymmetry, whereas the proton Up(k) decreases.
This corresponds to the physically intuitive idea that neutrons
(protons) are less (more) bound in neutron-rich systems. In
the low-momentum region, below ≈2 fm−1, the dependence
in asymmetry is rather monotonic. For an increase of 0.2
in asymmetry, we find a steady decrease of Up by around
≈10 MeV. In contrast, the neutron potential increases by about
5 to 7 MeV in a pattern that is less linear. This suggests that,
in the limit of neutron-rich systems, the nonlinear exchange
terms dominate the isospin dependence of the single-particle
momentum. For neutrons in neutron matter, the single-particle
potential at the Fermi surface is Un ≈ −32 MeV, with a
spread of around 5 to 10 MeV. In the limit of extreme
isospin imbalance (β = 1), we find that most forces predict
a similar value for the zero-momentum proton potential,
Up(0) ≈ −115 MeV, with a spread of around 10 MeV. A
proton impurity is a particularly interesting system, because its
momentum dependence is entirely governed by Bi

np [41,42].
The asymmetry dependence in the high-momentum region,

k � 2 fm−1, is less constrained. One finds a large variety of
results. For D1, for instance, the single-particle energy of
neutrons for k > 3 fm−1 is lower than that of protons. This
inversion occurs also for D260, D270, D300, and GT2 in a
region ranging between 2 and 3 fm−1. The results obtained with
D1S, D1P, and D250 suggest that the asymmetry dependence
of the neutron potential is very weak above 2.5 fm−1. In stark
contrast, D1M suggests a strong increase (decrease) of Un (Up)
with asymmetry in the large-momentum region. As a matter
of fact, for this force at large asymmetries, Up decreases
rather steeply as a function of momentum. We will see the
consequences of this behavior in the analysis of the effective
mass that follows. All in all, this figure suggests that the isospin
asymmetry dependence of the high-momentum single-particle
properties is not constrained in the Gogny functional. One
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FIG. 3. (Color online) (top panels) Isoscalar and (bottom panels) isovector components of the single-particle potential as a function of
momentum. Results for all Gogny functionals are displayed at three densities: (left panels) ρ = 0.08 fm−3, (central panels) ρ = 0.16 fm−3,
and (right panels) ρ = 0.24 fm−3 are displayed. The gray band in the bottom-central panel is the allowed region of saturation isovector
single-particle potentials obtained in Ref. [46]. The arrows mark the position of the Fermi momentum at each density.

could foresee improvements in this direction by using fitting
protocols that take into account the information available
from realistic many-body calculations in isospin asymmetric
nuclear matter [43–45].

Up to this point, we have only displayed results computed
at a single density ρ = 0.16 fm−3. One would like to
know whether similar issues are found at different densities.
Rather than showing the whole asymmetry dependence of the
single-particle potentials for different densities, we opt for
displaying separately the isovector and isoscalar components
of the single-particle potential. As described in Appendix A,
one can introduce an isoscalar potential, U0(k), which is
essentially the average of the neutron and proton potentials.
This basically corresponds to the single-particle potential
of symmetric matter, which one would expect to be well
constrained at subsaturation densities by nuclear data. The
isovector component, U sym

1 (k) [see Eq. (A11) for a definition],
is the first derivative with respect to β of the single-particle
potentials. It therefore encodes information on how the
potentials evolve with asymmetry. We note that this isovector
potential is essentially equivalent to the Lane potential in a
wide density, asymmetry, and momentum range [46,47].

We show the isoscalar potential for three characteristic
densities in the top panels of Fig. 3. At half saturation (top-left
panel), the low-momentum part of the single-particle potential
is very well constrained, in the sense that all functionals
predict very similar values. At k = 0, for instance, one finds
U0(0) ≈ −50 MeV. The increase of U0(k) with momentum is
rather mild and, at k = 2 fm−1, most potentials are around

−30 MeV. As momentum increases past this point, though, a
relatively large spread of values develops.

At saturation (central panels), one finds qualitatively equiv-
alent results. The low-momentum region of the potential is well
constrained, although larger differences between functionals
are observed. In the region k ≈ 1 fm−1, all isoscalar potentials
are close to U0 ≈ −60 MeV. Above this momentum region,
large divergences appear. Whereas some functionals increase
indefinitely with momentum, others saturate or even decrease.
For densities above saturation, in contrast, there is a relatively
wide spread of potentials both at low and at high momenta.
For instance, the zero-momentum single-particle potential
is predicted to range between −90 and −70 MeV. As
with other densities, the spread increases substantially above
k > 2 fm−1.

Regarding the momentum dependence of the different
functionals, it is interesting to note that it is (up to density-
dependent normalizations) essentially the same at different
densities. D1S, for instance, predicts at all density an isoscalar
potential that increases, then saturates and further on decreases
with momentum. In contrast, the D1N isoscalar potential
increases monotonically at low k and saturates rather quickly
at all densities. D280 is extreme, in that its momentum
dependence is the steepest, with a large increase in U as k
becomes larger.

We note that the functionals with largest U0 at high
momentum (D280, D260, and D300) are those that displayed
large A1

0 values in Fig. 1. At large k, one expects the exchange
term in U0 to become negligible. The isoscalar single-particle
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potential hence tends to the momentum-independent value:

U0(k 	 1) ≈
∑
i=1,2

[
Ai

0 + Ci
0ρ

αi
]
ρ. (11)

Forces with large Ax
0 and Cx

0 matrix elements will eventually
show large momentum-independent contributions in the high-
momentum region of U0(k). Moreover, since most zero-range
isoscalar couplings C1

0 are positive, those functionals that have
large and positive A1

0 will develop strongly repulsive single-
particle potentials at high momenta and large densities. Note
that D1P was precisely fit to have U0(k) cross zero around
k ≈ 3.2 fm−1 and tend to an asymptotic value of 30 MeV for
k 	 1 [26].

The bottom panels of Fig. 3 show a strikingly different
pattern. Even at subsaturation densities (bottom left panel),
the low-momentum components of the isovector potentials
coming from different functionals are rather different. At
zero momentum, we find values ranging from U1(0) ≈ 19 to
35 MeV, with significant divergences. At saturation (bottom
central panel), most functionals predict U1(0) ≈ 33 MeV, ex-
cept for GT2, D1M, and D1N. Between k = 1.4 and 1.6 fm−1,
there is an area of overall agreement between functionals, with
values of U1 ≈ 25 MeV, but the results diverge even more than
in the isoscalar sector as momentum increases. The isovector
potentials above saturation (bottom-right panel) cover a wide
range of values, which indicates that they are not constrained
by the parameter-fitting procedure.

A recent analysis of the isovector optical potential and
its connection to bulk properties suggests that U1 should
decrease with momentum [39]. We show with a gray band
the allowed region of the saturation density isovector single-
particle potential as obtained from the optical potential fits of
Ref. [46]. At low momentum, the allowed region is above all
single-particle potentials. The steep decrease as a function of
momentum suggested by this analysis is only reproduced by
a minority (D260, D280, and GT2) of extreme functionals.
Empirical values and theoretical predictions seem to have
somewhat similar momentum dependencies, but the absolute
values of U0(k) are somewhat too low. This shift in absolute
values could be due to the lack of nonlocality corrections
in U0(k) [46,47]. We note that our results for U0 and U1

agree with those presented in Ref. [21] for the corresponding
parametrizations.

The high-momentum asymmetry of U1 is also determined
entirely by the direct and zero-range matrix elements:

U1(k 	 1) ≈
∑
i=1,2

[
Ai

1 + Ci
1ρ

αi
]
ρ. (12)

Hence, the extremely large and positive A1
1 values of D1M and

D1N dictate limiting values of U1 which are large, positive, and
increasing with density. In contrast, because A1

1 
 0 for GT2,
its isovector potential becomes very negative as momentum
increases.

To some extent, the large differences among functionals
are not surprising. The fitting procedure includes only a
series of points of finite nuclei, which are typically subsat-
uration systems, and bulk, zero-temperature saturation matter
properties. All of these data are essentially determined by

single-particle properties at (a) densities below saturations and
(b) momenta below the Fermi momentum, which is typically
of the order kF ≈ 1 to 1.3 fm−1. In addition, since most of
these systems are almost isospin symmetric, the single-particle
isovector properties are rather poorly constrained. Conse-
quently, the single-particle potential is only well constrained
at low momentum, below saturation and near symmetric
systems. A covariance analysis that propagates the statistical
uncertainties of the fitting procedure would further quantify
this statement [16].

B. Effective masses

The effective mass provides a sensitive characterization of
the momentum dependence of the single-particle potential. We
note again that the momentum dependence of the mean-field is
exclusively due to the exchange term, because both the direct
and zero-range contributions are constants as a function of
k. In other words, the function u(q,qF ), given in Eq. (A2)
is entirely responsible for the nontrivial effective mass. As a
consequence, the effective mass, m∗

τ , is only proportional to
the matrix elements Bnn and Bnp:

mN

m∗
τ

= 1 + mN

�2k

∂Uτ (k)

∂k

= 1 + mN

�2

∑
i=1,2

{
Bi

nnm
(
μik,μik

τ
F

)

+Bi
npm

(
μik,μik

−τ
F

)}
. (13)

The function m(q,qF ), given in Eq. (A7), is essentially a
momentum derivative of the u(q,qF ) appearing in the single-
particle potential.

In analogy to Fig. 2, we present in the ten panels of Fig. 4
the results for the effective mass as a function of momentum at
ρ = 0.16 fm−3 for different functionals. We explore different
asymmetries and show the corresponding Fermi momentum
effective masses of neutrons (protons) with solid triangles
(solid circles). D1AS is a momentum-independent extension
of D1, so their effective masses are the same.

For isospin symmetric matter, β = 0, and the corresponding
saturation density, we provide the values of the effective mass
of the eleven functionals in column one of Table I. In this
case, the results of Fig. 4 indicate that all effective masses
at the Fermi surface are similar. We note, however, that the
momentum dependence of m∗

τ (k) is relatively disparate for the
different functionals. D1 shows a steady increase, saturating
to m∗ ≈ m at large momenta. Qualitatively similar results are
found for D1N, D1P, D260, D300, and GT2. In contrast, D1S,
D1M, and D250 go through a maximum at k ≈ 3.5 fm−1

before settling down at m∗ ≈ m. D280 is unique in that the
effective mass at low momentum is a decreasing function of
momentum.

The asymmetry dependence of the effective masses is also
rather heterogeneous. For most forces, the neutron effective
mass increases with asymmetry at low momentum. For D1P,
for instance, an increase of 0.2 in asymmetry results in an
increase in the effective mass of around 0.02. The decrease
in proton effective mass is slightly smaller. If we exclude
D1N, the effective mass of a proton impurity in neutron matter
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FIG. 4. (Color online) Effective mass of neutrons (solid circles)
and protons (solid triangles) as a function of momentum for six
different isospin asymmetries. The results were obtained at ρ =
0.16 fm−3. See Fig. 2 for further explanations.

at k = 0 falls within m∗
p(k = 0) ≈ 0.48 to 0.62. In contrast,

the neutron effective mass in neutron matter changes from
m∗

n(kn
F ) ≈ 0.68 to 1.26. Again, we point out that the impurity

system could be used to constrain the value of Bi
np [41,42].

D1N and D250 are exceptional in the sense that their
neutron effective masses at low momenta hardly depend on
asymmetry. The momentum dependence of the neutron effec-
tive mass for D1M is striking because it changes drastically
from low to large asymmetries. In particular, the proton
effective mass at large momenta increases substantially to
values above m∗

p ≈ 1.7mN in neutron matter. GT2 (bottom-
right panel) shows a similarly large dependence on asymmetry,
but in this case it is the neutron effective mass that grows
substantially with asymmetry.

Note also that D1S, D1M, and D250 show a crossing point,
above which the neutron effective mass is smaller than the
proton effective mass. Again, because this high-momentum,
high-asymmetry region is relatively unconstrained, it is not
surprising to find this variety of results. It would be interesting
to explore whether this reordering with momentum has any
impact on transport calculations [38] and observables of low-
energy nuclear collisions [40].

The effective mass is often characterized by its value at the
Fermi surface, m∗

τ (k = kτ
F ), rather than by its full momentum

dependence. This allows for a simple characterization of the
variation of momentum dependence with asymmetry, at least
close to the respective Fermi surfaces. Since m is symmetric
in its two arguments, the isovector effective-mass splitting is
proportional to Bi

nn only and to the difference of two symmetric
m functions evaluated at the two Fermi surfaces:

mN

m∗
n

− mN

m∗
p

=
∑
i=1,2

Bi
nn

[
m

(
μik

n
F ,μik

n
F

) − m
(
μik

p
F ,μik

p
F

)]
.

(14)

Because of its simplicity, this splitting can be analyzed
rather straightforwardly. For symmetric arguments, m(qF ,qF )
is a decreasing function of its argument up to qF ≈ 2.38.
Consequently, as long as μik

τ
F � 2.378 and for kn

F > k
p
F , the

difference of m functions will be positive. In these conditions,
the sign of the isovector splitting will be proportional to that
of Bi

nn.

TABLE I. Isoscalar and isovector properties of nuclear matter as predicted by Gogny functional. All properties have units of MeV, except
for the dimensionless effective mass m∗

m
(column two) and the saturation density ρ0 in fm−3 (column three).

Force m∗
m

ρ0 e0 K0 Q0 S L Ksym Qsym Kτ

D1 0.670 0.166 −16.30 229.4 −460.7 30.70 18.36 −274.6 616.7 −347.9
D1S 0.697 0.163 −16.01 202.9 −515.8 31.13 22.43 −241.5 644.2 −319.1
D1N 0.747 0.161 −15.96 225.6 −438.2 29.60 33.58 −168.5 440.1 −304.8
D1M 0.746 0.165 −16.02 225.0 −459.0 28.55 24.83 −133.2 735.7 −231.6
D1P 0.671 0.170 −15.25 254.1 −340.6 32.75 50.28 −159.3 408.3 −393.6
D1AS 0.670 0.166 −16.30 229.4 −460.7 31.30 66.55 −89.1 245.8 −354.7
D250 0.702 0.158 −15.84 249.9 −362.0 31.57 24.82 −289.4 484.4 −402.4
D260 0.615 0.160 −16.25 259.5 −373.1 30.11 17.57 −298.7 539.4 −378.9
D280 0.575 0.153 −16.33 285.2 −298.5 33.14 46.53 −211.9 326.2 −442.4
D300 0.681 0.156 −16.22 299.1 −237.5 31.22 25.84 −315.1 359.6 −449.6
GT2 0.672 0.161 −16.02 228.1 −444.0 33.94 5.02 −445.9 741.2 −466.2
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face, Eq. (14), as a function of isospin asymmetry at ρ = 0.16 fm−3.
Most functionals show a linear dependence at small asymmetries.

These findings are confirmed by the results displayed in
Fig. 5, where we show the isovector effective mass splitting
as a function of isospin asymmetry at ρ = 0.16 fm−3. Ten
functionals have positive splittings, with a neutron effective
mass larger than a proton effective mass, m∗

n > m∗
p. The

exception is D1N, which has a very small but negative
isovector splitting [34]. In contrast, since GT2 has a large
and positive B1

nn, its isovector mass splitting is almost twice
as large as the results from other functionals. For the typical
isospin asymmetry of heavy nuclei, β = 0.2, the isovector
mass splitting predicted by most forces is of the order
m∗

n−m∗
p

mN
≈ 0.04 to 0.06. If we identify this as the isovector

k-mass splitting, this result is consistent with the findings of
Ref. [46].

It is also interesting to note that most functionals show
a linear dependence on β for small asymmetries. This weak
asymmetry dependence is entirely due to the shift in Fermi
momenta within the m functions in Eq. (14). The slope of the
curve could potentially be used to constrain Bx

nn, if accurate
data for the isovector effective mass splitting were available.
Efforts in this direction using optical model potentials are
already underway [46,47]. A stronger dependence in asym-
metry appears as the neutron-matter limit is approached. At
that point, the functional form of m becomes relevant and a
nonlinear shape is expected.

IV. MACROSCOPIC PROPERTIES

A. Isoscalar properties

In the previous section, we analyzed the microscopic
single-particle properties predicted by a variety of Gogny
functionals. From now on, we concentrate on the results
that these functionals predict for the bulk, thermodynamical
properties. We start by analyzing isoscalar and isovector

properties at densities close to saturation. We present in Table I
a series of properties of nuclear matter obtained by all the
Gogny parametrizations of interest. We note that some of
these properties, particularly in the isoscalar sector, are inputs
in the fitting procedure. As such, they do not yield any new
information. We provide the analytical expressions for these
quantities in Appendix B. We note that we have also employed
numerical stencils to test our expressions. We cross checked
these data with the original publications as well as with
other modern sources [34,48,49] and found a good general
agreement.

The second column of Table I shows the symmetric matter
effective masses obtained at the corresponding saturation
densities (column three). Note that the latter were obtained
for each functional by using the same routines and underlying
numerical constants, and hence the variability is entirely due
to the Gogny functional parameters. The effective masses are
computed at the Fermi surface, and hence they also correspond
to the circles in the continuous lines of Fig. 4. In general, all
effective masses fall within the range m∗ ≈ 0.67m to 0.75m,
which is slightly lower than modern Skyrme forces [50] but in
agreement with many-body estimates [51]. The exceptions are
D260 (m∗ = 0.615m) and D280 (m∗ = 0.575m), which have
lower effective masses. We note that these two functionals
have α = 1

3 , unlike D250 and D300 which were purposely
designed with α = 2

3 [10]. The range in compressibilities for
a fixed α can only be achieved with substantial variations on
the effective masses.

The equation of state (EoS) of symmetric nuclear matter is
characterized by a few, relatively well-known parameters. The
energy per particle presents a minimum around the saturation
density ρ0 ≈ 0.16 fm−3, at a value of e0 ≈ −16 MeV. The
saturation densities and energies of the third and fourth
columns of Table I mostly reflect the biases of the fitting
input data, as reported in the original publications. In general,
they are all close to the empirical values. We note, however,
the relatively repulsive saturation energy and relatively large
saturation density of D1P.5 By construction, D1AS has the
same isoscalar properties as D1 [35].

The curvature of the energy per particle around the satura-
tion point can be described in terms of the incompressibility
K0. This determines to a large extent the EoS of symmetric
nuclear matter and is shown in the fifth column. An explicit
expression for the incompressibility is given in Eq. (B6).
Most values are centered around the empirical estimate
K ≈ 230 MeV. The exceptions are, of course, the forces
D250–D300, which were specifically obtained to match a
given compressibility. We note, in particular, that D280 is
slightly off its expected value. A further characterization of
the saturation point is obtained from the skewness Q0 [see
Eq. (B7) for an explicit expression]. In contrast to ρ0, e0, and

5Our values for the effective mass, saturation density, energy,
compressibility, and symmetry energy for D1P differ slightly from
the values in the original publication [26]. This might be caused by a
small difference in the value of α1. We use α1 = 1

3 , but the results of
the original publication are better reproduced with α1 ≈ 0.345. These
differences do not affect the results discussed in the following.
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for symmetric nuclear matter for all Gogny functionals. The density
is divided by the respective saturation density of each functional.
The shaded region corresponds to the EoS consistent with the
experimental flow data of Ref. [53].

K0, the skewness is not generally included in functional fits.
Consequently, its value is not as constrained. We find that
Gogny functionals predict a negative skewness, in the range
between Q0 ≈ −237 and Q0 ≈ −516 MeV. This agrees with
a recent study based on a combined analysis of flow data and
neutron star masses in the relativistic mean-field picture, which
suggests −494 < Q0 < −10 MeV [52]. Note that neither
the compressibility nor the skewness receive a contribution
from Ai

0. K0 and Q0 are therefore entirely determined by
a competition between the zero-range and the finite-range
exchange terms (in addition to the sizable kinetic terms, of
course).

The saturation energy minimum is reflected in a zero for the
pressure of symmetric matter, PSNM. We provide an explicit
expression for this function in Eq. (B5). Because of the
positive compressibility, one expects a positive and increasing
pressure as a function of density. We confirm that this is
indeed the case in Fig. 6, which shows the symmetric matter
EoS for the eleven Gogny functionals. We concentrated on
densities well above saturation, where the constraints coming
from experimental flow data in intermediate-energy heavy-ion
collisions are relevant [53]. Some of the Gogny predictions
had already been compared to flow results in Ref. [49], but
ours is a more comprehensive analysis.

First, we stress the fact that all Gogny parametrizations
produce relatively similar results for the pressure at high
densities. This is in stark contrast to the isovector properties
presented in the following subsection. Together with the results
of Table I, this indicates that systematic uncertainties, i.e.,
those due to differences in the functionals, are rather small
in the isoscalar sector. In other words, the EoS of symmetric
matter is under good control, as one might expect from the

fitting procedure of the functionals. Note that the combinations
of isoscalar A0 and C0 matrix elements are relatively well
constrained (see Fig. 1) compared to the finite-range exchange
elements B0. All these elements enter the expressions for the
energy [Eq. (B4)], pressure [Eq. (B5)], and compressibility
[Eq. (B6)] and hence cannot be disentangled easily in a fitting
procedure that includes these as input.

Second, most functionals fall within the experimental
constraints obtained from flow data [53]. The differences
between equations of state can be succinctly explained by
the compressibility of each functional. If we order the
functionals in terms of the value of K0, the functional with
a largest compressibility, D300, produces the largest pressure
at high densities. Consequently, the EoS falls above the
empirical constraints at all densities. The following subset,
with K0 ≈ 250 to 280 MeV, is formed of D280, D260, D1P,
and D250. Their pressures are only consistent with the flow
data above ρ � 2.5ρ0. Most other functionals were fit with
K0 ≈ 230 MeV and hence their equations of state are very
close to each other. D1S, which has the lowest compressibility,
yields the lowest pressures but is still well within the flow
data. We note that, as long as K0 < 240 MeV, the EoS is
compatible with the experimental flow data. We note, however,
that the flow data of Ref. [53] was obtained with a mean-field
with a momentum dependence characterized by m∗ ≈ 0.7m
and a medium-modified nucleon-nucleon cross section. The
full momentum dependence of Gogny functionals might in
principle affect these results. A further characterization of the
pressure in terms of skewness lies beyond the scope of this
work.

B. Isovector properties at saturation

The characterization of isovector bulk properties for Gogny
functionals is one of the main aims of this work. We provide the
values for some macroscopic isovector properties, computed
at saturation, in columns seven to eleven of Table I. The
symmetry energy, S, was fit in some of the functionals (D1 [3],
D1AS [35], D1M [36]). In others, it is indirectly constrained
by fits to the neutron-matter equation of state (D1P [26],
D1N [33]). In contrast, fitting procedures for functionals like
the D250–D300 family [10] have not explicitly considered
isovector bulk properties. In spite of these differences, we find
that the values of the saturation symmetry energy are generally
within the range S ≈ 30 to 34 MeV. We note that D1M has
a particularly low value for the symmetry energy, imposed
during the fitting procedure [36].

The slope parameter of the symmetry energy,

L(ρ) = 3ρ
∂S(ρ)

∂ρ
, (15)

quantifies the density dependence of the symmetry energy. It
is particularly relevant for neutron star physics, since it deter-
mines the pressure of neutron matter close to saturation [54].
We provide the values of L at saturation in column eight of
Table I. The variation in values of L is extremely wide, and we
find that most Gogny functionals are outside of the empirically
constrained ranges. More details are provided below, but let us
highlight the extremely low values of L ≈ 5 MeV for GT2 and
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FIG. 7. (Color online) (left panel) Ksym and (right panel) Qsym

as a function of the slope parameter L for all Gogny functionals.
Small black squares (small triangles) are representative of Skyrme
(relativistic mean-field) functionals. The shaded region corresponds
to the constraints obtained by Lattimer and Steiner in Ref. [55].

L ≈ 18 MeV for both D1 and D260. Inevitably, this will have a
negative impact on the neutron star properties associated with
these functionals.

Columns nine and ten of Table I show the values of Ksym

and Qsym at saturation for all the functionals. These properties
are less constrained by empirical data. In general, we find
large negative values of Ksym, in the range −90 to −446 MeV.
These are far more negative than the values predicted by
microscopic calculations [45]. Similarly, Gogny functionals
predict positive and relatively large values of Qsym, in contrast
to the negative and small values obtained by Brueckner–
Hartree–Fock calculations [45]. We find the expected general
trends obtained in other mean-field approaches [56,57]. We
show in Fig. 7 the values of Ksym (left panel) and Qsym (right
panel) as a function of the slope parameter. Gogny functionals
with lower values of L, such as GT2, D300, D260, or D1, tend
to have more negative values of Ksym and more positive values
of Qsym. These follow the generic correlations of Skyrme and
relativistic mean-field calculations, which we show in small
squares and triangles in the figure [45]. All in all, this suggests
that the correlations arise from basic underlying isovector
physics. For the Gogny functionals, the correlations must
arise from a few of the underlying parameters, as shown in
the expressions of Eqs. (B12)–(B14). Note, in particular, that
both Ksym and Qsym are independent of the isovector direct
finite-range matrix elements Ai

1.
The asymmetry dependence of the compressibility is

determined by a parameter Kτ which, to lowest order, is given
by the combination Kτ ≡ Ksym − 6L − (Q0/K0)L [54,56].
This asymmetry dependence can potentially be extracted
from giant monopole resonance experiments [58]. The value
Kτ = −550 ± 100 MeV is nowadays generally accepted [59].
Most Gogny forces, as found in column eleven of Table I, sit
somewhat above the less-negative end, with values between
Kτ ≈ −450 and −300 MeV. As a matter of fact, taking this
experimental value seriously, only GT2 and D300 would be
valid, in spite of their very low slope parameters. We note
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try energy for all Gogny functionals. The symbols show the values at
saturation, whereas lines correspond to the evolution with density of
both parameters (see Fig. 9) for a legend. The regions corresponds to
empirical constraints, following Refs. [55,60].

that Gogny functionals indicate a preference for less-negative
values of Kτ , in agreement with the theoretical analysis
presented in Ref. [57] as well as with the correlation analysis
of Ref. [56]. We also indicate that Kτ is only the lowest-order
term in the asymmetry dependence of the compressibility,
and higher-order contributions can be relevant [56]. Further
research on finite-nuclei properties, particularly resonances,
with Gogny interactions will provide a further consistency
check [8].

In contrast to the relatively poorly constrained Kτ , there
is an abundance of empirical evidence that helps restrict
the values of the saturation symmetry energy and its slope.
These two properties are generally tightly correlated, so their
independent determination is difficult [16,17]. We show in
Fig. 8 the values of S and L for all Gogny functionals under
consideration. In addition, following Refs. [55,60], we show
some of the empirical constraints obtained from a variety of
methods. The 68% confidence ellipse labeled “Masses” is
obtained by propagating the fit errors in a density functional
calculation using the UNEDF0 functional [61], with the choice
σ = 1 MeV [55]. The Sn neutron-skin thickness results come
from the analysis of Chen and coauthors [62]. From this
analysis, one can also fit a relation between the skin thickness
in lead and the corresponding symmetry energy and slope
parameters of a variety of functionals. In addition, there is a
tight linear correlation between the dipole polarizability and
the skin thickness [63]. If we use the fit parameters of Ref. [60]
for the former and of Ref. [63] for the latter, we find the
“polarizability” band in the figure. Note that the position and
the width of the band can change if different fits are used for
either correlation.
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Isospin diffusion studies in heavy-ion collisions, labeled
HIC, provide additional constraints in the region of small
symmetry energies [18]. The band labeled “neutron stars”
is obtained by considering the 68% confidence values for
L obtained from a Bayesian analysis of simultaneous mass
and radius measurements of neutron stars [64]. Finally, a
narrow and small diagonal region above S > 30 MeV is
obtained from simultaneous constraints of Skyrme–Hartree–
Fock calculations of isobaric analog states (IAS) and the 208Pb
neutron-skin thickness [65].

Strikingly, six of the eleven Gogny parametrizations fall
outside of all empirical determinations of S and L. In all
cases, the value of L is below the expected results. D1N and
D1M sit within the polarizability and the mass constraints,
but their slopes are still small compared with the neutron
stars constraints. Only D1P, D1AS, and D280 have large
enough slopes to fit within the polarizability, neutron-skin, and
astrophysical constraints. As for S, these functionals predict
values within 1 MeV of the average value of all observations,
S ≈ 31 MeV. We note that no parametrization falls within the
IAS + 
rnp region or within the joint constraint region.

Figure 8 demonstrates graphically one of the main con-
clusions of this work. Few, if any, Gogny functionals show
a good simultaneous reproduction of the symmetry energy
S and its slope L at saturation as of the present empirical
constraints. An analysis of the density dependence of these
quantities in the following subsection will demonstrate that
this is largely a consequence of the poor constraints on the
isovector finite-range part of the functional. Future fits of
Gogny functionals risk lacking quality in the isovector sector
unless these properties are fit consistently. We point out,
however, that the comparison with empirical constraints should
be performed with some caution. Most of these constraints
were obtained by using zero-range functionals of the Skyrme
type [61–63,65]. A consistent determination of the correlations
depicted in the figure using finite-range functionals is still
missing. The last section of this paper, where neutron stars are
analyzed, is an effort in this direction.

C. Density dependence of isovector properties

In addition to the values at saturation, there have been a
wide range of attempts to determine the density dependence of
the symmetry energy and, generally speaking, of all isovector
properties. With Gogny functionals, an analytic expression of
the symmetry energy S(ρ) is provided in Eq. (B11). Note
that, in addition to the standard isovector zero-range and
direct finite-range terms, the exchange finite-range contribu-
tion provides a nontrivial density dependence. The density
dependence of the symmetry energy is explored in Fig. 9.
We show results for all Gogny functionals and highlight
the value of S at saturation. These results are compared
with the constraints from the IAS analysis with Skyrme
functionals [65].

The subsaturation region has a relatively small systematic
error. Most functionals fall within or very close to the empiri-
cally constrained region. GT2, however, has a relatively large
symmetry energy below ρ0 and overshoots the constraints in
this region. In contrast, D1AS predicts relatively low symmetry
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FIG. 9. (Color online) Symmetry energy as a function of density
for all Gogny functionals. The shaded region corresponds to the
constraints arising from IAS of Ref. [65].

energies for ρ < 0.14 fm−3, but it has a much stiffer density
dependence above ρ0. The fact that most Gogny functionals
reproduce the low-density symmetry energy indicates that it is
well constrained by finite-nuclei data.

The largest discrepancies between functionals are observed
above saturation density, as expected. We stress the fact that
most functionals show either a maximum or a plateau in the
symmetry energy as a function of density and that this occurs,
in most cases, right above saturation. As a consequence, the
values of the slope, L, are relatively small for most functionals.
The exceptions are D1AS and D1P, which have a rather
stiff character. Above saturation, several functionals display
a sharp decrease in density, which will eventually lead to
negative values of S at densities beyond the range displayed
in Fig. 9. For GT2, the change in sign of the symmetry energy
happens already around ρ ≈ 0.38 fm−3. The presence of this
isospin instability would have consequences in both neutron
stars [48,66,67] and heavy-ion collisions [68]. Note, however,
that microscopic calculations do not predict any signs of such
a transition [45].

A complementary perspective of these results is obtained
by analyzing the density dependence of the slope parameter
L. We provide an expression for this quantity in Eq. (B12).
Figure 10 shows the density dependence of the slope parameter
for all Gogny functionals. We also display the “neutron star”
band, L ≈ 44 to 66 MeV, discussed already in the context of
Fig. 8. Most Gogny functionals show a peak and a subsequent
decrease in L around half saturation density. Consequently, the
value of L at saturation becomes relatively small, falling below
the empirical estimates. One therefore expects Gogny forces
to predict rather small neutron-skin thicknesses in 208Pb. This
is the case for both D1S and D1N, as observed in Ref. [31].
More importantly, the pressures for isospin asymmetric matter
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FIG. 10. (Color online) Slope parameter as a function of density
for all Gogny functionals. The shaded region corresponds to the
combined constraints obtained by Lattimer and Steiner in Ref. [55].

as predicted by these functionals will be smaller than empirical
estimates suggest. The structure of neutron-rich isotopes will
be affected by the unrealistic prediction of slopes. Note also
that about half of the functionals predict negative slopes within
0.05 fm−3 of around saturation, in accordance with the very
soft symmetry energies observed around saturation in Fig. 9.
It is worth mentioning that D1M shows a rather unique density
dependence for the slope, with a nuanced decrease in density
above saturation. For this functional, L does not become
negative below ρ > 0.42 fm−3.

Three functionals fall within the empirical range pre-
dicted by neutron star physics. For D280 and D1P, which
have large enough values of L at saturation, the slope is
close to a maximum at saturation. The decrease of L with
density eventually leads to decreasing symmetry energies
at relatively large densities (0.26 fm−3 for D280 and 0.42
fm−3 for D1S). In contrast, D1AS is the only functional
predicting a monotonically increasing slope parameter—and
a consequently stiff symmetry energy. We note that this
was achieved by construction, adding a density-dependent
zero-range term to the functional [35]. Because of their large
pressures for neutron-rich matter around saturation, one would
expect relatively large neutron stars associated with these
functionals. We will confirm this tendency in the following
section.

What is the underlying cause for the rapid decrease of the
symmetry energy with density in most Gogny functionals?
One can attempt to answer this question by separating
different contributions to both the symmetry energy and the
slope parameter. In Fig. 11, we provide the contributions
to both quantities arising from the direct finite-range term,
the exchange finite-range term, and the zero-range term
(which includes both direct and exchange at once). The direct

contribution to both quantities is particularly simple, as seen
from Eqs. (B11) and (B12):

Sdirect(ρ) = 1

2

∑
i=1,2

Ai
1ρ.

Note, in particular, that the term is linear in density and
that only the sum of all isovector matrix elements plays
a role. Because the values of these matrix elements are
relatively widely spread (see Fig. 1), we expect a relatively
large systematic uncertainty. This is precisely what we find
in the left panels of Fig. 11. D1M has extremely large and
positive contributions. In contrast, GT2 provides a negative
contribution as density increases. Because the combination∑

i A
i
1 is very similar for some functionals, we find that

D1P (and D250 to a lesser extent) and D1 have very similar
values of Sdirect and Ldirect. The direct contribution to the
slope parameter (bottom-left panel) is three times that of the
symmetry energy (top-left panel), Ldirect(ρ) = 3Sdirect(ρ). Note
also that, as expected, D1 and D1AS have the same direct
finite-range contributions.

The exchange contribution to the isovector properties
(central panels of Fig. 11) shows a density dependence that
is, to a certain extent, the opposite of the direct term. GT2, for
instance, is now large and positive, whereas D1M is large and
negative. In general, these terms increase substantially with
density, even though the dependence is not linear anymore. In
fact, the density dependence is dictated by nontrivial functions
of the Fermi momenta; see Eqs. (B15) and (B16). With these
equations, it is easy to show that, in the low-density limit, the
exchange contributions to S and L are (a) linear in density,
(b) proportional to B1

i only, and (c) related by Lexc(ρ) =
3Sexc(ρ). The exchange contributions are of the same order
as the direct term, which indicates that large cancellations are
necessary to get isovector properties of a natural size.

The right panels of Fig. 11 show the density dependence
of the zero-range contributions to the isovector properties.
First, we note that the dependence on the functional is largely
reduced. The fitting procedure of Gogny functionals is such
that part of the zero-range, density-dependent term is often
fixed from the start.6 Consequently, the parameter space for
this term is substantially reduced and SZR(ρ),

SZR(ρ) = 1

2

∑
i=1,2

Ci
1ρ

αi+1, (16)

is very similar for all functionals. Also, because in most
parametrizations C2

1 = 0, the relation

LZR(ρ) = 3(αi + 1)SZR(ρ) (17)

holds.

6For all functionals, α1 is chosen to be 1
3 or 2

3 . x0 is also often fixed,
which leaves very little room for t1

0 to change substantially.
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FIG. 11. (Color online) (left panels) Direct, (central panels) exchange, and (right panels) zero-range contributions of the (top panels)
symmetry energy and (bottom panels) the slope parameter. Results for eleven functionals are shown. The symbols correspond to the respective
saturation points. Note that the left and central panels share the same y axis.

Second, and most important, the zero-range density-
dependent term is negative at all densities. In the low-density
limit, the linear density dependence of both the direct and the
exchange dominates (although absolute values are determined
by large cancellations between terms). In the limit of large
densities, in contrast, Eqs. (B15) and (B16) suggest that the
exchange term is proportional to kF ≈ ρ1/3. In addition, for
most functionals the zero-range term has a power α1 = 1

3 (and
α2 = 0) which therefore involves SZR → ∑

i C
i
1ρ

4/3. Together
with the linear dependence on the direct term, it appears that the
zero-range term inevitably dominates the density dependence
of isovector properties at high densities. As a consequence,
the symmetry energy of most parametrizations becomes soft at
relatively low densities. We note that D1P is the only functional
with a second zero-range term, that is, t2

0 �= 0. It performs
well in the isovector sector. Future parametrizations could use
this freedom to improve the density dependence of isovector
properties. Specifically, the fact that Sexc is not proportional to
Lexc for t2

0 �= 0 can help break the tension between these two
isovector parameters.

The decomposition in terms of direct, zero-range, and
exchange terms of the isovector properties is arbitrary to a
large extent. Other decompositions can be used to pinpoint
similar issues. In Ref. [21], Chen and coauthors propose a split
of the symmetry energy and the slope in terms of contributions
arising from the single-particle potential at the Fermi surface,
based on the Hugenholtz–van Hove theorem. We performed an
extensive study of this decomposition, but we present here only
a summarized version. Within this approach, the symmetry

energy can be decomposed into two terms:

S1(ρ) = 1

3

�
2k2

F

2m∗
0(ρ)

, (18)

S2(ρ) = 1

2
U

sym
1 (kF ). (19)

The first term is a nonlocality-corrected kinetic contribution.
The nonlocal correction, evidenced by the effective mass, is
of the order of ≈30% at saturation and usually increases with
density. The competition between the Fermi momentum and
the effective mass can give rise to S1 terms that decrease with
density. The second term S2 is proportional to the value of
the isovector single-particle potential at the Fermi surface. As
observed in Fig. 3, the value of U1 at the Fermi surface can vary
substantially. For quite a few functionals, this has a tendency
to become negative slightly above saturation and drives the
decrease of S with density [21]. A similar decomposition exists
for the slope parameter, but it involves five different terms.
There is in general a substantial Gogny functional dependence
of these terms. This is particularly important for L4 and L5,
which are associated with higher orders in the single-particle
potential expansion [21]. L4 and L5 are entirely due to the
finite-range exchange part of the functional.7

7L5 also receives a contribution from the rearrangement potential,
associated with the density-dependent zero-range term.
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V. NEUTRON MATTER AND NEUTRON STARS

Neutron matter provides a particularly sensitive test to the
isovector behavior of nuclear energy density functionals [23],
which is interesting because it can be straightforwardly
connected to neutron stars [11]. Present- and future-generation
observations will eventually constrain the mass-radius relation
for astrophysical compact objects, and this information can
be fed back into the neutron-matter EoS [22]. Even before
that happens, essential tests regarding the consistency and
isospin dependence of energy density functionals should be
performed. We note that this task has been already carried out
in extensive studies of Skyrme functionals [13,15].

As we have seen so far, Gogny functionals are particularly
poorly determined in the isovector sector. We therefore start
our discussion by looking at the energy per particle of neutron
matter,

ePNM(ρ) = 3

5

�
2k

n,2
F

2mn

+ 1

2

∑
i=1,2

{
Ai

1 + Ci
1ρ

αi
}
ρ

+ 1

2

∑
i=1,2

Bi
nng

(
μik

n
F

)
, (20)

where the Fermi momentum is that of neutron matter,
kn
F = (3π2ρ)1/3. We show in Fig. 12 the Gogny functional

predictions for the energy per particle of neutron matter.
The left panel concentrates on the low-density regime. In
addition to the Gogny data, we show results for microscopic
determinations of the energy per particle of neutron matter
at low densities. In the left panel, we show a band obtained
from a recent auxiliary field diffusion Monte Carlo calculation
using N2LO local chiral interactions [69]. The width of the
band reflects the uncertainty in the original interaction, but
we note that missing three nucleon forces would increase the
average value at higher densities. The three points with error
bands correspond to the representative data used in Ref. [12].
This is obtained as an educated guess, based on a variety of
many-body calculations in this low-density regime.

At subsaturation densities, we find relatively similar re-
sults for the different parametrizations. None of the Gogny
functionals reproduce the two lowest density points of the
Brown–Schwenk analysis. A few are able to fit within the
relatively large error band of the third. Fitting Skyrme density
functionals to nuclei and to these three subsaturation points in
neutron matter yields a good quality density functional in the
isovector sector [12]. This could be a good starting point for
future fitting protocols of Gogny functionals. D1AS results go
below the many-body data, which indicates that the functional
form of Gogny interactions can in principle be amenable to
reproduce such low-density points.

The right panel of Fig. 12 concentrates on a wider density
regime, up to slightly above twice the saturation density. As
expected, the differences between functionals here are quite
marked. While around saturation the variations among func-
tionals are accommodated within about 5 MeV, at 0.24 fm−3

one finds quite larger discrepancies. As a matter of fact, above
saturations one can distinguish between two classes of Gogny
functionals. On the one hand, a majority of functionals have a
rather soft density dependence and predict energies which are
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FIG. 12. (Color online) Energy per particle as a function of
density for pure neutron matter for all the Gogny functionals. The
shaded region enclosed by a dotted (dashed) line corresponds to
quantum Monte Carlo [69] (self-consistent Green’s functions [70])
calculations based on chiral potentials. The points with error bars
on the left panel correspond to three representative points used in
Ref. [12].

well below 30 MeV for ρ � 0.32 fm−3. On the other, D280,
D1AS, and D1P increase far more quickly with density. This
is important, because the density increase will be reflected in
a substantially larger pressure which, in turn, will allow for
larger and heavier neutron stars.

Interestingly, the subgroup of Gogny functionals that have
a stiff neutron-matter energy per particle follows closely the
band enclosed by dashed lines. This band is the result of
a realistic many-body calculation, obtained within the self-
consistent Green’s functions approach using an N3LO chiral
two-body interaction supplemented with a three-body force
at N2LO [70]. Because of the nonperturbative nature of the
resummation scheme, these calculations have been performed
with unrenormalized interactions and up to twice the saturation
density. Again, the width of the band is a reflection of the
uncertainties in the underlying low-energy constants of the
chiral interactions. We find that the stiff Gogny functionals
are indeed well within this band up to 0.32 fm−3. Note,
however, that these very same functionals do not reproduce
the many-body results at low densities.

GT2 shows a maximum of the energy per particle around
saturation and subsequently decreases as density increases.
The decrease of energy as a function of density is a telltale
sign of a mechanical instability, which is reflected in a negative
pressure. We confirm this fact in Fig. 13, where we show the
pressure in neutron matter for all the Gogny functionals. GT2
indeed shows a negative pressure slightly above saturation.
We also find that a few other functionals (D1, D1S, D250)
predict negative pressures, although at much larger densities;
ρ � 0.64 fm−3 and above. At this point, of course, one should
discuss the predictive power of these functionals at such high
densities. We do not expect Gogny functionals to describe the
physics of the very-high-density regime, but they might be able
to extrapolate some of the low-density nuclear physics into the
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FIG. 13. (Color online) EoS (pressure as a function of density)
for pure neutron matter. The shaded region enclosed by a dotted
(dashed) line corresponds to the stiff (soft) symmetry energy obtained
with the experimental flow data of Ref. [53]. The shaded region
enclosed by a full line is obtained from quiescent low-mass x-ray
binary mass and radius observations [71].

neutron star region. In this sense, we use Gogny functionals as
effective extrapolation guesses into high densities.

The pressures of Fig. 13 are validated against three sets
of constraints. The area enclosed by a solid line is obtained
from the data in Fig. 9 of Ref. [71]. This delineates the
EoS probability distribution for neutron stars assuming a
baseline EoS and column densities that have atmospheres
containing both hydrogen and helium, as preferred by some
observations [71]. At densities above twice saturation, we
compare the Gogny pressures to the flow data obtained
assuming a stiff (gray dotted region) or soft (blue dashed
region) symmetry energy [53]. As expected, the functionals
falling close to these constraints are those with the highest
values of L: D1AS, D1P, and D280. The differences between
models in the high-density regime are extreme. Other than the
already-discussed mechanically unstable models, we find that
D260 and D300 have equations of state that are almost an order
of magnitude below the empirical constraints. This anomalous
behavior will impact the structure of the corresponding neutron
stars, as we shall see next.

We solved the Tolman–Oppenheimer–Volkov equations to
study the structure of pure neutron stars [72]. For simplicity,
we considered stars formed only of neutrons.8 We stress
once again that the results obtained with Gogny functionals
at very high densities should be handled with care. We do
not take them as realistic estimates, but rather as indications

8We also performed calculations in β equilibrium, which yield very
similar results.
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FIG. 14. (Color online) Mass-radius relation for pure neutron
stars obtained with eleven Gogny functionals. The shaded region
enclosed by a full line is obtained from quiescent low-mass x-ray
binary mass and radius observations using atmosphere models that
include both hydrogen and helium [71]. The shaded region enclosed
by a dashed line corresponds to the 90% confidence region for the
mass-radius relation of NGC 6397, as obtained in Ref. [24].

of the strengths and weaknesses of the functionals at the
extremes of isospin asymmetry. Also, note that we use the
Gogny functional throughout the star, without any low-density
matching to a crust EoS. In consequence, our less-massive
neutron stars have rather small radii.

We show the resulting mass-radius relations in Fig. 14.
We compare once again with the region (red continuous
region) of the most probable mass-radius of Ref. [71]. The
blue area enclosed by a dashed line corresponds to the
90% confidence region probability contours for the mass and
radius of the object NGC 6397 qLMXB, using a helium
atmosphere (see right panel of Fig. 9 in Ref. [24]). In addition,
we show in Fig. 14 the excluded region by causality [23]
and the two measurements of neutron-star masses around
M � 2M� [73,74].

Very few functionals predict maximum solar masses close
to this limit, and only four achieve a maximum mass above
1.4M�. Those that do are essentially the parametrizations that
fell within the constraints in the energy and the pressure of
pure neutron matter. D1AS has the largest maximum mass,
just about MD1AS

max ≈ 2M� at RD1AS
max ≈ 10 km. The maximum

mass for D1P raises up to MD1P
max ≈ 1.98M� at RD1P

max ≈ 9 km.
The mass-radius relation for these two functionals is relatively
close to the probability distribution of Lattimer et al. [71] and
falls right through the constraints of Heinke and coauthors [24].
D280, in contrast, falls at the edge of the Lattimer constraints,
because its EoS runs just below D1P and D1AS. Above 0.5M�,
these three forces predict essentially constant radii, between
11 and 12 km. At the high-mass end, however, D280 falls short
and yields a maximum mass of MD280

max ≈ 1.74M�.
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In addition to these three functionals, D1M also produces
a sizable maximum mass, MD1M

max ≈ 1.83M�. Since D1M has
a substantially softer EoS, though, it reaches this mass by
exploring far smaller radii, below R ≈ 10 km. The only
other parametrization that is able to support a neutron star
above 1M� is D1N. The maximum mass thus obtained
is MD1M

max ≈ 1.29M�. Note, however, that the mass-radius
relation is biased towards small radii and falls well below
the Lattimer predictions.

We show two more mass-radius relations in Fig. 14. We
already discussed the fact that D300 and D260 have EoSs
which fall well below the constraints obtained by a variety of
empirical analyses. As expected, these two functionals cannot
support heavy neutron stars. They also predict rather small
objects, with minimum radii of the order of 6 to 8 km. Finally,
we note that none of the remaining four Gogny functionals (D1,
D1S, D250, GT2) are able to sustain sizable neutron stars. One
can in principle trust these functionals up to the mechanical
instability region, but their maximum masses are all below
0.16M� and their radii lie above 17 km. These unrealistic
neutron star properties are a further indication of poor isovector
properties in the Gogny functionals.

VI. CONCLUSIONS

We analyzed the Gogny functional predictions for bulk
symmetric and isospin asymmetric nuclear matter. We used
eleven parametrizations from the literature. This is an extensive
set and has allowed for a comprehensive analysis. We provide
analytical expressions for all microscopic and macroscopic
properties. We note that the exchange term is responsible for
nontrivial density and asymmetry dependencies.

There is a different variability of predictions depending on
whether one considers the isoscalar or the isovector sector.
In general, we find that bulk properties are rather well
constrained in symmetric matter. For single-particle potentials,
the isoscalar components are very similar for all functionals in
the low-momentum region, below the Fermi surface. To some
extent, these results are to be expected, since symmetric matter
properties as well as (low-momentum) finite-nucleus data are
often inputs in the fitting procedure of the functionals.

In contrast, we find a wide range of results in the isovector
channels. At the single-particle level, isovector potentials
above and below the Fermi surface can be extremely different,
depending on the parametrization under consideration. As a
consequence, the effective masses and their isospin asymmetry
dependence is somewhat unrestricted. When analyzed as a
function of momenta, effective masses show a wide range
of values. Looking specifically at the isovector splitting of
the effective mass at the Fermi surface, we find that most
functionals predict m∗

n > m∗
p. Having said that, the exact

amount and asymmetry dependence is still uncontrolled.
At the bulk level, we analyzed the isovector properties

predicted by Gogny functionals. In general, we find that the
saturation symmetry energy of these functionals falls within
empirical estimates. The density dependence, however, is
rather soft in most cases, with slope parameters that fall below
most empirical estimates. We find that the slope parameter L is
in most cases at its maximum (or decreasing) at saturation. The

three functionals with acceptable L parameters (D1P, D1AS,
D280) have somewhat extremes values of S. This is an artificial
tension, and we believe updated fitting protocols could help
improve this behavior.

An analysis of the different contributions in the isovector
channel shows that, by and large, the variability of isovector
properties comes from the finite-range matrix elements. For
pure neutron matter, we also find a variety of results. At
subsaturation, most functionals lie above the region predicted
by microscopic many-body calculations. Above saturation, a
subgroup of functionals (D1, D1S, D250, and GT2) predicts a
mechanical instability. Another subgroup (D260, D300, D1N,
D1M) avoids the instability but predicts rather low pressures
as a function of density. Finally, a third subgroup (D1P, D1AS,
and D280) have stiffer pressures. As a consequence, the last
subgroup can sustain sizable neutron stars, with radii around
R ≈ 11 to 12 km and maximum masses close to 2M�.

These findings point out a poor fitting strategy, particularly
in the isovector sector. The present generation of functionals
show a wide variability in the underlying matrix elements
of the Gogny interaction, even when they are separated in
isospin contributions. Having access to analytical expressions,
we identified a few key observables that could be used to
improve fitting procedures. The isovector mass splitting at
the Fermi surface, for instance, is proportional to Bi

nn (and
depends mildly on μi). The information from optical potential
analysis [46,47] or microscopic calculations [45] can be used to
constrain this matrix element. Similarly, the high-momentum
limit of the isoscalar and isovector single-particle potentials is
entirely set by the density-dependent zero-range terms of the
functional. By imposing a realistic Lane isovector potential,
one could in principle constrain these values. Finally, and
possibly more importantly, the bulk isovector properties can
nowadays be used to fit the functionals [11]. By imposing
more realistic values of L, Kτ , and, if necessary, neutron star
properties, the resulting Gogny functionals would provide a
better description of isospin-rich systems.

Because we do not have access to Gogny fitting protocols or
data, it is difficult to quantify how much of the variability that
we have found is of a statistical or a systematic nature [16].
We suspect, though, that it is the systematic uncertainty that
dominates. Most functionals have been fit from the start
with rather low symmetry energies, and the corresponding
slopes turn out to be unphysically small. Similarly, the density
exponents αi and the ranges μi are often guessed initially
and not allowed to change. It would be interesting to analyze
whether the data prefer other choices of these values. We
therefore call for the publication of clearer-fitting protocols
and the associated correlation matrices. Similarly to what has
already been done in Skyrme-like functionals, a covariance
matrix analysis will help quantify, at least, the statistical
uncertainty of the data [61,75]. In addition, covariance analysis
identifies at once which parameters of the fit, if any, are over
constrained.

The results that we presented could be easily extended to
study other bulk systems of interest. Having access to the
analytical formulas for the single and double Fermi-sphere
integrals of Eqs. (A2) and (B3), it is straightforward to extend
this analysis to spin-polarized systems. Preliminary studies
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have analyzed the properties of Gogny functionals in extreme
spin-polarized neutron matter [30,76,77]. Fitting these prop-
erties to realistic interactions could be a way to constrain the
spin sector of the functional. This would be complementary to
the traditional analysis based on decomposing the total energy
of symmetric matter into spin and isospin channels [3,78].

Another extreme of spin and isospin can be achieved by
analyzing the case of a single impurity in a Fermi sea of a
majority of a different species. In nuclear physics, the case of
a spin-up proton embedded in neutron matter has been of recent
interest. The quantum many-body problem can be solved in
this instance to quite a good degree of accuracy by using Monte
Carlo techniques [41,42]. Comparing these results with the
analytical expressions predicted by the Gogny functional will
provide further means of fitting the spin and the isospin depen-
dence of the effective interaction at the single-particle level.

We found that some Gogny functionals, both traditional and
modern, can lead to isospin or mechanical instabilities—or, in
the case of D1, to both. Although this happens at densities
beyond those of interest for nuclear physics, the existence
and characterization of these instabilities has only been
attempted in a rather generic way [48,66,79]. In particular,
the momentum dependence of these instabilities is relevant
for Gogny functionals [80]. An analysis that goes beyond the
low-q Landau-parameter approximation in isospin asymmetric
matter could shed further light into the isovector sector of the
Gogny interaction.

Regarding neutron stars, most Gogny functionals are unable
to sustain sufficiently large stars that agree with present astro-
physical observations. Mass and radii, however, are just two
of the many observational probes of neutron stars. It would be
interesting to study further properties, such as cooling, with the
few semirealistic density functionals that sustain sufficiently
large neutron stars. In particular, the study of pairing in isospin
asymmetric matter with Gogny forces has not yet been exten-
sively undertaken [81] and could provide further constraints
to the parametrizations. Along similar lines, the extension to
finite temperature [32,82] of some of the present results could
provide an insight into isospin transport properties.

Finally, we note that we have centered our analysis around
infinite bulk matter. As we have seen, this allows for a relatively
simple and analytical characterization of both microscopic
and thermodynamical properties. Gogny functionals, however,
are specifically designed to reproduce nuclear properties and
hence the isovector properties of finite nuclei should also be
probed. Closed shell, isospin-rich nuclei, like 48Ca, 132Sn, or
208Pb would be excellent potential starting points for such an
analysis [33]. Open-shell isotopes will explore pairing prop-
erties, and the combination of asymmetry and pairing might
provide insightful results [37]. Going further, one might want
to explore extensions of the Gogny functional, particularly to-
wards more realistic finite-range density-dependent terms [34].
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APPENDIX A: ANALYTICAL EXPRESSIONS FOR
SINGLE-PARTICLE PROPERTIES

Single-particle potentials with the Gogny force are obtained
by integrating the effective interaction over one Fermi sea
in the Hartree–Fock approximation. We express our results
in terms of the total density ρ and the isospin asymmetry
parameter β = ρn−ρp

ρ
. The Fermi momenta are defined as

usual, with kn
F = kF (1 + β)1/3 and k

p
F = kF (1 − β)1/3, with

kF = ( 3π2

2 ρ)1/3 being the Fermi momentum of the correspond-
ing isospin symmetric system. For both the zero-range and the
direct, finite-range terms the single Fermi-sphere integration
leads to trivial density factors. The integral of the exchange
term can be performed analytically and expressed in terms
of Gaussian and error functions. One finds the following
expression for the single-particle potential [21,81]:

Uτ (k) =
∑
i=1,2

{[
Ai

0 + Ci
0ρ

αi
]
ρ + τ

[
Ai

1 + Ci
1ρ

αi+1
]
ρβ

+Bi
nnu

(
μik,μik

τ
F

) + Bi
npu

(
μik,μik

−τ
F

)}
. (A1)

where we have introduced the dimensionless function

u(q,qF ) = 1

q

[
e− (q+qF )2

4 − e− (q−qF )2

4
]

+
√

π

2

[
erf

(
q + qF

2

)
− erf

(
q − qF

2

)]
. (A2)

The error function is defined as usual:

erf(x) = 2√
π

∫ x

0
dte−t2

. (A3)

The zero-momentum limit of this expression is finite,

u(0,qF ) = −qF e− q2
F
4 + √

πerf

(
qF

2

)
, (A4)

and provides information on the single-particle potential at low
momentum. Note that the derivative of this expression with
respect to qF is positive, which suggests that the exchange
term grows indefinitely with density. The limit qF 	 1 leads
to a constant value, indicating a saturation of the exchange
term with density.

In some cases of interest, one needs to consider the
rearrangement term in the single-particle potential. This is
a momentum-independent contribution which arises from the
density dependence of the interaction. It is the same for both
neutrons and protons and, in asymmetric matter, it reads

UR = 1

2

∑
i=1,2

[
Ci

0 + Ci
1β

2]ραi+1. (A5)

Note that the isovector contribution Ci
1 enters with a β2

dependence in this term.
With these analytical expressions at hand, one can compute

further single-particle properties. The effective mass, for
instance, characterizes the momentum dependence of the
single-particle potential. In asymmetric matter and at arbitrary
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momentum, it is given by

mN (k)

m∗
τ

= 1 + mN

�2

∑
i=1,2

μ2
i

{
Bi

nnm
(
μik,μik

τ
F

)

+Bi
npm

(
μik,μik

−τ
F

)}
, (A6)

with

m(q,qF )= 1

q3

[
(2 − qqF )e− (q−qF )2

4 − (2 + qqF )e− (q+qF )2

4
]
.

(A7)

This function is essentially obtained as a momentum derivative
of Eq. (A2). The effective mass is often computed at the
respective Fermi surface of a given particle species. The term
with two equal Fermi momenta reduces to

m(qF ,qF ) = 1

q3
F

[
2
(
1 − e−q2

F

) − q2
F

(
1 + e−q2

F

)]
. (A8)

This function also determines the effective mass at the Fermi
surface for symmetric and pure neutron matter. Let us note that,
at zero Fermi momentum, both functions, u(q,0) = m(q,0) =
0, vanish. This is relevant for both the low-density and the
impurity regimes.

Using the Hugenholtz–van Hove theorem, one can relate the
bulk properties of asymmetric nuclear matter to a combination
of parameters associated with derivatives of the single-particle
potential at the Fermi surface of the symmetric system [21].
All these parameters can be obtained analytically in the case
of the Gogny interaction. In particular, it is useful to separate
the isoscalar and isovector contributions of the single-particle
potential. The isoscalar potential is obtained in the symmetric
matter limit:

U0(k) =
∑
i=1,2

{[
Ai

0 + Ci
0ρ

αi
]
ρ + Bi

0u(μik,μikF )
}
. (A9)

We note that, because both the momentum dependence and
the rearrangement terms are nonlinear in asymmetry, this
isoscalar potential is only approximately equal (but very close)
to the combination 1

2 [Un(k) + Up(k)] in arbitrarily isospin
asymmetric matter.

The isovector potential in nuclear matter can in principle
be obtained analogously from the difference of single-particle
contributions. Alternatively, the asymmetry dependence of
the single-particle potential can be Taylor expanded. The
coefficients of the expansion encode the isospin dependence
of the single-particle potentials:

U
sym
i (k) = 1

i!

∂iUn(k)

∂βi

∣∣∣∣
β=0

= (−1)i

i!

∂iUp(k)

∂βi

∣∣∣∣
β=0

. (A10)

The first coefficient carries most of the information and is
analogous to the Lane potential [21]. The expression reads

U
sym
1 (k) =

∑
i=1,2

{[
Ai

1 + Ci
1ρ

αi
]
ρ + 1

3
Bi

1u1(μik,μikF )

}
,

(A11)

with

u1(q,qF ) = −q2
F

2q

[
e− (q+qF )2

4 − e− (q−qF )2

4
]
. (A12)

We note that the rearrangement contribution cancels exactly
in this case.

APPENDIX B: ANALYTICAL EXPRESSIONS
FOR BULK PROPERTIES

At zero temperature, the thermodynamical properties of
asymmetric nuclear matter with the Gogny interaction can be
expressed analytically. These involve double integrations of
the matrix elements over Fermi spheres. Let us start with the
energy per particle of asymmetric nuclear matter. The full
expression for the Gogny force reads [34]

e(ρ,β) = 3

5

�
2k2

F

2mN

1

2
{(1 + β)5/3 + (1 − β)5/3}

+ 1

2

∑
i=1,2

{[
A0

i + C0
i ρ

αi
]
ρ + [

Ai
1 + Ci

1ρ
αi

]
ρβ2

}

+ 1

2

∑
i=1,2

{
Bi

nn

[
1 + β

2
g
(
μik

n
F

) + 1 − β

2
g
(
μik

p
F

)]

+Bi
nph

(
μik

n
F ,μik

p
F

)}
. (B1)

The function g(q),

g(q) = 2

q3
− 3

q
−

(
2

q3
− 1

q

)
e−q2 + √

πerf(q), (B2)

is the result of a double integration of the exchange matrix
elements over the same Fermi surface. It is the sum of a
Gaussian and an error function, with the latter given by its
standard definition, Eq. (A3). This function appears as well in
the completely degenerate cases and has been quoted in the
literature [3]. The second function,

h(q1,q2) = 2
q2

1 − q1q2 + q2
2 − 2

q3
1 + q3

2

e− (q1+q2)2

4

− 2
q2

1 + q1q2 + q2
2 − 2

q3
1 + q3

2

e− (q1−q2)2

4

−√
π

q3
1 − q3

2

q3
1 + q2

2

erf

(
q1 − q2

2

)
+√

πerf

(
q1 + q2

2

)
,

(B3)

is the result of integrating over two different Fermi surfaces and
is hence unique to the polarized case. Note that, as expected,
h is a symmetric function of its arguments. In symmetric con-
ditions, h reduces to g, h(q,q) = h(0,2q) = h(2q,0) = g(q).

By using the latter property, one can easily find the energy
per particle of the fully (un)polarized cases. In the case of

054327-18



ISOVECTOR PROPERTIES OF THE GOGNY INTERACTION PHYSICAL REVIEW C 90, 054327 (2014)

symmetric nuclear matter, one obtains

eSNM(ρ) = 3

5

�
2k2

F

2mN

+ 1

2

∑
i=1,2

{
Ai

0 + Ci
0ρ

αi
}
ρ

+ 1

2

∑
i=1,2

Bi
0g(μikF ). (B4)

Taking derivatives with respect to the density, one can easily
find expressions for the pressure, the compressibility, and the
skewness:

PSNM(ρ) = ρ2 ∂eSNM

∂ρ

= 2

5

�
2k2

F

2mN

ρ + 1

2

∑
i=1,2

{
Ai

0 + (αi + 1)Ci
0ρ

αi
}
ρ2

+
∑
i=1,2

Bi
0p(μikF )ρ, (B5)

K0(ρ) = 9ρ2 ∂2eSNM

∂ρ2

= −6

5

�
2k2

F

2mN

+ 9

2

∑
i=1,2

(αi + 1)αiC
i
0ρ

αi+1

− 3
∑
i=1,2

Bi
0k(μikF ), (B6)

Q0(ρ) = 27ρ3 ∂3eSNM

∂ρ3

= 24

5

�
2k2

F

2mN

+ 27

2

∑
i=1,2

(αi + 1)αi(αi − 1)Ci
0ρ

αi+1

+ 3
∑
i=1,2

Bi
0q(μikF ). (B7)

We introduced the dimensionless functions

p(q) = − 1

q3
+ 1

2q
+

(
1

q3
+ 1

2q

)
e−q2

, (B8)

k(q) = − 6

q3
+ 2

q
+

(
6

q3
+ 4

q
+ q

)
e−q2

, (B9)

q(q) = −54

q3
+ 14q +

(
54

q3
+ 40

q
+ 13q + 2q2

)
e−q2

,

(B10)

which are a combination of derivatives of the original g
function over its arguments. We note here that neither K0

nor Q0 receive any contribution from the direct term of the
finite-range part.

In the case of isospin-imbalanced matter, Eq. (B1) provides
the full expression for the energy. Successive derivatives of
this function over density and isospin asymmetry yield the
isovector bulk properties of the system. These can, again, be

written analytically. The expressions read

S(ρ) = 1

3

�
2k2

F

2mN

+ 1

2

∑
i=1,2

{
Ai

1 + Ci
1ρ

αi
}
ρ

+ 1

6

∑
i=1,2

{
Bi

nns1(μikF ) + Bi
nps2(μikF )

}
, (B11)

L(ρ) = 2

3

�
2k2

F

2mN

+ 3

2

∑
i=1,2

{
Ai

1 + (αi + 1)Ci
1ρ

αi
}
ρ

+ 1

6

∑
i=1,2

{
Bi

nnl1(μikF ) + Bi
np l2(μikF )

}
, (B12)

Ksym(ρ) = −2

3

�
2k2

F

2mN

+ 9

2

∑
i=1,2

(αi + 1)αiC
i
1ρ

αi+1

− 2

3

∑
i=1,2

{
Bi

nnk1(μikF ) + Bi
npk2(μikF )

}
, (B13)

Qsym(ρ) = 8

3

�
2k2

F

2mN

+ 27

2

∑
i=1,2

(αi + 1)αi(αi − 1)Ci
1ρ

αi+1

+ 1

3

∑
i=1,2

{
Bi

nnq1(μikF ) + Bi
npq2(μikF )

}
, (B14)

with the functions

s1(q) = 1

q
−

(
1

q
+ q

)
e−q2

,

(B15)

s2(q) = 1

q
− q − 1

q
e−q2

,

l1(q) = − 1

q
+

(
1

q
+ q + 2q3

)
e−q2

,

(B16)

l2(q) = − 1

q
− q +

(
1

q
+ 2q

)
e−q2

,

k1(q) = − 1

q
+

(
1

q
+ q + q3

2
+ q5

)
e−q2

,

(B17)

k2(q) = − 1

q
− q

2
+

(
1

q
+ 3

2
q + q3

)
e−q2

,

q1(q) = −14

q
+

(
14

q
+ 14q + 7q3 + 4q5 + 4q7

)
e−q2

,

(B18)

q2(q) = −14

q
− 5q +

(
14

q
+ 19q + 12q3 + 4q5

)
e−q2

.

We note that si and li (ki and qi) are proportional to q3 (q5)
in the limit q → 0. Moreover, the limits are such that the
exchange terms are determined entirely by Bi

1 = Bi
nn − Bi

np. In
the opposite extreme, q 	 1, the linear term in s2, l2, k2, and q2

dominates. In particular, this implies that, in the high-density
limit, (a) the exchange contributions grow indefinitely as ρ1/3

and (b) the matrix elements Bi
np determine the high-density

behavior of the exchange term of isovector properties.

054327-19



ROSHAN SELLAHEWA AND ARNAU RIOS PHYSICAL REVIEW C 90, 054327 (2014)

[1] P. Ring and P. Schuck, The Nuclear Many-Body Problem,
1st ed. (Springer, Berlin/Heidelberg/New York, 1980).

[2] M. Bender, P.-H. Heenen, and P.-G. Reinhard, Rev. Mod. Phys.
75, 121 (2003).
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