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We present details of the derivation of local chiral effective field theory interactions to next-to-next-to-leading
order and show results for nucleon-nucleon phase shifts and deuteron properties for these potentials. We then
perform systematic auxiliary-field diffusion Monte Carlo calculations for neutron matter based on the developed
local chiral potentials at different orders. This includes studies of the effects of the spectral-function regularization
and of the local regulators. For all orders, we compare the quantum Monte Carlo results with perturbative
many-body calculations and find excellent agreement for low cutoffs.
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I. INTRODUCTION

Chiral effective field theory (EFT) provides a systematic
framework to describe low-energy hadronic interactions based
on the symmetries of QCD. In the past two decades, this
method has been extensively applied to nuclear forces and
currents and to studies of the properties of few- and many-
nucleon systems; see Refs. [1,2] for recent review articles.
In particular, accurate nucleon-nucleon (NN) potentials at
next-to-next-to-next-to-leading order (N3LO) in the chiral
expansion have been constructed [3,4]. Presently, the main
focus is on the investigation of three-nucleon (3N ) forces (see
Refs. [5,6]) and on applications from light to medium-mass
nuclei [7–14].

The available versions of the chiral potentials employ
nonlocal regularizations in momentum-space and nonlocal
contact interactions so that the resulting potentials are strongly
nonlocal. This feature makes them not suitable for certain ab
initio few- and many-body techniques such as the quantum
Monte Carlo (QMC) family of methods. As we showed in
our recent letter [15], it is possible to construct equivalent,
local chiral NN potentials up to next-to-next-to-leading order
(N2LO) by choosing a suitable set of short-range operators
and employing a local regulator. These local potentials can be
used in continuum QMC simulations because the many-body
propagator can be easily sampled.

The standard QMC approach used in the study of light
nuclei properties [16], including scattering [17], is the nuclear
Green’s function Monte Carlo (GFMC) method, which in addi-
tion to a stochastic integration over the particle coordinates also
performs explicit summations in spin-isospin space [18,19].
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As a result, the method is very accurate but computationally
very costly and allows one to access only nuclei with A �
12 [20,21]. Larger particle numbers can be accessed with
auxiliary-field diffusion Monte Carlo (AFDMC), which, in
addition to the stochastic approach to the particle coordinates,
also stochastically evaluates the summations in spin-isospin
space [22], however at the cost of using simpler variational
wave functions than those used in nuclear GFMC. A new
Fock-space QMC method has recently been proposed in
Ref. [23], which was used for a soft nonlocal potential for
pure neutron matter. In addition, an auxiliary-field QMC study
was recently carried out for a sharp-cutoff chiral potential [24].

In this paper, we provide details of the derivation of
local chiral potentials to N2LO and present tables of low-
energy constants (LECs), thus fully specifying the potential
for use by others. We also show results for phase shifts
and deuteron properties. We then use the new local chiral
potentials in AFDMC simulations of neutron matter, updating
and augmenting our results of Ref. [15], and compare these to
many-body perturbation theory (MBPT) calculations.

II. LOCAL CHIRAL POTENTIALS

In chiral EFT, the different contributions to nuclear forces
are arranged according to their importance by employing a
power-counting scheme; see Refs. [1,2] and references therein
for more details. The NN potential is then given as a series of
terms,

Vchiral = V (0) + V (2) + V (3) + · · · , (1)

where the superscript denotes the power in the expansion
parameter Q/�b with Q referring to the soft scale associated
with typical momenta of the nucleons or the pion mass and
�b ∼ Mρ , the hard scale corresponding to momenta at which
the chiral EFT expansion is expected to break down. We take
into account all terms up to N2LO in the chiral expansion.
Generally, one has to distinguish between two different types
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of contributions: the long- and intermediate-range ones owing
to the exchange of one or several pions and the contact
interactions, which parametrize the short-range physics and
are determined by a set of LECs fit to experimental data. The
long-range contributions are completely determined by the
chiral symmetry of QCD and low-energy experimental data
for the pion-nucleon system.

The crucial feature that allows us to construct a local version
of the chiral NN potential is the observation that the expressions
for the pion exchanges up to N2LO only depend on the
momentum transfer q = p′ − p with the incoming and outgo-
ing relative momenta p = (p1 − p2)/2 and p′ = (p′

1 − p′
2)/2,

respectively, provided the nucleon mass is counted according
to Q/mN ∼ Q2/�2

b, as suggested in Ref. [25]. Here the pi

and p′
i correspond to incoming and outgoing momenta. This

counting scheme has been used in the derivation of nuclear
forces [3,26–28] and electromagnetic currents [29,30] and has
as a consequence that the leading relativistic corrections to
the one-pion-exchange (OPE) potential enter at N3LO. Given
that the long-range potentials depend only on the momentum
transfer, the corresponding coordinate-space potentials are
local. Here and in what follows, we employ the decomposition
for the long- and intermediate-range potentials as

Vlong(r) = VC(r) + WC(r) τ 1 · τ 2

+ [VS(r) + WS(r) τ 1 · τ 2]σ1 · σ2

+ [VT (r) + WT (r) τ 1 · τ 2]S12, (2)

where r = r1 − r2 denotes the separation between the nucle-
ons and S12 = (3σ1 · r̂ σ2 · r̂ − σ1 · σ 2) is the tensor operator.
The expression for the OPE potential at LO takes the well-
known form

W
(0)
S (r) = M3

π

12π

(
gA

2Fπ

)2
e−Mπ r

Mπr
, (3)

W
(0)
T (r) = M3

π

12π

(
gA

2Fπ

)2
e−Mπ r

Mπr

[
1 + 3

Mπr
+ 3

(Mπr)2

]
, (4)

where gA, Fπ , and Mπ denote the axial-vector coupling
constant of the nucleon, the pion decay constant, and the
pion mass, respectively. In addition to these long-range
contributions, the OPE potential also involves a short-range
piece proportional to a δ function. We absorb this contribution
into the leading contact interaction.

At next-to-leading order (NLO), the strength of the OPE
potential is slightly shifted owing to the Goldberger-Treiman
discrepancy (GTD) [31],

gπN = gAmN

Fπ

(
1 − 2M2

π d̄18

gA

)
, (5)

where gπN is the pion-nucleon coupling constant and d̄18 is a
LEC from the third-order pion-nucleon effective Lagrangian,
which is of the same order in the chiral expansion as V

(2)
NN .

For the two-pion exchange (TPE) we use the spectral-
function-regularization (SFR) expressions as detailed in
Ref. [32]. The coordinate-space expressions for the TPE
potential can be most easily obtained utilizing the spectral-

function representation with spectral functions ρi and ηi ,

VC(r) = 1

2π2r

∫ �̃

2Mπ

dμμe−μrρC(μ), (6)

VS(r) = − 1

6π2r

∫ �̃

2Mπ

dμμe−μr [μ2ρT (μ) − 3ρS(μ)], (7)

VT (r) = − 1

6π2r3

∫ �̃

2Mπ

dμμe−μrρT (μ)(3 + 3μr + μ2r2),

(8)

and similarly for WC , WS , and WT in terms of ηC , ηS , and ηT

(instead of ρC , ρS , and ρT , respectively).
In the framework of the SFR, the integrals in the spectral

representation of the TPE potential go from 2Mπ to the
ultraviolet cutoff �̃ rather than to ∞, corresponding to the
case of dimensional regularization. Taking �̃ of the order of
�b ensures that no unnaturally large short-range terms are
induced by the subleading TPE potential [32].

The TPE spectral functions at NLO are given by [33]

ρ
(2)
T (μ) = 1

μ2
ρ

(2)
S (μ) = 3g4

A

128πF 4
π

√
μ2 − 4M2

π

μ
, (9)

η
(2)
C (μ) = 1

768πF 4
π

√
μ2 − 4M2

π

μ

[
4M2

π

(
5g4

A − 4g2
A − 1

)

−μ2
(
23g4

A − 10g2
A − 1

) + 48g4
AM4

π

4M2
π − μ2

]
, (10)

while the ones at N2LO read

ρ
(3)
C (μ) = − 3g2

A

64μF 4
π

(
2M2

π − μ2)[2M2
π (2c1 − c3) + c3μ

2],
(11)

η
(3)
T (μ) = 1

μ2
η

(3)
S (μ) = − g2

A

128μF 4
π

c4
(
4M2

π − μ2
)
, (12)

where ci denote the LECs of the subleading pion-nucleon
vertices [34]. For the subleading TPE potential, the integrals
in Eqs. (6)–(8) can be carried out analytically, leading to

V
(3)
C (r) = 3g2

A

32π2F 4
π

e−2x

r6
[2c1x

2(1 + x)2

+ c3(6 + 12x + 10x2 + 4x3 + x4)]

− 3g2
A

128π2F 4
π

e−y

r6
{4c1x

2[2 + y(2 + y) − 2x2]

+ c3[24 + y(24 + 12y + 4y2 + y3)

− 4x2(2 + 2y + y2) + 4x4]}, (13)

W
(3)
S (r) = g2

A

48π2F 4
π

e−2x

r6
c4(1 + x)(3 + 3x + 2x2)

− g2
A

384π2F 4
π

e−y

r6
c4[24 + 24y + 12y2 + 4y3 + y4

− 4x2(2 + 2y + y2)], (14)
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W
(3)
T (r) = − g2

A

48π2F 4
π

e−2x

r6
c4(1 + x)(3 + 3x + x2)

+ g2
A

768π2F 4
π

e−y

r6
c4[48 + 48y + 24y2 + 7y3 + y4

− 4x2(8 + 5y + y2)], (15)

where we have introduced dimensionless variables x ≡ Mπr
and y ≡ �̃r . Analytic expressions for the leading TPE poten-
tials for the case of �̃ = ∞ are given in Ref. [33].

We now turn to the short-range contact interactions, starting
from the expressions in momentum space. The most general
set of contact interactions at LO is given by momentum-
independent terms 1,σ 1 · σ 2,τ 1 · τ 2 and σ 1 · σ 2τ 1 · τ 2, so that
one has

V
(0)

cont = α1 + α2σ 1 · σ 2 + α3τ 1 · τ 2 + α4σ 1 · σ 2τ 1 · τ 2.
(16)

As discussed below, of these four terms only two are linearly
independent. As nucleons are fermions, they obey the Pauli
principle, and after antisymmetrization the potential V is given
by

VA = 1
2 (V − A[V ]), (17)

with the exchange operator A defined as

A[V (q,k)] = 1
4 (1 + σ 1 · σ 2)(1 + τ 1 · τ 2)

×V
(
q → −2k,k → − 1

2 q
)
, (18)

where k = (p′ + p)/2 is the momentum transfer in the ex-
change channel. For the LO contact potential, we have

V
(0)

cont,A = 1
2

[
1 − 1

4 (1 + σ 1 · σ 2)(1 + τ 1 · τ 2)
]
V

(0)
cont

= (
3
8α1 − 3

8α2 − 3
8α3 − 9

8α4
)

+ (− 1
8α1 + 5

8α2 − 3
8α3 + 3

8α4
)
σ 1 · σ 2

+ (− 1
8α1 − 3

8α2 + 5
8α3 + 3

8α4
)
τ 1 · τ 2

+ (− 1
8α1 + 1

8α2 + 1
8α3 + 3

8α4
)
σ 1 · σ 2τ 1 · τ 2

= C̃S + C̃T σ 1 · σ 2 + (− 2
3 C̃S − C̃T

)
τ 1 · τ 2

+ (− 1
3 C̃S

)
σ 1 · σ 2τ 1 · τ 2. (19)

Obviously, there are only two independent couplings at leading
order after antisymmetrization. Following Weinberg [25], we
take

V
(0)

cont = CS + CT σ 1 · σ 2, (20)

but we could have chosen different two of the four con-
tact interactions. This is analogous to Fierz ambiguities.
At NLO, 14 different contact interactions are allowed by
symmetries:

V
(2)

cont = γ1q
2 + γ2q

2σ 1 · σ 2 + γ3q
2τ 1 · τ 2

+ γ4q
2σ 1 · σ 2τ 1 · τ 2

+ γ5k
2 + γ6k

2σ 1 · σ 2 + γ7k
2τ 1 · τ 2

+ γ8k
2σ 1 · σ 2τ 1 · τ 2 + γ9(σ 1 + σ 2)(q × k)

+ γ10(σ 1 + σ 2)(q × k)τ 1 · τ 2 + γ11(σ 1 · q)(σ 2 · q)

+ γ12(σ 1 · q)(σ 2 · q)τ 1 · τ 2 + γ13(σ 1 · k)(σ 2 · k)

+ γ14(σ 1 · k)(σ 2 · k)τ 1 · τ 2. (21)

In analogy to the LO case, only seven couplings are indepen-
dent and one has the freedom to choose an appropriate basis.
The currently available versions of chiral potentials [3,4] use
the set which does not involve isospin operators. Because we
want to construct a local chiral potential, we have to eliminate
contact interactions that depend on the momentum transfer in
the exchange channel k. Thus, we choose

V
(2)

cont = C1q
2 + C2q

2τ 1 · τ 2

+ (C3q
2 + C4q

2τ 1 · τ 2)σ 1 · σ 2

+ i
C5

2
(σ 1 + σ 2) · q × k + C6(σ 1 · q)(σ 2 · q)

+C7(σ 1 · q)(σ 2 · q)τ 1 · τ 2, (22)

which is local except for the k-dependent spin-orbit interaction
(C5). Without regulators, the expressions for the contact
interactions in coordinate space are of the form

V
(0)

cont(r) = (CS + CT σ 1 · σ 2)δ(r), (23)

V
(2)

cont(r) = −(C1 + C2τ 1 · τ 2)	δ(r)

− (C3 + C4τ 1 · τ 2)σ 1 · σ 2	δ(r)

+ C5

2

∂rδ(r)

r
L · S + (C6 + C7τ 1 · τ 2)

×
[

(σ 1 · r̂)(σ 2 · r̂)

[
∂rδ(r)

r
− ∂2

r δ(r)

]

− σ 1 · σ 2
∂rδ(r)

r

]
. (24)

The derivation of these expressions is given in Appendix A.
In addition to the isospin-symmetric contributions to the

potential given by Eqs. (3), (4), (6)–(8), (13)–(15), (23),
and (24), we take into account isospin-symmetry-breaking
corrections [35]. We include long-range charge-independence
breaking (CIB) terms owing to the pion mass splitting in the
OPE potential,

VOPE, full = VOPE(Mπ± )τ 1 · τ 2

+ 4[VOPE(Mπ0 ) − VOPE(Mπ±)]τ 3
1 τ 3

2 , (25)

where VOPE is given by

VOPE(M) = M3

12π

(
gA

2Fπ

)2
e−Mr

Mr

×
{
σ1 · σ2

[
1 + 3

Mr
+ 3

(Mr)2

]
S12

}
. (26)

For the contact interactions, we include the leading
momentum-independent CIB and charge-symmetry-breaking
(CSB) terms, which in coordinate space have the form

Vcont, CIB(r) = CCIB
1 + 4τ 3

1 τ 3
2

2

1 − σ1 · σ2

4
δ(r), (27)

Vcont, CSB(r) = CCSB
(
τ 3

1 + τ 3
2

)1 − σ1 · σ2

4
δ(r). (28)
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These contact interactions are defined in such a way that
they do not affect neutron-proton observables. Furthermore,
the last factor, (1 − σ 1 · σ 2)/4, is a projection operator on
spin-0 states and ensures that spin-triplet partial waves are
not affected by the above terms. This factor is redundant
for nonregularized expressions. Note that the impact of the
spin-0 projection on NN phase shifts is very small, typically
between 1%−2%. This is smaller than the deviation from the
phase shifts of the Nijmegen partial-wave analysis (PWA) and
smaller than the theoretical uncertainty of the results. Thus, in
the following we neglect the spin-0 projection factor.

We are now in the position to specify the regularization
scheme for the NN potential. Following Ref. [15], this is
achieved by multiplying the coordinate-space expressions for
the long-range potential in Eqs. (3), (4), (6)–(8), and (13)–(15)
with a regulator function,

Vlong(r) → Vlong(r)(1 − e−(r/R0)4
). (29)

This ensures that short-distance parts of the long-range
potentials at r smaller than R0 are smoothly cut off. For
the short-range terms in Eqs. (23), (24), (27), and (28) the
regularization is achieved by employing a local regulator
flocal(q2), leading to the replacement of the δ function with
a smeared one with the same exponential smearing factor as
for the long-range regulator,

δ(r) → δR0 (r) = αe−(r/R0)4
, (30)

where the normalization constant,

α = 1

π�(3/4)R3
0

, (31)

ensures that ∫
d3rδR0 (r) = 1. (32)

The Fourier transformations of the contact interactions tak-
ing into account the local regulator flocal(q2) are given in
Appendix B. The choice of the coordinate-space cutoff R0

is dictated by the following considerations. On the one hand,
one would like to take R0 as small as possible to ensure that
one keeps most of the long-range physics associated with the
pion-exchange potentials. On the other hand, it is shown in
Ref. [36] that at least for the particular class of pion-exchange
diagrams corresponding to the multiple-scattering series, the
chiral expansion for the NN potential breaks down at distances
of the order of r ∼ 0.8 fm but converges fast for r � 1 fm.
This suggests that a useful choice of the cutoff R0 is R0 ∼
1 fm, which corresponds to momentum-space cutoffs of the
order of ∼500 MeV. This follows from Fourier transforming
the regulator function, integrating it from 0 to infinity, and
comparing to a sharp cutoff. These values are similar to the
ones adopted in the already existing, nonlocal implementations
of the chiral potential [3,4]; see also Ref. [37,38] for a related
discussion.

In view of the arguments provided in Refs. [39–41], we
do not use significantly lower values of R0 in applications,1

although we were able to obtain fits to NN phase shifts using
R0 = 0.9 fm. However, the LECs start to become unnatural for
this cutoff. On the other hand, choosing considerably larger
values of R0 results in cutting off the long-range physics
we want to preserve and, thus, introduces an unnecessary
limitation in the breakdown momentum of the approach.
Therefore, here and in the following, we allow for a variation
of the cutoff R0 in the range of R0 = 1.0–1.2 fm. Because the
local regulator eliminates a considerable part of short-distance
components of the TPE potential, we are much less sensitive to
the choice of the SFR cutoff �̃ as compared to Refs. [3,43] and
can safely increase it up to �̃ = 1.4 GeV without producing
spurious deeply bound states. In this work, we vary �̃ in
the range �̃ = 1.0–1.4 GeV. In future work, we will explore
removing the SFR cutoff �̃ → ∞.

We would like to underline that there is no conceptual
difference between our local regularization and the nonlocal
regularization currently used in widely employed versions
of chiral interactions in momentum space. The local chiral
potentials include the same physics as the momentum-space
versions. This is especially clear when antisymmetrizing. The
local regulator by construction preserves the long-range parts
of the interaction. When Fourier transformed, it generates
higher-order q2-dependent terms when applied to short-range
operators, like those already present at NLO and N2LO.
Note that antisymmetrization and local regularization do not
commute, but the commutator is given by higher-order terms.
At NLO and N2LO, the 2 + 7 contact interactions provide a
most general representation consistent with all symmetries.

It remains to specify the values of the LECs and masses that
enter the NN potentials at N2LO. In the following, we use mp =
938.272 MeV, mn = 939.565 MeV, the average pion mass
Mπ = 138.03 MeV, the pion decay constant Fπ = 92.4 MeV,
and the axial coupling gA = 1.267. For the pion-nucleon
coupling, we adopt the value of g2

πN/(4π ) = 13.54, which
is consistent with Ref. [44] and also agrees with the recent
determination in Ref. [45] based on the Goldberger-Miyazawa-
Oehme sum rule and utilizing the most accurate available data
on the pion-nucleon scattering lengths. To account for the
GTD as described above, we use the value gA = 1.29 in the
expressions for the OPE potential. For the LECs ci in the N2LO
TPE potential, we use the same values as in Ref. [3], namely,
c1 = −0.81 GeV−1,c3 = −3.4 GeV−1, and c4 = 3.4 GeV−1.

We emphasize that we use the same expression for the OPE
potential that includes isospin-symmetry-breaking corrections
and accounts for the GTD as well as the same isospin-
symmetry-breaking contact interactions at all orders in the
chiral expansion to allow for a more meaningful comparison
between LO, NLO, and N2LO.

With the NN potential specified as above, we have
performed χ2 fits to neutron-proton phase shifts from the
Nijmegen PWA [46] for R0 = 0.9, 1.0, 1.1, and 1.2 fm and

1See, however, Ref. [42] where a new, renormalizable approach to
NN scattering is formulated that allows to completely eliminate the
ultraviolet cutoff.
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TABLE I. Low-energy constants for R0 = 1.0,1.1,1.2 fm at LO, NLO, and N2LO (with a spectral-function cutoff �̃ = 1000 MeV). The
couplings C1–7 are given in fm4, while the rest are in fm2.

R0 1.0 fm 1.1 fm 1.2 fm

LO NLO N2LO LO NLO N2LO LO NLO N2LO

CS −0.751 12 3.168 03 5.438 50 −1.296 31 1.030 75 3.886 99 −1.796 93 0.035 51 2.687 65
CT 0.374 09 1.413 96 0.276 72 0.256 48 0.906 99 0.244 16 0.154 42 0.717 29 0.233 82
C1 0.314 20 −0.140 84 0.272 39 −0.096 50 0.222 88 −0.079 51
C2 0.257 86 0.042 43 0.220 32 0.059 47 0.228 78 0.076 10
C3 −0.131 34 −0.123 38 −0.136 41 −0.141 83 −0.150 43 −0.169 26
C4 0.118 61 0.110 18 0.094 20 0.111 46 0.089 29 0.123 59
C5 2.385 52 2.112 54 2.162 38 2.0082 2.029 32 1.942 80
C6 0.373 19 0.158 98 0.330 65 0.183 18 0.340 11 0.214 21
C7 −0.356 68 −0.269 94 −0.335 70 −0.301 05 −0.362 48 −0.341 93
CCIB −0.023 61 0.050 94 0.053 20 −0.019 22 0.051 53 0.055 38 −0.013 35 0.054 77 0.056 48
CCSB −0.019 88 0.008 23 0.009 76 −0.020 01 0.007 04 0.009 02 −0.019 59 0.006 60 0.007 71

�̃ = 0.8, 1.0, 1.2, and 1.4 GeV. We used the separation of
spin-singlet and spin-triplet channels and, at LO, fit the 1S0

and 3S1 partial waves separately, while at NLO and N2LO
we fit the {1S0,

1P1} and {3S1,ε1,
3P0,

3P1,
3P2} partial waves. At

NLO and N2LO, we used the same energies of Elab = 1, 5,
10, 25, 50, 100, and 150 MeV for R0 = 1.0 and R0 = 1.1 fm
as in the Nijmegen PWA and the errors in the phase shifts
provided in Ref. [46]. For R0 = 1.2 fm, the fits are performed
up to Elab = 100 MeV. At LO, the fits are performed up
to Elab = 50 MeV. Finally, the values of the LECs CCIB

and CCSB are adjusted to reproduce the proton-proton 1S0

scattering length app = −7.81 fm and the recommended value
of the neutron-neutron scattering length ann = −18.9 fm.
Note that we only take into account the pointlike Coulomb
force for the electromagnetic interaction as appropriate to
N2LO, see Ref. [3] for more details. The resulting LECs for
R0 = 1.0,1.1,1.2 fm and �̃ = 1000 MeV are shown in Table I
and for �̃ = 1400 MeV in Table II.

It would be useful to have a quantitative comparison
of different fits, e.g., comparing the local chiral potentials
presented here with the nonlocal optimized N2LO potentials
of Refs. [47,48] or with the analyses of Refs. [49,50].

One possibility would be to calculate the χ2/datum, but
unfortunately we presently do not have the machinery to do
this. We also emphasize that our fitting strategy is different
to the nonlocal optimized N2LO potentials. As discussed, we
only fit at low energies and take the ci’s from pion-nucleon
scattering, whereas the optimized N2LO potentials fit these
over the full energy range considered.

The fits are different from the fits used in Ref. [15] because
our previous fitting routine was incorrect in the tensor channel
of the pion-exchange interactions. This error has only a small
influence in pure neutron matter.

In Fig. 1, we show the local chiral potentials V (r) at
N2LO for a SFR cutoff �̃ = 1000 MeV, decomposed into the
central, central-isospin, spin, spin-isospin, spin-orbit, tensor,
and tensor-isospin components,

V (r) = V central(r) + V central-isospin(r)τ 1 · τ 2

+ [V spin(r) + V spin-isospin(r)τ 1 · τ 2]σ1 · σ2

+V LS(r)L · S

+ [V tensor(r) + V tensor-isospin(r)τ 1 · τ 2]S12(r), (33)

TABLE II. Low-energy constants for R0 = 1.0,1.1,1.2 fm at LO, NLO, and N2LO (with a spectral-function cutoff �̃ = 1400 MeV). The
couplings C1−7 are given in fm4, while the rest are in fm2.

R0 1.0 fm 1.1 fm 1.2 fm

LO NLO N2LO LO NLO N2LO LO NLO N2LO

CS −0.751 12 3.324 04 8.164 54 −1.296 31 1.139 03 5.896 85 −1.796 93 0.109 09 4.196 29
CT 0.374 09 1.302 21 −0.148 09 0.256 48 0.818 67 −0.086 89 0.154 42 0.646 46 −0.028 20
C1 0.306 49 −0.122 50 0.258 30 −0.040 61 0.212 80 0.002 11
C2 0.265 58 0.008 43 0.235 65 0.021 61 0.240 32 0.038 05
C3 −0.143 78 −0.129 64 −0.145 35 −0.154 46 −0.164 77 −0.185 25
C4 0.134 34 0.123 90 0.104 01 0.121 10 0.102 28 0.128 19
C5 2.390 94 2.134 34 2.165 25 2.024 82 2.028 27 1.958 04
C6 0.386 80 0.124 95 0.343 94 0.149 92 0.352 19 0.183 35
C7 −0.379 20 −0.275 33 −0.357 31 −0.303 46 −0.381 91 −0.342 27
CCIB −0.023 61 0.050 88 0.052 90 −0.019 22 0.051 51 0.055 38 −0.013 35 0.054 68 0.055 92
CCSB −0.019 88 0.008 21 0.009 61 −0.020 01 0.007 01 0.008 83 −0.019 59 0.006 52 0.007 14
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FIG. 1. (Color online) Local chiral NN potentials V (r) at N2LO for an SFR cutoff �̃ = 1000 MeV, decomposed into the central, central-
isospin, spin, spin-isospin, spin-orbit, tensor, and tensor-isospin components, for cutoffs R0 = 0.9−1.2 fm. For all components, we observe
a softening of the potential going from a cutoff R0 = 0.9 fm to R0 = 1.2 fm. We include the R0 = 0.9 fm potential for illustration, but as
discussed in the text, do not use it in many-body calculations.

for cutoffs R0 = 0.9−1.2 fm. We include the 0.9 fm potential
for illustration, but we do not recommend it for many-body
calculations and therefore do not include it in our own
calculations or in the tables. For all components we see a
softening of the potential going from R0 = 0.9 fm to R0 =
1.2 fm, as expected, because short-range parts of the potentials
are strongly scheme dependent. The structures in the individual
channels result from adding up different contributions to those
channels with different r dependencies.

In addition, we show the local chiral potentials V (r) at
N2LO for a SFR cutoff �̃ = 1000 MeV in the 1S0 channel
in Fig. 2 in the neutron-neutron system. Again, we observe
a softening of the potential when increasing the coordinate-
space cutoff from R0 = 0.9 fm to R0 = 1.2 fm.

III. PHASE SHIFTS

Next we present the neutron-proton phase shifts in partial
waves up to J = 4 for the local chiral potentials at LO,
NLO, and N2LO for laboratory energies up to 250 MeV
in comparison with the Nijmegen PWA [46]. We vary the
cutoff between R0 = 1.0 fm and R0 = 1.2 fm and, at NLO
and N2LO, the SFR cutoff between �̃ = 1.0 GeV and �̃ =
1.4 GeV.

In Fig. 3, we show the 1S0 phase shifts as well as the 3S1 -3D1

coupled channel. The description of the 1S0 channel at LO is
only good at very low energies and improves when going
to NLO and the effective range physics is included. When
going from NLO to N2LO, the cutoff bands overlap. In the
3S1 channel the situation is similar but the cutoff bands are

narrower. In both S-wave channels the width of the bands
at NLO and N2LO are of similar size. This results from the
truncation of the short-range contact interactions and the large
ci couplings entering at N2LO and is visible in all phase shifts.

In the 3D1 channel the description worsens when going from
LO to NLO and improves only slightly from NLO to N2LO. At
N2LO the description of the 3D1 channel is poor for energies
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FIG. 2. (Color online) Local chiral NN potentials V (r) at N2LO
for an SFR cutoff �̃ = 1000 MeV in the 1S0 partial wave in the
neutron-neutron system.
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FIG. 3. (Color online) Phase shifts for the 1S0 and 3S1 -3D1 partial waves at LO, NLO, and N2LO in comparison with the Nijmegen PWA
[46]. The bands at each order correspond to the cutoff variation of R0 = 1.0−1.2 fm. At NLO and N2LO, we also vary the SFR cutoff from
�̃ = 1.0−1.4 GeV.

larger than 50 MeV. In addition, also the description of the
J = 1 mixing angle is poor at all orders, a fact that is clearly
reflected in the size of the cutoff bands.

In Fig. 4 we show the phase shifts for the P waves and the
J = 2 coupled channel. In the 1P1 channel the LO band starts
to deviate from the data already at low energies. Including
additional spin-orbit and tensor contributions at NLO improves

the description of the 1P1 channel only little. However, the
situation highly improves when going to N2LO.

In the 3P waves the phase shifts improve considerably
going from LO to higher orders and the description of
the 3P waves at N2LO is substantially better than in our
previous fits [15]. Furthermore, the description of the J = 2
coupled channel is considerably better than for the J = 1
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FIG. 4. (Color online) Phase shifts for the 1P1, 3P0, 3P1, and 3P2 -3F2 partial waves at LO, NLO, and N2LO in comparison with the Nijmegen
PWA [46]. The bands are obtained as in Fig. 3.
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FIG. 5. (Color online) Phase shifts for the 1D2, 3D2, 1F3, 3F3, 1G4, and 3G4 partial waves at LO, NLO, and N2LO in comparison with the
Nijmegen PWA [46]. The bands are obtained as in Fig. 3.

coupled channel and improves when going from LO to
N2LO.

In Fig. 5 we show the phase shifts for the remaining
uncoupled partial waves up to J = 4. The description of the
individual channels is good even at high energies except for
the D waves. This can also be seen in Fig. 6, where we show
the J = 3 and J = 4 coupled channels.

In general, the description of all D wave channels is poor
up to N2LO and does not improve when going from NLO
to N2LO. This results from the truncation of the contact
interactions at N2LO because in partial waves with orbital
angular momentum L > 1 no contact interactions contribute
at this order except for regulator effects. Thus, the D wave
phase shifts are described almost solely by pion-exchange
interactions and are parameter free. This can be improved
by going to N3LO. The higher L > 2 partial waves instead are
mostly described by long-range pion-exchange interactions
and already the OPE interaction at LO describes the data well
at low energies. Thus, the higher partial waves can be well
described already at N2LO.

Comparing our phase shift results to the results ob-
tained with the nonlocal N2LO momentum-space potential
of Ref. [3], we find that the local potentials describe all
partial waves up to J = 4 better except for the D waves. In

addition, the cutoff variation is smaller for the local chiral
potentials.

IV. DEUTERON

In this section, we calculate deuteron properties using the
local chiral potentials presented in the previous sections at LO,
NLO, and N2LO. We calculate the deuteron binding energy
Ed , the quadrupole moment Qd , the magnetic moment μd , the
asymptotic D/S ratio η, the root-mean-square (rms) radius rd ,
the asymptotic S-wave factor As , and the D-state probability
PD . We vary the cutoff R0 = 1.0−1.2 fm and, at NLO and
N2LO, the SFR cutoff �̃ = 1.0−1.4 GeV. The deuteron
properties are calculated as described in Ref. [3]. The results
are shown in Table III and are compared with experimental
results of Refs. [51–56] and the N2LO Epelbaum, Glöckle, and
Meißner (EGM) results of Ref. [3], where the cutoff variation
is � = 450−650 MeV and �̃ = 500−700 MeV.

At N2LO we find a deuteron binding energy of −2.208 ±
0.010 MeV, which has to be compared with the experimental
value of −2.225 MeV. Thus, the N2LO result deviates from
the experimental result by less than 1%, which is better than
2.196 ± 0.007 for the nonlocal, momentum-space N2LO EGM
potentials of Ref. [3]. However, for those potentials the range
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FIG. 6. (Color online) Phase shifts for the 3D3 -3G3 and 3F4 -3H4 partial waves at LO, NLO, and N2LO in comparison with the Nijmegen
PWA [46]. The bands are obtained in the same way as in Fig. 3.

of the cutoff variation is different, which affects the results and
theoretical error estimates.

The description of the deuteron quadrupole moment is
surprisingly good for the local chiral potentials and the
experimental result lies within the N2LO uncertainty band.
Note that electromagnetic two-body currents are not included.
The results for the N2LO momentum-space potentials instead
deviate by 4%−5%. Also for the other observables the result

of the local N2LO potentials deviates less than 1% from the
experimental values.

V. QMC CALCULATIONS OF NEUTRON MATTER

Local chiral EFT interactions can be used in any modern
many-body method. This includes quantum Monte Carlo. The
two main methods in the context of nuclear physics are GFMC,

TABLE III. Deuteron properties for the local chiral potentials at LO, NLO, and N2LO. We tabulate the deuteron binding energy Ed , the
D-state probability PD , the magnetic moment μd , the quadrupole moment Qd , the asymptotic D/S ratio η, the asymptotic S-wave factor
As , and the rms radius rd . The ranges include a cutoff variation R0 = 1.0−1.2 fm and, at NLO and N2LO, a variation of the SFR cutoff
�̃ = 1.0−1.4 GeV. The experimental results are taken from Refs. [51–56]. We compare our results with the N2LO EGM results of Ref. [3],
where the cutoff variation is � = 450−650 MeV and �̃ = 500−700 MeV.

LO NLO N2LO N2LO EGM Exp.

Ed (MeV) −2.0243 . . . − 2.0161 −2.1597 . . . − 2.1446 −2.2177 . . . − 2.1981 −2.202 . . . − 2.189 −2.225
PD (%) 4.2761 . . . 5.3356 6.9249 . . . 8.1702 5.5059 . . . 6.1356 3.53 . . . 4.93
μd (μN ) 0.8494 . . . 0.8554 0.8332 . . . 0.8403 0.8438 . . . 0.8484 0.857
Qd (fm2) 0.2580 . . . 0.2691 0.3013 . . . 0.3039 0.2828 . . . 0.2890 0.271 . . . 0.275 0.286
η 0.0232 . . . 0.0240 0.0275 . . . 0.0278 0.0256 . . . 0.0267 0.0255 . . . 0.0256 0.0256

As (fm− 1
2 ) 0.8299 . . . 0.8321 0.8605 . . . 0.8648 0.8765 . . . 0.8818 0.874 . . . 0.879 0.885

rd (fm) 1.9897 . . . 1.9919 1.9737 . . . 1.9758 1.9677 . . . 1.9698 1.970 . . . 1.972 1.966
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FIG. 7. (Color online) Neutron-matter energy per particle E/N

as a function of density n using AFDMC with the local chiral
NN potentials at LO, NLO, and N2LO. The bands are obtained
by varying the cutoff R0 = 1.0−1.2 fm and the SFR cutoff �̃ =
1000−1400 MeV.

which is very accurate but also computationally costly, and
AFDMC, which is computationally less costly at the price of
less accuracy. Up to now, nuclear GFMC calculations have
used phenomenological NN interactions as input, typically of
the Argonne family [57,58]. These potentials are accurate, but
are not connected to an EFT of QCD and their TPE interaction
is modeled rather phenomenologically, which makes it difficult
to construct consistent 3N forces. Thus, it will be key to use
the new local potentials in light nuclei GFMC calculations,
work that is currently ongoing [59].

In this paper, we use the new local chiral potentials in
AFDMC calculations for pure neutron matter and expand on
our first results of Ref. [15]. For technical reasons, in the past it
has not been possible to extend AFDMC to realistic potentials
when both neutrons and protons are involved. However, for
pure neutron matter, either in the homogeneous case or in a
confining potential, the situation is more straightforward and
AFDMC compares favorably with the more accurate nuclear
GFMC results [60,61]. Neutron matter is useful as a test case in
which different aspects of nuclear interactions can be probed,
but is also directly relevant to the properties of neutron stars
and as ab initio input to energy density functionals [61–66].

In Fig. 7, we show AFDMC results for 66 neutrons
for the local chiral potentials at LO, NLO, and N2LO,
varying R0 = 1.0−1.2 fm, corresponding to a cutoff range
of ∼500−400 MeV in momentum space, and the SFR cutoff
�̃ = 1000−1400 MeV. At all these orders the R0 = 1.1 fm
results lie between the R0 = 1.0 fm and R0 = 1.2 fm ones.
This can also be seen in more detail in Fig. 11, where we show
the AFDMC results individually for three different regulators
R0 = 1.0,1.1, and 1.2 fm and a SFR cutoff of �̃ = 1000 MeV,
along with the many-body perturbation theory results that are
discussed in the next section.
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FIG. 8. (Color online) Neutron-matter energy per particle E/N

as a function of density n. We compare our AFDMC N2LO results
of this work with the MBPT N2LO results of Ref. [67] using the
momentum-space potentials of Ref. [3], the coupled-cluster results
of Ref. [68] using the optimized N2LO potential of Ref. [47], the
MBPT results of Ref. [69], and the CIMC results of Ref. [23], both
using the same optimized N2LO potential.

As shown in Ref. [15], the LO results lead to a broad band,
the lower part of which (R0 = 1.2 fm) even changes slope
as the density is increased. This reflects the fact that the LO
potential does not describe the phase shifts at the relevant
energies as there are only two LECs at this order. The NLO
and N2LO results are generally similar in size, as observed in
Ref. [15], owing to the large ci entering at N2LO and the same
truncation of the contact interactions at both orders. The width
of these bands is similar to that of the phase shifts discussed
in Sec. III.

In Ref. [15], we varied the cutoff from R0 = 0.8 fm to R0 =
1.2 fm. Because we have been unable to produce a precision
potential with no deeply bound states for R0 = 0.8 fm, we
cannot directly compare our new AFDMC results with those of
Ref. [15], because the latter had an error in the fitting routine for
the tensor channel of the pion-exchange interactions, which,
however, only has a small effect on pure neutron matter. The
narrower range of cutoff variation in this work has made the
bands somewhat smaller, at 0.15 fm−3, the range is 8.1 MeV
at LO, 2.1 MeV at NLO, and 2.1 MeV at N2LO.

In Fig. 8 we compare our AFDMC N2LO results for
neutron matter with the MBPT N2LO calculation of Ref. [67]
based on the momentum-space potentials of Ref. [3], the
coupled-cluster results of Ref. [68] using the optimized N2LO
potential of Ref. [47], the MBPT results of Ref. [69], and
the configuration interaction Monte Carlo (CIMC) calculation
of Ref. [23], both using the same optimized N2LO potential.
The bands for the MBPT results are obtained as described in
Ref. [67].

The different many-body results for the optimized N2LO
potential are in very good agreement. These results also agree
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very well with recent self-consistent Green’s function results
[70]. In addition, the optimized N2LO results agree very well
with the N2LO band of Ref. [67] which includes also a NN
cutoff variation and is therefore rather broad. Comparing with
the AFDMC results of this paper, we find that at saturation
density the resulting energies per particle agree very well.
However, the general density dependence of the AFDMC
results is more flat, leading to higher energies at intermediate
densities and a different density dependence at saturation
density. These differences could result from the differences
in the phase-shift predictions, and we expect both results to
come closer when going to N3LO.

We have also tested the dependence of the AFDMC
results on the Jastrow term in the variational wave function.
Specifically, the trial wave function in AFDMC is written as

�T (R,S) = A
[ ∏

i

φα(ri ,si)

]∏
i<j

f (rij ), (34)

where α labels the single-particle state. For a nodeless Jastrow
term, most QMC methods are independent of the choice one
makes for f (r): The Jastrow function impacts the statistical
error bar by accenting the “appropriate” regions of phase space,
but not the value itself. However, owing to the complicated
spin dependence of nuclear interactions, it has been found
that AFDMC has a small dependence on the Jastrow function
as reported in Ref. [15]. By comparing AFDMC results for
14 particles using the Argonne family of potentials with a
GFMC calculation for the same potentials and neutron number
(the largest neutron number for which GFMC results exist),
we found that the Jastrow dependence disappears in AFDMC
when using a softened Jastrow function.

Because no GFMC results exist for 66 particles, we have
carried out separate computations at the highest density
considered here (n = 0.16 fm−3). We studied Jastrow terms
from solving the Schrödinger equation for the Argonne v′

8
potential, a typical QMC potential of reference, and from
the consistent local chiral potentials. In addition, we have
examined the effect of artificially softening the Jastrow term
by multiplying the input potential (only when producing the
Jastrow function) by a fixed coefficient to see the effect of
removing the Jastrow. The highest energies always result from
using a largely unmodified Argonne v′

8 potential, as this is the
potential that is most different from the new chiral interactions.
In the case of R0 = 1.0 fm the different Jastrow terms lead to
an energy per particle that varies by, at most, 0.1 MeV at
0.16 fm−3, while for the R0 = 1.2 fm potentials the variation
is 0.15 MeV. Both these results are much smaller than the
0.6 MeV quoted in Ref. [15] for the R0 = 0.8 fm potential.
This is a reflection of the softer potentials in the present work.

Furthermore, we have probed in detail the finite-size effects
for the local chiral potentials. As we are interested in describing
the thermodynamic limit of neutron matter, it is important
that we are using sufficiently many particles in our AFDMC
simulations. To avoid issues related to preferred directions in
momentum space, we have performed calculations for closed
shells: N = 14, 38, 54, 66, 114. We chose the SFR cutoff
�̃ = 1000 MeV and performed simulations at N2LO for both
the R0 = 1.0 fm and R0 = 1.2 fm potentials at the highest
density n = 0.16 fm−3. The results are shown in Fig. 9. We
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FIG. 9. (Color online) Finite-size effects for the ground-state
energy of neutron matter for a SFR cutoff �̃ = 1000 MeV at N2LO.
Results are shown for different particle numbers for the R0 = 1.0 fm
and the R0 = 1.2 fm potentials. We also show the kinetic energy,
shifted down by 19 MeV. The finite-size effects for the local chiral
potentials follow the shell effects of the kinetic energy operator.

observe that the two potentials exhibit essentially identical
shell structure, as was to be expected because the ranges
involved in the two potentials are basically the same. These
results show a dependence on N that is very similar to that in
Table III of Ref. [71] for the values of N used in that reference,
namely, 14, 38, and 66. The shell structure is very similar to
that of the free Fermi gas in a periodic box, which we also
show in Fig. 9. From the free Fermi gas we expect that the
thermodynamic limit value is below the N = 114 result and
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FIG. 10. (Color online) Ground-state energy of 66 neutrons at
N2LO. Shown are results for two SFR cutoffs, �̃ = 1000 MeV and
�̃ = 1400 MeV, and two different cutoffs, R0 = 1.0 fm (upper lines)
and R0 = 1.2 fm (lower lines). The results exhibit a very weak �̃

dependence.
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very close to the N = 66 value. This justifies our choice of
using 66 particles to simulate the thermodynamic limit. The
only qualitative difference between the free Fermi-gas shell
structure and our AFDMC results appears at N = 14. For

the free gas N = 14 leads to an energy that is higher than
that at N = 66. This results from the very small periodic box
needed to produce the same density for N = 14. In that case the
interaction length scales also start to be important. In contrast,
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FIG. 11. (Color online) Results for MBPT and AFDMC calculations at LO, NLO, and N2LO for R0 = 1.0−1.2 fm. For the MBPT results,
we show the Hartree-Fock energies as well as the energy at second order and including third-order particle-particle and hole-hole corrections.
The width of the bands includes a variation of the single-particle spectrum from a free to a Hartree-Fock spectrum. In addition, for both the
MBPT and the AFDMC results we also vary the SFR cutoff �̃ = 1000−1400 MeV. For the LO 1.1−fm results, the lower band corresponds
to the second-order results.

054323-12



LOCAL CHIRAL EFFECTIVE FIELD THEORY . . . PHYSICAL REVIEW C 90, 054323 (2014)

for larger N , shell effects come almost completely from the
kinetic energy behavior.

We have also explored the dependence of the results on
different values of the SFR cutoff. As discussed, the effect of
the SFR cutoff �̃ is expected to be smaller than that of R0.
We show the results of varying the SFR cutoff from �̃ =
1000 MeV to �̃ = 1400 MeV for R0 = 1.0 fm and R0 =
1.2 fm in Fig. 10. There is essentially no effect at low densities,
while at higher densities the difference for R0 = 1.0 fm never
exceeds 0.1 MeV and for R0 = 1.2 fm it is always less than
0.15 MeV. This shows that the SFR cutoff has a negligible
impact on the many-body results.

VI. PERTURBATIVE CALCULATIONS
OF NEUTRON MATTER

Wes have also performed neutron-matter calculations using
many-body perturbation theory (following Refs. [67,72–74])
for the same local chiral potentials and the same regulators as
in the previous section. We show the results in Fig. 11 together
with the AFDMC results at LO, NLO, and N2LO for the three
different cutoffs R0 = 1.0,1.1, and 1.2 fm and varying the
SFR cutoff �̃ = 1000−1400 MeV.

At every order in the chiral expansion and for every
cutoff we show the results at the Hartree-Fock level as a
dashed line, including second-order contributions as a shaded
band, and including also third-order particle-particle and
hole-hole corrections as solid bands. The bands are obtained
by employing a free or Hartree-Fock single-particle spectrum
and by varying the SFR cutoff as stated above. Again, we
observe that the R0 = 1.1 fm results at all three chiral orders
lie between the R0 = 1.0 fm and R0 = 1.2 fm ones.

At LO, the local chiral potentials in general follow the
trend of the AFDMC results for all three cutoffs. The width
of the individual bands is very small and the energy changes
from first to second and from second to third order are small.
As discussed in Ref. [74], this energy difference, combined
with the weak dependence on the different single-particle
spectra, is a measure of the perturbative convergence for the
individual potentials. All potentials at this chiral order seem
to be perturbative. We find a good agreement between the
AFDMC and the MBPT results, especially at lower densities,
although at higher densities the trend is that the second-order
results are better than third-order results.

At NLO, we find the R0 = 1.0 fm potential to have the
slowest, if any, perturbative convergence. The second-order
band is very broad and the third-order contributions are large:
At saturation density they are 6−10 MeV. Going to higher
coordinate-space cutoffs, which means lower momentum
cutoffs, we find that the potential becomes more perturbative.
At R0 = 1.2 fm both the second- and the third-order bands are
narrow and the third-order contributions are ≈1.5 MeV.

At N2LO the results are very similar to NLO. We find
that the R0 = 1.0 fm potential shows the slowest perturbative
convergence, with an energy difference from second to third
order of about 3 MeV at saturation density. However, the
perturbativeness for this cutoff at N2LO is better than at NLO.
Going to higher coordinate-space cutoffs again improves the
perturbativeness and for R0 = 1.2 fm the energy difference

is ≈1.0 MeV at this density. This behavior is similar to the
nonlocal potentials used in Ref. [74], where it was shown
that soft (low momentum cutoff) potentials have a better
convergence.

For the perturbative R0 = 1.2 fm potentials, the agree-
ment between the third-order perturbative results and the
AFDMC results is excellent. For R0 = 1.2 fm, at N2LO,
the perturbative results lie almost on top of the AFDMC
values. The difference between the third-order result with
Hartree-Fock single-particle spectrum and the AFDMC results
is 0.2 MeV at 0.16 fm−3 for �̃ = 1400 MeV and only 20 keV
for �̃ = 1000 MeV. In comparison, at NLO the difference
is 0.2 MeV at 0.16 fm−3 for �̃ = 1400 and 0.1 MeV for
�̃ = 1000 MeV, while at LO it is 1.6 MeV. These results
constitute a direct validation of MBPT for neutron matter
based on low momentum potentials, in this case R0 = 1.1 fm
and R0 = 1.2 fm, which was the main finding in our initial
QMC study with chiral EFT interactions [15].

VII. SUMMARY AND OUTLOOK

We have presented details of the derivation of local chiral
EFT potentials at LO, NLO, and N2LO. We performed fits
of the LECs to low-energy NN phase shifts, which are
well reproduced in most cases and agree better than for
the momentum-space potentials with the Nijmegen PWA.
Furthermore, the calculated deuteron properties at N2LO show
very good agreement with experimental data.

We have applied the new local chiral potentials to neutron
matter using AFDMC and MBPT. In particular, we have
investigated the sensitivity of the results to the local regulator
and to the SFR cutoff, to the influence of the Jastrow term, and
also to finite size effects in AFDMC.

The excellent agreement of the results for the softer R0 =
1.1 fm and R0 = 1.2 fm potentials within the two many-body
frameworks represents a direct validation of MBPT for neutron
matter and will enable novel many-body calculations of nuclei
and matter within QMC based on chiral EFT interactions.
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Center and at NERSC.

APPENDIX A: PARTIAL-WAVE-DECOMPOSED
CONTACT INTERACTIONS

We fit the LECs CS, CT , and C1−7 to NN phase shifts.
In every partial wave only certain LECs contribute. In the
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following we give the partial wave decomposition for all
relevant channels. We use spectroscopic LECs given in terms
of CS, CT , and C1−7 as follows:

d11 = CS + CT ,

d22 = CS − 3CT ,

d1 = C1 − 3C2 + C3 − 3C4,

d2 = C6 − 3C7,

d3 = C1 + C2 − 3C3 − 3C4,

d4 = C1 + C2 + C3 + C4,

d5 = C1 − 3C2 − 3C3 + 9C4,

d6 = 1
2C5,

d7 = C6 + C7.

For the partial-wave-decomposed matrix elements we find

〈1S0|Vcont|1S0〉 = d22δR0 + (d3 − d7)20
r2

R4
0

δR0

− (d3 − d7)16
r6

R8
0

δR0 , (A1)

〈3S1|Vcont|3S1〉 = d11δR0 +
(

d1 + 1

3
d2

)
20

r2

R4
0

δR0

−
(

d1 + 1

3
d2

)
16

r6

R8
0

δR0 , (A2)

〈3S1|Vcont|3D1〉 = 〈3D1|Vcont|3S1〉

= d2

√
8

3
8

r2

R4
0

δR0 − d2

√
8

3
16

r6

R8
0

δR0 , (A3)

〈3D1|Vcont|3D1〉 = d11δR0 −
(

d1 − 1

3
d2

)
16

r6

R8
0

δR0

+
(

d1 + 3

5
d6 + 1

15
d2

)
20

r2

R4
0

δR0 , (A4)

〈1P1|Vcont|1P1〉 = d22δR0 + (d5 − d2)20
r2

R4
0

δR0

− (d5 − d2)16
r6

R8
0

δR0 , (A5)

〈3P0|Vcont|3P0〉 = d11δR0 − (d4 − d7)16
r6

R8
0

δR0

+
(

d4 + 2

5
d6 − 1

5
d7

)
20

r2

R4
0

δR0 , (A6)

〈3P1|Vcont|3P1〉 = d11δR0 − (d4 + d7)16
r6

R8
0

δR0

+
(

d4 + 1

5
d6 + 3

5
d7

)
20

r2

R4
0

δR0 , (A7)

〈3P2|Vcont|3P2〉 = d11δR0 −
(

d4 + 1

5
d7

)
16

r6

R8
0

δR0

+
(

d4 − 1

5
d6 + 7

25
d7

)
20

r2

R4
0

δR0 , (A8)

〈3P2|Vcont|3F2〉 = 〈3F2|Vcont|3P2〉

= d7

√
6

16

5

r2

R4
0

δR0 − d7

√
6

32

5

r6

R8
0

δR0 , (A9)

〈3F2|Vcont|3F2〉 = d11δR0 −
(

d4 − 1

5
d7

)
16

r6

R8
0

δR0

+
(

d4 + 4

5
d6 + 3

25
d7

)
20

r2

R4
0

δR0 . (A10)

APPENDIX B: FOURIER TRANSFORMATION
OF CONTACT INTERACTIONS

In the following we give the Fourier transformation of
the contact contributions. The LO contacts are momentum
independent and their Fourier transformation is given by∫

d3q

(2π )3
V LO

contflocal(q
2)eiq·r = V LO

cont

∫
d3q

(2π )3
flocal(q

2)eiq·r

= V LO
contδR0 (r), (B1)

where flocal(q2) is a local momentum-space regulator.
The first four NLO contact interactions are proportional

to q2 and contain spin and isospin operators which are not
dotted into momentum operators. Writing the q2 dependence
explicitly, the Fourier transformation is given by∫

d3q

(2π )3
V NLO

cont q2flocal(q
2)eiq·r

= −V NLO
cont 	

∫
d3q

(2π )3
flocal(q

2)eiq·r

= −V NLO
cont 	δR0 (r). (B2)

To Fourier transform the spin-orbit interaction we employ
the test function ψ :

〈r|ÔLS|ψ〉

=
∫

d3p

(2π )3

d3p′

(2π )3
d3r ′〈r|p′〉〈p′|ÔLS|p〉〈p|r′〉〈r′|ψ〉

=
∫

d3p

(2π )3

d3p′

(2π )3
d3r ′eip′ ·re−ip·r′ 〈p′|ÔLS|p〉ψ(r′)

= C5

2

∫
d3q

(2π )3

d3k

(2π )3
d3r ′i(σ1 + σ2) · (q × k)

×ei q
2 ·(r+r′)eik·(r−r′)ψ(r′)flocal(q

2)

= C5

2

∫
d3q

(2π )3

d3k

(2π )3
d3r ′iεαβγ (σ1 + σ2)αqβ

×ei q
2 ·(r+r′)(i∂ ′

γ eik·(r−r′))ψ(r′)flocal(q
2)

= −C5

2

∫
d3q

(2π )3

d3k

(2π )3
d3r ′iεαβγ (σ1 + σ2)αqβ

×(
i∂ ′

γ ei q
2 ·r′

ψ(r′)
)
eik·(r−r′)flocal(q

2)ei q
2 ·r
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= C5

4

∫
d3q

(2π )3
iεαβγ (σ1 + σ2)αqβqγ ψ(r)flocal(q

2)eiq·r

−C5

2

∫
d3q

(2π )3
iεαβγ (σ1+σ2)αqβ[i∂γ ψ(r)]flocal(q

2)eiq·r

= −C5

2
εαβγ (σ1 + σ2)α∂β

×
[∫

d3q

(2π )3
flocal(q

2)eiq·r
]

(i∂γ ψ(r))

= −C5

2

∂rδR0

r
εαβγ (σ1 + σ2)αrβ[i∂γ ψ(r)]

= −C5

2

∂rδR0

r
S · ir × ∇ψ(r)

= C5

2

∂rδR0

r
L · Sψ(r). (B3)

Here we used partial integration and the antisymmetry of εαβγ

in lines 5 and 6, respectively, and L = −ir × ∇ in the last line.

The Fourier transformation of the tensorial contact opera-
tors is given by

∫
d3q

(2π )3
V tens

cont flocal(q
2)σ1 · qσ2 · qeiq·r

= −V tens
cont σ

i
1σ

j
2 ∂i∂j

∫
d3q

(2π )3
flocal(q

2)eiq·r

= −V tens
cont σ

i
1σ

j
2 ∂i∂j δR0 (r)

= −V tens
cont σ

i
1σ

j
2 ∂i

[
xj

r
∂rδR0 (r)

]

= V tens
cont

{
σ1 · r̂σ2 · r̂

[
∂rδR0 (r)

r
− ∂2

r δR0 (r)

]

−σ1 · σ2
∂rδR0 (r)

r

}
. (B4)
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[32] E. Epelbaum, W. Glöckle, and U.-G. Meißner, Eur. Phys. J. A

19, 125 (2004).
[33] N. Kaiser, R. Brockmann, and W. Weise, Nucl. Phys. A 625,

758 (1997).
[34] V. Bernard, N. Kaiser, and U.-G. Meißner, Int. J. Mod. Phys. E

4, 193 (1995).
[35] E. Epelbaum and Ulf-G. Meißner, Phys. Rev. C 72, 044001

(2005).
[36] V. Baru, E. Epelbaum, C. Hanhart, M. Hoferichter, A. E.

Kudryavtsev, and D. R. Phillips, Eur. Phys. J. A 48, 69 (2012).
[37] M. C. M. Rentmeester, R. G. E. Timmermans, J. L. Friar, and

J. J. de Swart, Phys. Rev. Lett. 82, 4992 (1999).
[38] E. Marji, A. Canul, Q. MacPherson, R. Winzer, C. Zeoli, D. R.

Entem, and R. Machleidt, Phys. Rev. C 88, 054002 (2013).
[39] G. P. Lepage, arXiv:nucl-th/9706029.

054323-15

http://dx.doi.org/10.1103/RevModPhys.81.1773
http://dx.doi.org/10.1103/RevModPhys.81.1773
http://dx.doi.org/10.1103/RevModPhys.81.1773
http://dx.doi.org/10.1103/RevModPhys.81.1773
http://dx.doi.org/10.1016/j.physrep.2011.02.001
http://dx.doi.org/10.1016/j.physrep.2011.02.001
http://dx.doi.org/10.1016/j.physrep.2011.02.001
http://dx.doi.org/10.1016/j.physrep.2011.02.001
http://dx.doi.org/10.1016/j.nuclphysa.2004.09.107
http://dx.doi.org/10.1016/j.nuclphysa.2004.09.107
http://dx.doi.org/10.1016/j.nuclphysa.2004.09.107
http://dx.doi.org/10.1016/j.nuclphysa.2004.09.107
http://dx.doi.org/10.1103/PhysRevC.68.041001
http://dx.doi.org/10.1103/PhysRevC.68.041001
http://dx.doi.org/10.1103/PhysRevC.68.041001
http://dx.doi.org/10.1103/PhysRevC.68.041001
http://dx.doi.org/10.1088/0034-4885/75/1/016301
http://dx.doi.org/10.1088/0034-4885/75/1/016301
http://dx.doi.org/10.1088/0034-4885/75/1/016301
http://dx.doi.org/10.1088/0034-4885/75/1/016301
http://dx.doi.org/10.1103/RevModPhys.85.197
http://dx.doi.org/10.1103/RevModPhys.85.197
http://dx.doi.org/10.1103/RevModPhys.85.197
http://dx.doi.org/10.1103/RevModPhys.85.197
http://dx.doi.org/10.1016/j.ppnp.2012.10.003
http://dx.doi.org/10.1016/j.ppnp.2012.10.003
http://dx.doi.org/10.1016/j.ppnp.2012.10.003
http://dx.doi.org/10.1016/j.ppnp.2012.10.003
http://dx.doi.org/10.1103/PhysRevLett.106.192501
http://dx.doi.org/10.1103/PhysRevLett.106.192501
http://dx.doi.org/10.1103/PhysRevLett.106.192501
http://dx.doi.org/10.1103/PhysRevLett.106.192501
http://dx.doi.org/10.1103/PhysRevLett.112.102501
http://dx.doi.org/10.1103/PhysRevLett.112.102501
http://dx.doi.org/10.1103/PhysRevLett.112.102501
http://dx.doi.org/10.1103/PhysRevLett.112.102501
http://dx.doi.org/10.1103/PhysRevLett.105.032501
http://dx.doi.org/10.1103/PhysRevLett.105.032501
http://dx.doi.org/10.1103/PhysRevLett.105.032501
http://dx.doi.org/10.1103/PhysRevLett.105.032501
http://dx.doi.org/10.1103/PhysRevLett.109.052501
http://dx.doi.org/10.1103/PhysRevLett.109.052501
http://dx.doi.org/10.1103/PhysRevLett.109.052501
http://dx.doi.org/10.1103/PhysRevLett.109.052501
http://dx.doi.org/10.1088/0034-4885/77/9/096302
http://dx.doi.org/10.1088/0034-4885/77/9/096302
http://dx.doi.org/10.1088/0034-4885/77/9/096302
http://dx.doi.org/10.1088/0034-4885/77/9/096302
http://dx.doi.org/10.1103/PhysRevC.87.034307
http://dx.doi.org/10.1103/PhysRevC.87.034307
http://dx.doi.org/10.1103/PhysRevC.87.034307
http://dx.doi.org/10.1103/PhysRevC.87.034307
http://dx.doi.org/10.1103/PhysRevLett.113.142501
http://dx.doi.org/10.1103/PhysRevLett.113.142501
http://dx.doi.org/10.1103/PhysRevLett.113.142501
http://dx.doi.org/10.1103/PhysRevLett.113.142501
http://dx.doi.org/10.1038/nature12226
http://dx.doi.org/10.1038/nature12226
http://dx.doi.org/10.1038/nature12226
http://dx.doi.org/10.1038/nature12226
http://dx.doi.org/10.1103/PhysRevC.90.024312
http://dx.doi.org/10.1103/PhysRevC.90.024312
http://dx.doi.org/10.1103/PhysRevC.90.024312
http://dx.doi.org/10.1103/PhysRevC.90.024312
http://dx.doi.org/10.1103/PhysRevC.89.061301
http://dx.doi.org/10.1103/PhysRevC.89.061301
http://dx.doi.org/10.1103/PhysRevC.89.061301
http://dx.doi.org/10.1103/PhysRevC.89.061301
http://dx.doi.org/10.1103/PhysRevLett.111.032501
http://dx.doi.org/10.1103/PhysRevLett.111.032501
http://dx.doi.org/10.1103/PhysRevLett.111.032501
http://dx.doi.org/10.1103/PhysRevLett.111.032501
http://dx.doi.org/10.1103/PhysRevC.56.1720
http://dx.doi.org/10.1103/PhysRevC.56.1720
http://dx.doi.org/10.1103/PhysRevC.56.1720
http://dx.doi.org/10.1103/PhysRevC.56.1720
http://dx.doi.org/10.1103/PhysRevLett.99.022505
http://dx.doi.org/10.1103/PhysRevLett.99.022505
http://dx.doi.org/10.1103/PhysRevLett.99.022505
http://dx.doi.org/10.1103/PhysRevLett.99.022505
http://dx.doi.org/10.1103/PhysRevC.36.2026
http://dx.doi.org/10.1103/PhysRevC.36.2026
http://dx.doi.org/10.1103/PhysRevC.36.2026
http://dx.doi.org/10.1103/PhysRevC.36.2026
http://dx.doi.org/10.1146/annurev.nucl.51.101701.132506
http://dx.doi.org/10.1146/annurev.nucl.51.101701.132506
http://dx.doi.org/10.1146/annurev.nucl.51.101701.132506
http://dx.doi.org/10.1146/annurev.nucl.51.101701.132506
http://dx.doi.org/10.1393/ncr/i2009-10039-1
http://dx.doi.org/10.1393/ncr/i2009-10039-1
http://dx.doi.org/10.1393/ncr/i2009-10039-1
http://dx.doi.org/10.1393/ncr/i2009-10039-1
http://dx.doi.org/10.1103/PhysRevLett.111.092501
http://dx.doi.org/10.1103/PhysRevLett.111.092501
http://dx.doi.org/10.1103/PhysRevLett.111.092501
http://dx.doi.org/10.1103/PhysRevLett.111.092501
http://dx.doi.org/10.1016/S0370-2693(98)01522-6
http://dx.doi.org/10.1016/S0370-2693(98)01522-6
http://dx.doi.org/10.1016/S0370-2693(98)01522-6
http://dx.doi.org/10.1016/S0370-2693(98)01522-6
http://dx.doi.org/10.1103/PhysRevLett.112.221103
http://dx.doi.org/10.1103/PhysRevLett.112.221103
http://dx.doi.org/10.1103/PhysRevLett.112.221103
http://dx.doi.org/10.1103/PhysRevLett.112.221103
http://dx.doi.org/10.1103/PhysRevLett.113.182503
http://dx.doi.org/10.1103/PhysRevLett.113.182503
http://dx.doi.org/10.1103/PhysRevLett.113.182503
http://dx.doi.org/10.1103/PhysRevLett.113.182503
http://dx.doi.org/10.1016/0550-3213(91)90231-L
http://dx.doi.org/10.1016/0550-3213(91)90231-L
http://dx.doi.org/10.1016/0550-3213(91)90231-L
http://dx.doi.org/10.1016/0550-3213(91)90231-L
http://dx.doi.org/10.1103/PhysRevC.84.054001
http://dx.doi.org/10.1103/PhysRevC.84.054001
http://dx.doi.org/10.1103/PhysRevC.84.054001
http://dx.doi.org/10.1103/PhysRevC.84.054001
http://dx.doi.org/10.1103/PhysRevC.85.054006
http://dx.doi.org/10.1103/PhysRevC.85.054006
http://dx.doi.org/10.1103/PhysRevC.85.054006
http://dx.doi.org/10.1103/PhysRevC.85.054006
http://dx.doi.org/10.1103/PhysRevC.87.054007
http://dx.doi.org/10.1103/PhysRevC.87.054007
http://dx.doi.org/10.1103/PhysRevC.87.054007
http://dx.doi.org/10.1103/PhysRevC.87.054007
http://dx.doi.org/10.1103/PhysRevC.80.045502
http://dx.doi.org/10.1103/PhysRevC.80.045502
http://dx.doi.org/10.1103/PhysRevC.80.045502
http://dx.doi.org/10.1103/PhysRevC.80.045502
http://dx.doi.org/10.1103/PhysRevC.84.054008
http://dx.doi.org/10.1103/PhysRevC.84.054008
http://dx.doi.org/10.1103/PhysRevC.84.054008
http://dx.doi.org/10.1103/PhysRevC.84.054008
http://dx.doi.org/10.1016/S0375-9474(98)00452-7
http://dx.doi.org/10.1016/S0375-9474(98)00452-7
http://dx.doi.org/10.1016/S0375-9474(98)00452-7
http://dx.doi.org/10.1016/S0375-9474(98)00452-7
http://dx.doi.org/10.1140/epja/i2003-10096-0
http://dx.doi.org/10.1140/epja/i2003-10096-0
http://dx.doi.org/10.1140/epja/i2003-10096-0
http://dx.doi.org/10.1140/epja/i2003-10096-0
http://dx.doi.org/10.1016/S0375-9474(97)00586-1
http://dx.doi.org/10.1016/S0375-9474(97)00586-1
http://dx.doi.org/10.1016/S0375-9474(97)00586-1
http://dx.doi.org/10.1016/S0375-9474(97)00586-1
http://dx.doi.org/10.1142/S0218301395000092
http://dx.doi.org/10.1142/S0218301395000092
http://dx.doi.org/10.1142/S0218301395000092
http://dx.doi.org/10.1142/S0218301395000092
http://dx.doi.org/10.1103/PhysRevC.72.044001
http://dx.doi.org/10.1103/PhysRevC.72.044001
http://dx.doi.org/10.1103/PhysRevC.72.044001
http://dx.doi.org/10.1103/PhysRevC.72.044001
http://dx.doi.org/10.1140/epja/i2012-12069-6
http://dx.doi.org/10.1140/epja/i2012-12069-6
http://dx.doi.org/10.1140/epja/i2012-12069-6
http://dx.doi.org/10.1140/epja/i2012-12069-6
http://dx.doi.org/10.1103/PhysRevLett.82.4992
http://dx.doi.org/10.1103/PhysRevLett.82.4992
http://dx.doi.org/10.1103/PhysRevLett.82.4992
http://dx.doi.org/10.1103/PhysRevLett.82.4992
http://dx.doi.org/10.1103/PhysRevC.88.054002
http://dx.doi.org/10.1103/PhysRevC.88.054002
http://dx.doi.org/10.1103/PhysRevC.88.054002
http://dx.doi.org/10.1103/PhysRevC.88.054002
http://arxiv.org/abs/arXiv:nucl-th/9706029


A. GEZERLIS et al. PHYSICAL REVIEW C 90, 054323 (2014)

[40] E. Epelbaum and J. Gegelia, Eur. Phys. J. A 41, 341 (2009).
[41] C. Zeoli, R. Machleidt, and D. R. Entem, Few Body Syst. 54,

2191 (2013).
[42] E. Epelbaum and J. Gegelia, Phys. Lett. B 716, 338 (2012).
[43] E. Epelbaum, W. Gloeckle, and U.-G. Meißner, Eur. Phys. J. A

19, 401 (2004).
[44] R. G. E. Timmermans, T. A. Rijken, and J. J. de Swart, Phys.

Rev. Lett. 67, 1074 (1991).
[45] V. Baru, C. Hanhart, M. Hoferichter, B. Kubis, A. Nogga, and

D. R. Phillips, Phys. Lett. B 694, 473 (2011).
[46] V. G. J. Stoks, R. A. M. Klomp, M. C. M. Rentmeester, and

J. J. de Swart, Phys. Rev. C 48, 792 (1993).
[47] A. Ekström, G. Baardsen, C. Forssén, G. Hagen, M.

Hjorth-Jensen, G. R. Jansen, R. Machleidt, W. Nazarewicz, T.
Papenbrock, J. Sarich, and S. M. Wild, Phys. Rev. Lett. 110,
192502 (2013).

[48] A. Ekström, G. R. Jansen, K. A. Wendt, G. Hagen, T.
Papenbrock, S. Bacca, B. Carlsson, and D. Gazit,
arXiv:1406.4696.
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