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Correlated density-dependent chiral forces for infinite-matter calculations within the
Green’s function approach
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The properties of symmetric nuclear and pure neutron matter are investigated within an extended self-consistent
Green’s function method that includes the eftects of three-body forces. We use the ladder approximation for the
study of infinite nuclear matter and incorporate the three-body interaction by means of a density-dependent two-
body force. This force is obtained via a correlated average over the third particle, with an in-medium propagator
consistent with the many-body calculation we perform. We analyze different prescriptions in the construction of
the average and conclude that correlations provide small modifications at the level of the density-dependent force.
Microscopic as well as bulk properties are studied, focusing on the changes introduced by the density-dependent
two-body force. The total energy of the system is obtained by means of a modified Galitskii-Migdal-Koltun sum
rule. Our results validate previously used uncorrelated averages and extend the availability of chirally motivated

forces to a larger density regime.
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I. INTRODUCTION

State-of-the-art ab initio nuclear many-body theories nec-
essarily include both two-body (2B) and three-body (3B)
interactions. The importance of three-nucleon interactions
was first recognized with the pioneering work of Fujita
and Miyazawa, which identified two-pion exchange (TPE)
as an essential underlying process [1]. The inclusion of
three-nucleon forces (3NFs) becomes mandatory to avoid
the underbinding of light nuclei and to elude the saturation
of nuclear matter at too-high densities [2]. Several models
of 3NFs have been devised in the past few decades [3].
In some of these models, the TPE part of the 3NF has
been complemented with additional phenomenological terms,
for instance, the repulsive terms appearing in the 3NF
Urbana interactions [3]. While their inclusion is empirically
reasonable, it can be hard to justify from a theoretical point
of view. Consequently, systematic errors become difficult to
quantify and the predictive power of the theory is adversely
affected. Furthermore, ab initio methods should be constructed
considering a unified description of 2B and 3B interactions,
avoiding if at all possible ad hoc terms. In this context, we
exploit the consistent framework provided by chiral nuclear
forces to study many-body systems with a nonperturbative
self-consistent Green’s function (SCGF) approach [4].

Chiral effective field theory (EFT) provides a consistent
picture of nuclear interactions; see Refs. [5,6] for recent
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reviews. The approach is based on chiral perturbation theory,
i.e., a low-energy expansion of quantum chromodynamics
(QCD) [7]. The expansion is based on a power counting, which
generally involves a low-momentum scale over a high-energy
scale, usually taken as the chiral symmetry breaking scale.
The expansion is constructed as to be consistent with the
symmetries of the underlying quantum theory, QCD. The
high-energy physics is incorporated in low-energy constants
(LECs), which need to be fit to low-energy hadronic and
nuclear structure properties [5,6]. A tremendous advantage
of the resulting expansion is the fact that two- and many-body
nuclear forces are organized according to the same consistent
power counting. 3NFs, for instance, appear at next-to-next-
to-leading order (N2LO) in the chiral expansion, whereas
four-nucleon forces only appear at fourth order (N3LO). In
this sense, a full calculation using chiral forces should be
performed considering all the n-body forces which are present
at a given order in the chiral expansion. The inclusion of
many-body forces, other than the 2B ones, is unavoidable when
dealing with chiral nuclear interactions [8,9].

Most nuclear many-body formalisms were originally em-
ployed with two-nucleon forces (2NFs) alone. The majority
of these methods have been extended, in one way or another,
to include 3N interactions. For finite systems, the SCGF ap-
proach [10], the Gorkov-Green’s function method [11], the no-
core shell model [12,13], the in-medium similarity renormal-
ization group [14], or the coupled-cluster formalisms [15,16]
have recently been developed to treat 3B forces. One of the
motivations underlying all these developments is the modified
shell-model results of Ref. [17], which demonstrated the
importance of 3NFs in the reproduction of the drip line in
oxygen isotopes. Recently, nuclear EFT calculations on the
lattice have provided solid benchmark results for ab initio
calculations in the light to medium mass range [18].

For infinite matter, similar extensions have been devised
over the years. In bulk matter the 3B forces have been
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mostly included in a density-dependent 2B form [8,19-24].
In particular, calculations using the SCGF method for both
symmetric nuclear matter (SNM) and pure neutron matter
(PNM) have already been presented in Refs. [25]. The practical
advantages of using a density-dependent 2B force constructed
from 3NFs are numerous. First, the matrix elements can
essentially be precomputed at the start of the calculation if
they have been built from uncorrelated averages. Second,
and most importantly, the use of the density-dependent force
avoids the problem of solving the corresponding Faddeev-type
equations. In principle, the density-dependent force can be
added directly to the original 2NF before performing many-
body calculations. However, in diagrammatic calculations, this
is not a correct prescription, as we have discussed previously
[26,27].

Chiral forces have been implemented at the 2B and 3B lev-
els in perturbative as well as in nonperturbative infinite-matter
calculations. Perturbative calculations have been performed in
both SNM [28] and PNM [21], up to third order in the ladder
diagrams for the former and second order for the latter, using an
evolved N3LO 2NF via renormalization group techniques [9]
plus a density-dependent N2LO 2NF. Calculations up to N3LO
in the chiral expansion with 2B, 3B, and 4B forces have
been presented for PNM in Ref. [29]. We note, however, that
pure N3LO many-body terms have only been included at the
Hartree-Fock level. Up-to-third-order calculations in the en-
ergy expansion were presented for PNM in Ref. [30] and later
for SNM including particle-hole diagrams [31]. Furthermore,
second-order calculations in many-body perturbation theory
have been recently presented at finite temperature [32].

Nonperturbative calculations using 2B and 3B chiral forces
have been carried out with several many-body approaches.
Initial Brueckner-Hartree-Fock calculations with chiral inter-
actions found anomalously attractive results [33]. In contrast,
satisfactory results in the Brueckner-Hartree-Fock approach
have been presented in Ref. [34]. These agree qualitatively
with our SCGF analysis, presented in Ref. [26]. The Fermi-
hypernetted-chain method as well as the auxiliary field
diffusion Monte Carlo method have been complemented in
the 3B sector using a new generation of chirally inspired
3NFs in coordinate space [23]. Coupled-cluster calculations in
infinite nucleonic matter have also been performed, exploiting
a newly optimized version of the 2NF at third order in
the chiral expansion (N2LOopt) [35,36]. Promising quantum
Monte Carlo calculations have been obtained with chiral
local 2NF at N2LO [37] and with chiral nonlocal N2LOopt
forces [38]. Furthermore, quantum Monte Carlo simulations
of neutrons interacting on the lattice have been recently
performed, including N3LO 2NFs together with 3NFs at
N2LO [39].

We have recently extended the SCGF formalism [4] to
incorporate 3B forces from the outset [40]. In short, the
extension involves a new diagrammatic expansion, for which
several structures can be subsumed using effective interactions.
Nonperturbative resummation schemes can be developed, and
those employed with 2B interactions can, in general, be
extended to account for 3NFs. The many-body method is self-
consistent in that an iterative solution of the Dyson’s equation
is needed to find a solution for the in-medium propagator.
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In other words, the Green’s function (GF) which describes
a propagating particle through the medium is determined by
an interaction which takes into account the medium itself.
Conversely, for the construction of the in-medium interaction,
the knowledge of the propagator is required.

The successful extension of the SCGF formalism to include
3B forces has been implemented in a variety of systems. Recent
calculations have found good agreement between theoretical
and experimental ground-state properties of nitrogen, oxygen,
and fluorine isotopes [10]. Moreover, the extension to 3B
forces has been implemented in the Gorkov-Green’s function
method [41] to access midmass open-shell nuclei [11]. Results
in finite nuclei have been obtained using a local version of the
N2LO 3B force [42]. In infinite matter, we have presented
calculations for SNM [26], analyzing the modifications intro-
duced by 3B forces on both microscopic and macroscopic
properties. In our study, we have confirmed the important
role played by 3NFs in the saturation mechanism of nuclear
matter. In fact, 3NF-induced repulsion provides more realistic
values for the saturation energy and density. Throughout
our calculations a nonlocal 3NF at N2LO is implemented
[43,44].

In our previous publication, however, 3B interactions were
incorporated via a density-dependent two-body force based
on an uncorrelated average over the third particle. In the
following, we explore a natural improvement of this average,
calculating a correlated average consistent with the many-body
calculation. We provide comparisons with our previous results
and with other groups’ calculations. Furthermore, and for the
first time within the extended SCGF formalism, results for
PNM are presented.

We will exploit a density-dependent 2NF constructed from
a correlated contraction of diagrams appearing at N2LO in
the 3B sector [43,44]. We point out that this average differs
with respect to previous approaches [21,45] in that it takes
into account the correlations characterizing the system. In
other words, the correlated momentum distribution, obtained
at each stage of the iterative many-body calculation, is
consistently used to calculate the averaged 3B potential. This
density-dependent force will be complemented with the 2NF
N3LO Entem-Machleidt potential [46]. We are well aware that,
because we are using different orders in the chiral expansion
for the 2B and 3B sector, our calculations are inconsistent
in the way they treat chiral nuclear forces. In consequence,
we will also present an exploratory study implementing the
N2LOopt interaction at the 2B level [47].

This paper is divided as follows. Formal aspects are
discussed in Sec. IT A, where a brief revision of the extended
ladder approximation to perform calculations in infinite matter
is presented. Section IIB will be mainly dedicated to the
analysis of the correlated density-dependent force. Further-
more, we will explore different manners of performing the
third-particle average. Section III will focus on the study of
SNM to complement the work already presented in Ref. [26].
Section IV will then discuss the case of PNM. We will finally
provide a short summary of the work presented and draw
conclusions in the last section. The explicit expressions for
the correlated density-dependent 2B force are given in the
Appendix.
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II. DENSITY-DEPENDENT TWO-BODY INTERACTION
AT N2LO

A detailed description of the extension of the SCGF
method to include 3B forces has been presented in Ref. [40].
Furthermore, in Sec. II of Ref. [26] we have described the
specific extension for the ladder approximation in infinite-
nuclear-matter calculations. In this section, we will briefly
review the method again, but we will then primarily focus on
the construction of the density-dependent force.

A. 3B forces in the SCGF ladder approximation

The ladder approximation is a minimal and consistent
SCGF approach to describe a dense medium of strongly
interacting fermions [48]. In this approach, correlations are
taken into account by summing up multiple particle-particle
and hole-hole 2B scattering processes in the medium by
means of an in-medium 7 matrix. Particles are dressed at
all stages and off-shell effects are considered via an iterative
self-consistent solution of the Dyson equation [49]. The
formalism is thermodynamically consistent, as it fulfils the
Hugenholtz-van Hove theorem [50].

As described in Ref. [26], we include 3B forces in our
infinite-matter SCGF calculation via effective operators at the
1B and 2B levels. We deal with a Hamiltonian which is the
sum of three terms as follows:

[:I = Z Ta alaa + % Z Vay,ﬁg aia;ﬂaaaﬂ
o aypBs
+% Z Waye, psn ala;aiana(gaﬂ. (1)
ayefén
The Greek indices («, B, y, etc.) label a complete set of
single-particle (SP) states which diagonalize the kinetic single-
particle operator, 7. a; and a, are creation and annihilation
operators for a particle in state «. The matrix elements of
T are given by 7,,. Equivalently, the antisymmetrized matrix
elements of the 2B and 3B forces are Vy,, g5 and Wey e gsy-
Starting from the Hamiltonian given in Eq. (1), we can
construct effective interactions which include contracted 3B
interactions in one- and two-body operators. In doing so, we
avoid the task of explicitly calculating 3B interaction-reducible
diagrams. In the following calculations, we use the effective
operators described in Figs. 1(a) and 1(b). These operators
are constructed using an analogous philosophy to the normal
ordering of the Hamiltonian given in Eq. (1) [9]. Yet the
reference state is now a dressed many-body ground state,
which incorporates the correlations of the system. The 1B
effective potential in Fig. 1(a) reads

U= "|=ihY Vayps Gs,(t — 1)
7} yé

ih
+ 5 D Wayepin Goy (0 = 19)Goet — 1) | alag . (2)

yedn

and it is the sum of two contributions: a 1B average over
the 2B interaction and a 2B average over the 3B force. We
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FIG. 1. Diagrammatic representation of the effective 1B and 2B
interactions given, respectively, in Egs. (2) and (3). The 1B effective
operator, (a), is given by the sum of the 2B interaction (dashed line)
contracted with a dressed SP propagator, G (double line with arrow),
and the 3B interaction (long-dashed line) contracted with the Hartree-
Fock approximation of a dressed 2B propagator G''. The correct
symmetry factor of 1/2 in the last term is also shown explicitly. The
effective 2B operator, (b), is given by the sum of the original 2B
interaction (dashed line) and the 3B interaction (long-dashed line)
contracted with a dressed SP propagator, G.

point out that this expression is a first-order approximation
of the complete 1B effective potential. The full average
should include a contraction of the 3B force term with
a full 2B propagator [40]. However, finite-nuclei Green’s
function calculations have verified the quality of the first-order
approximation [10,51].

More importantly, and closely related to the main aim of
this paper, we note that the 1B and 2B averages in Eq. (2) are
performed using fully dressed one-body propagators. These
originate directly from the correlated reference state which we
use in the construction of the effective operators. Similarly,
the effective 2B force is given by the expression

1
=3 > [Vw,ﬂg

aypé

<

— ihY " Wayepsy Gye(t — ﬁ)} alalasas, (3)

€n

which is obtained from the original 2B interaction plus a 1B
average over the 3B force. The operators given in Egs. (2)
and (3), together with a residual 3B irreducible part, define an
effective Hamiltonian to be used in the perturbative expansion
of the SP propagator [40]. As long as interaction irreducible
diagrams are considered, double counting is avoided in
the diagrammatic expansion [52]. Moreover, the number of
diagrams at each order in the perturbative expansions of the
self-energy is substantially reduced [40]. In the self-consistent
calculation, the effective operators in Figs. 1(a) and 1(b) are
recalculated at each iterative step to account for changes in the
internal propagators due to the correlations in the system.

The proper self-energy X*(w) is implicitly defined by the
Dyson equation as follows:

Gop(@) = G@) + Y GO} 5(@)Gap().  (4)
y$
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FIG. 2. Diagrammatic representation of the irreducible self-
energy X*. The first term is energy independent and it is computed
from the effective 1B interaction of Fig. 1(a). The second term
is a dynamical contribution, consisting of excited configurations
generated through the 2B effective interactions of Fig. 1(b).

where G© (G) corresponds to the unperturbed (fully dressed)
SP propagator. In the ladder approximation and disregarding
three-body irreducible terms, the self-energy is diagram-
matically represented by the two contributions depicted in
Fig. 2 [40]. The first contribution is an energy-independent
term, which corresponds to the 1B effective potential of
Eq. (2). In the present approach, this is essentially a correlated
Hartree-Fock contribution coming from 2B and 3B forces.
The second contribution is a dispersive part which, in the
ladder approximation, arises from the 2B effective potential
of Eq. (3). The T matrix in this contribution is obtained
by solving a Lippmann-Schwinger-type equation with the
correlated density-dependent 2B effective potential, as shown
in Fig. 3. The T matrix is, in essence, an energy-dependent
effective interaction in the medium. After the self-energy has
been obtained, one solves the Dyson equation to find the
corresponding self-consistent solution of the 1B propagator.
We note that the techniques developed to solve the ladder
approximation with 2B forces are naturally extended to the 3B
sector with this prescription. In particular, there are essentially
two additional steps to be considered. First, the Hartree-Fock
self-energy is complemented with the 3NF term as in Fig. 1(a).
Second, the two-body potential is replaced by the two-body
effective interaction, Fig. 1(b).

The imaginary part of this Green’s function provides
access to the SP spectral function, A(p,w), which describes
the fragmentation of strength in energy, w, of a state with
momentum p. The spectral function is then used to compute
SP momentum distribution,

d
n(p) = / 22 Ap) f(@) 5)

where f(w) corresponds to the Fermi-Dirac distribution
function. We note that, in order to prevent the pairing instability
below the critical temperature, our calculations are performed

A\ \/\4

\

FIG. 3. Diagrammatic representation of the 7'-matrix interacting
vertex function, constructed with the 2B effective interaction of
Fig. 1(b).
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at finite temperature [53]. All the properties presented in
Secs. III and IV are extrapolated to zero temperature, unless
otherwise stated. We use a simple procedure, based on the
Sommerfeld expansion [54], to find T = 0 results from low-
temperature calculations, usually performed at 7 = 5 MeV.
The errors associated to this extrapolation procedure are
negligible [54].

Finally, having found the spectral function of the system,
we need to compute the bulk thermodynamical properties. The
total energy of the system is obtained by means of a modified
Galitskii-Migdal-Koltun sum rule, which has been extended
to account for 3B forces [40]. In the infinite system, this sum
rule takes the following form:

E v [ dp [dol 4 1
Ao (msfm{z—““} (@)@ =5 (W),
(6)

where v is the spin-isospin degeneracy of the system and p the
total density. (W) corresponds to the expectation value of the
3NF. In principle, this term would involve a 3B propagator.
In the present calculations, however, we evaluate it at the
Hartree-Fock level from three independent but fully dressed
SP propagators.

B. Density-dependent chiral two-body force at N2LO

The 3NFs at N2LO in chiral perturbation theory are given
by three terms: a TPE contribution, which corresponds to
the Fujita-Miyazawa original 27 exchange [1]; a one-pion-
exchange (OPE); and a contact (cont) term [43,44]. The dia-
grammatic representations of these contributions are presented
in Fig. 4. Their respective analytical expressions are given by
the following:

2
g (o;-qi)o;-q;) B _o B
WripE = —— Fpto't, ()
ey (Q?+M§)(<I§+M§) Y
CD8A - q;
Wore = — 88 N TV (5 q)(x 7). (®)
8F7A, ik q + M2
CE
Weont = 2F7?AX th * Tk (&)
J#k
P o o P pZX %5
|51 P2 P3 P1 P2 P3 P1 P2 Ps3

(a) (b) (c)

FIG. 4. 3NF terms appearing at N2LO in the chiral expansion.
Diagram (a) corresponds to the TPE term given in Eq. (7). Diagram
(b) is the OPE term of Eq. (8). Diagram (c) yields the contact term of
Eq. (9). Dashed lines define pions. Small dots, big dots, and squares
define the nature of the vertices [5].
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In the TPE contribution of Eq. (7), Fl‘;’ff corresponds to

1ﬁk:5W[—4M§n+2@m'%]

+ Zc;;e“‘syr,fak [q; x q;]. (10)
y

In the previous expressions, q; = p; — p; is the transferred
momentum between an incoming and an outgoing nucleon, i =
1,2,3. p; and p§ are initial and final SP momenta, as depicted
in Fig. 4. t; and o; define the corresponding isospin and
spin matrices. g4 = 1.29 is the axial-vector coupling constant,
M, = 138.04 MeV the average pion mass, F; = 92.4 MeV
the weak pion decay constant, and A, = 700 MeV is the chiral
symmetry breaking constant of the order of the p meson mass.

The LECs in the TPE term, c, c3, ¢4, are the same as
those appearing in the original 2NF, either the N3LO Entem-
Machleidt or the N2LOopt potentials. These are fixed by
experimental nucleon-nucleon (N N) phase shifts and deuteron
properties. For Entem-Machleidt, the constants are c¢; =
—0.81 GeV™', 3 = =3.2GeV ™!, ¢y = 5.4 GeV ™' [46]. The
derivative-free optimization procedure for N2LOopt, in
contrast, provides the values c¢; = —0.92 GeV~!, 3=
—3.89 GeV™', ¢4 = 4.31 GeV ™' [36,47].

In contrast, the two LECs appearing in the OPE and contact
3NF terms, cp and cg, are fitted to experimental data in the
few-body sector. Their values can be obtained from a variety
of methods [7]. With the Entem-Machleidt 2NF, we use the
LEC values ¢p = —1.11 and cg = —0.66, taken from fits to
ground-state properties of *H and “He [55]. This choice is
dictated by consistency with the underlying, not renormalized,
N3LO 2NF. The cutoff on the 3NF included in the regulator
function [see Eq. (14)] is chosen to be Asng = 2.5 fm~! in all
cases. We note that an error estimate of the underlying nuclear
interaction would involve propagating the errors in all these
constants to the many-body calculation.

The leading-order 3NF contributions appearing in
Egs. (7)—(9) are antisymmetrized [44]. In other words, the 3B
antisymmetrization operator A3 is applied to the interaction,
where the three-particle antisymmetrization operator reads

(1= Pp) (1 — P13z — P3)

Az =
123 ) 3

)

This is particularly neat, because the antisymmetrization
operator splits into a first term that affects particles 1 and
2, and a second term involving all three nucleons. Py, is
the permutation operator of momentum and spin-isospin of
particles 1 and 2. In spin-isospin space, the operator reads

l4+o0;-021+71 12
P, = . 12
12 5 > (12)

The density-dependent 2NF is obtained by tracing over the
spin, isospin, and momentum of a third, averaged, particle. To
account for correlations consistently, and following Eq. (3),
the density-dependent effective 2B force is obtained from an
average over a dressed SP propagator, involving the correlated
momentum distribution n(p3;). The mathematical expression
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for the averaged potential is

> dps;
14/ Y73NF _
T2V 12) 4 = Trg, Tre, / —(271)3”(133)
x (123 |W(1 — Pi3 — Py3)[123) 4,,. (13)

For practical reasons, we write |1) = |p;o ;7). The subscript
Aj, on the right-hand side matrix element denotes that the
three-particle ket is antisymmetrized with respect to particles
1 and 2 only. In other words, the first term of Eq. (11) has
already been applied to the three-body ket. The second term of
Eq. (11), (1 — P13 — P»3), contributes explicitly to the average
in Eq. (13). With this, we ensure that we take into account
correctly all possible internal and external permutations.
Hence, the final density-dependent 2NF matrix element is
properly antisymmetrized at the 2B level.

The momentum integration of Eq. (13) is regularized
to avoid accessing unphysically large momentum scales.
Different regularization functions have been proposed in the
past [21,45]. We will explore these differences in the following
section. To this end, it is useful to define a general nonlocal
regulator that reads

ko AR
fk.k',p3) = exp |: - <A3NF> B (AxNF) ]

2 2
B2 am)] s

X exp|: 2

3 Ainr
where k = |k| = |p; — p2|/2 and k¥’ = |[K'| = |p| — p5|/2 are
the moduli of the relative incoming and outgoing momenta. p3
is the modulus of the SP momentum of the averaged particle.
AsNp defines the cutoff value applied to the 3NF [44]. We note
here that the regulator is symmetric in the interchange of the
three particles, and hence it is not affected by the permutations
performed in the average.

The regulator in Eq. (14) separates naturally into two terms.
The first exponential contribution only depends on the external
relative incoming and outgoing momenta, k and k. In contrast,
the second term in Eq. (14) depends on the momentum of
the averaged particle and hence acts as an internal regulator.
In the following, we will refer to full regulator when the
average is computed using the complete function. Conversely,
external regulator calculations are obtained when the average
is computed using only the first exponential term. The authors
of Ref. [45] use a regulator function which equals only this first
term. For this reason, they obtain semianalytical expressions
for the integrals of Eq. (13). The authors of Ref. [21] use a full
regulator function. There is no physical argument to choose
between either regulator. In the following section, we will
discuss what differences (if any) emerge when using different
regulator functions.

In this work, the density-dependent two-body force has
been derived in the approximation of zero center-of-mass
momentum, i.e., P = p; 4+ p, = 0. Previous work has shown
that this yields very small errors on the bulk properties of
infinite matter [21]. In addition, we present the in-medium
density-dependent contributions for diagonal relative mo-
mentum matrix elements, |K| = |K’| = k. The in-medium T
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0. Iy

(a) (b) (c)

_ X : %
(d) (e) (f)

FIG. 5. Six density-dependent contributions arising from con-
tractions of the three 3NF terms appearing at N2LO in the chiral
expansion. Dashed lines define pions; double arrowed lines corre-
spond to a dressed single-particle propagator. Diagrams (a), (b), and
(c) arise form contraction of the long-range 3NF TPE term given
in Eq. (7) and correspond, respectively, to the formal expressions
given in the appendix in Eqgs. (A2), (AS), and (All). Diagrams
(d) and (e) are obtained from averaging the medium-range 3NF
OPE term, Eq. (8), and correspond, respectively, to Eq. (A17) and
Eq. (A18). Diagram (f) is the result of contracting the contact 3NF
contribution given in Eq. (9) and is defined in Eq. (A19). Small and
big dots and squares define the nature of the vertices in the chiral
expansion.

matrix, however, depends on off-diagonal elements of both
the original and the density-dependent 2NF. For the latter,
the off-diagonal elements are extrapolated from the diagonal
elements following the prescription given in Ref. [45]. This
simplifies the evaluation of the density-dependent terms and
avoids the inclusion of additional operatorial structures in the
definition of the general N N potential [56], as we will discuss
in the Appendix.

If we perform the average of Eq. (13) for the three 3NF terms

at N2LO, Egs. (7)—(9), we obtain six density-dependent terms.
These are diagrammatically depicted in Fig. 5. The first three
terms, Figs. 5(a)-5(c), arise from the contraction of the TPE 3B
contribution of Fig. 4(a). Terms given in Figs. 5(d) and 5(e)
arise from the OPE 3B interaction shown in 4(b). The last
term, Fig. 5(f), is the only possible contraction of Fig. 4(c). We
label these contributions as VN |, VANF | VANF . VERE
Ve 5, and V3NF ' respectively. The formal expressions
for these six contributions, as well as their derivation, are
presented in the Appendix. Further details can be found in
Ref. [27]. We employ the notation of Ref. [45], which we
followed to calculate our density-dependent contributions.
We note, however, that our expressions differ from those of
Ref. [45] because (a) the regulators are treated differently and
(b) correlations are explicitly included in the construction of
the in-medium 2B potential.
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FIG. 6. (Color online) S, D, and S-D mixing [top panels: (a), (b),
(c) and (d)] and P [bottom panels: (e), (), (g), and (h)] partial-wave
matrix elements of the two-body effective interaction. Black solid
lines depict the bare 2B N3LO potential. Red dashed, green dot-
dashed, and orange double-dot-dashed curves include the 2B density-
dependent force obtained, respectively, in the correlated and free
versions with full regulator and in the correlated version with the
external regulator (see explanation in the text). Density-dependent
terms are obtained at the empirical saturation density of symmetric
nuclear matter, pg = 0.16 fm™3, and for a temperature of T = 5 MeV.

1. Correlation and regulator function effects on the
density-dependent 2NF

In this subsection, we analyze the differences which appear
in the density-dependent force when performing a correlated
or an uncorrelated average in Eq. (13). We also discuss how
the use of a different regulator function affects the integrated
results. To start, we plot in Fig. 6 the eight lowest partial
waves of the 2B force (solid lines). In addition, we show
the corresponding values of the 2B effective potential of
Eq. (3) at the empirical saturation density, p = 0.16 fm~>.
Curves obtained using both a correlated (dashed line) and
a free (dot-dashed line) momentum distribution in Eq. (13)
are presented. The correlated distributions correspond to the
self-consistent n(p) obtained via Eq. (5) at each iteration

054322-6



CORRELATED DENSITY-DEPENDENT CHIRAL FORCES ...

considering both 2NFs and 3NFs in the calculation. In contrast,
a free in-medium propagator corresponds to replacing n(ps) in
Eq. (13) by a Fermi-Dirac momentum distribution function,
n(p) =[1+exp((e(p) — )/ T)]~', where the SP spectra
&(p) and the chemical potential u are consistently calculated
in the iterative procedure. The temperature T is equal to 5
MeV. These two curves are obtained using the full regulator
of Eq. (14). Furthermore, we also present in Fig. 6 the results
obtained with an external regulator (double-dot-dashed line).

Focusing on the S partial waves in Figs. 6(a) and 6(b),
we find that the density-dependent 2NF is less attractive than
the original N3LO 2B force for all momenta. An analysis
of each single density-dependent contribution shows that this
modification is mainly caused by two terms: VT31§£3, which
includes medium effects in the TPE 2B term, as depicted in
Fig. 5(c), and the contact term, V2N, shown in Fig. 5(f) [27].
The repulsion provided by the density-dependent force is as
large as 50% of the value of the bare 2NF at zero momentum.
If we now focus on the D wave, in Fig. 6(c), we observe
that the inclusion of the contracted 3NFs provides some small
attraction at low momenta, AV ~ 0.02 fm, which then evolves
in a strong repulsion at intermediate momenta, ~0.1 fm.
In this case, since the contact term is inactive, it is the
ViNF . contribution that plays the larger role in providing
repulsion [27]. The behavior of the mixing S-D wave is
reversed with respect to the D wave. When including 3NFs, a
small repulsion of the order of ~0.02 fm is found at momenta
up to 1 fm~'. At higher momenta, the mixed matrix elements
from the density-dependent force are more attractive than the
original 2NF. This result is a consequence of the combined
effect of all in-medium terms in this partial wave [27].

While a complete characterization of the energy in terms of
partial waves is difficult in the SCGF approach, we suspect that
the modifications on the S and D waves are the dominant ones
for the saturation mechanism associated to chiral 3NFs. We
have checked that the repulsive change which characterizes
these partial waves grows with the density. This shifts the total
energy of the system to more repulsive values with increasing
density, providing a mechanism for nuclear-matter saturation.

Regarding the use of a dressed or a free propagator, we
observe that the largest differences appear in the D and S-D
mixing waves. We find that when undressing the propagator,
the absolute value of these potential matrix elements increases
at intermediate momenta by about ~0.04 fm. For the S wave,
a similar modification appears of the order of 0.03 fm at small
relative momenta. An analysis of the six density-dependent
components shows that the major difference between dressed
and undressed averages arises from the ~"1§II’\g73 contribution.
This term increases in absolute value when going from the
correlated to the free average. The structure of this term,
Eq. (Al1), is rather cumbersome, so it is difficult to ascribe
this effect to a single cause. Our analysis suggests, however,
that the differences are a consequence of the availability of
momenta in the integration of Eq. (13) [27].

A further justification of this hypothesis follows from the
differences among the results obtained with or without the
internal regulator. The results obtained when momenta are
not internally regulated, labeled “2B+3B corr. ext.” in Fig. 6,
suggest that the absolute values of matrix elements increase
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with respect to fully regulated averages. Because the internal
momentum is not regulated, the correlated external average has
access to larger internal integrated momenta with respect to the
other averaging procedures. For this reason, the corresponding
matrix elements increase in size.

Similar conclusions hold for higher partial waves. In
Figs. 6(e)-6(h) we show the corresponding results for the
density-dependent matrix elements of the P waves. In this
case, the largest modifications are associated to the three
contributions derived from averaging the TPE 3NF, Vf’ygfl,
Vi, and VBT . [27]. In the 3Py and 3P, waves, density-
dependent 2NF are slightly more repulsive at all momenta than
the corresponding bare 2B N3LO potential. In the 3P, wave,
the matrix elements increase by about ~0.1 fm at intermediate
momentum. For the 3P, wave, the increase is slightly smaller,
reaching a maximum of 20.05 fm at intermediate momenta. In
the 'P; partial wave, density-dependent 2NFs are slightly more
attractive (repulsive) than the bare interaction below (above)
1.2 fm~!. The behavior is reversed for the *P; partial wave. In
both cases, the modification is never higher than ~0.04 fm in
absolute value.

In the P partial waves, results obtained performing the
different averages follow the trend already observed for the
D and S-D waves. The difference between the different
averages, however, are quantitatively smaller in these partial
waves. Compared to the full correlated average, an undressed
propagator in the 'P; and 3P, waves adds a repulsion for
all momenta of the order of ~0.01 fm. In contrast, in the
3P, wave the effect has the opposite sign. In agreement
with the previously observed results and with our hypothesis,
the differences are larger when comparing full and external
regulator averaging procedures.

As a concluding remark to this section, we want to stress our
hypothesis once again. The comparison of both uncorrelated
and correlated but external density-dependent matrix elements
to fully regulated and correlated ones indicates that access to
more high momenta in the averaging procedure yield larger
matrix elements in absolute value. In other words, attractive
(repulsive) density-dependent forces become more attractive
(repulsive) when going from the correlated and fully regulated
average to the free or externally regulated matrix elements.
In other words, it is the quantity n(p3)f(k,k’,ps;) in the
integration of Eq. (13) which plays the leading role in the
modifications of the partial waves. In the next section, we will
investigate in detail the many-body results arising from these
different averaging procedures.

III. NUCLEAR MATTER

The spectral function gives direct access to the SP mo-
mentum distribution function, see Eq. (5). In Fig. 7, we show
the self-consistent solution for n(p), obtained via Eq. (5), in
the case of SNM at T = 5 MeV for three densities, p = 0.08
fm~3 (left panel), 0.16 fm—> (central panel), and 0.32 fm~—3
(right panel). The usual features of the momentum distribution
of a correlated fermionic system are observed. There is a
small depletion of population below the Fermi surface, pg. A
sharp decrease is observed around p =~ pp, an effect which is
softened in our calculations due to finite temperature. Because
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FIG. 7. (Color online) Momentum distribution in SNM using
2NF at N3LO (black solid lines) and including the density-dependent
2NF via different averaging procedures. Red dashed, green dot-
dashed, and orange double-dot-dashed curves correspond to results
with 2B density-dependent forces obtained, respectively, with a
correlated and uncorrelated distribution with full regulator and with
the correlated version with the external regulator. Calculations are
performed at p = 0.08,0.16, and 0.32 fm~ in panels going from left
to right.

the momentum distribution is normalized, the strength of the
depleted states below pr is promoted to high momenta above
the Fermi surface. There we observe a steady, exponential
decrease of the distribution with momentum.

We compare results obtained without and with the density-
dependent 2NF, calculated using the different averaging
procedures presented in the previous section. We recall that the
n(p) plotted in Fig. 7 is consistently used in the evaluation of
Eq. (13) when the correlated version of the density-dependent
force is performed. The effect of the 3NFs on the momentum
distribution is relatively small at all densities. At and below
saturation, the difference among calculations with and without
3NFs is negligible. Thanks to the logarithmic scale in Fig. 7,
we appreciate a modification in n(p) for momenta higher than
the Fermi momentum at 2py. Calculations with the density-
dependent 2NF have larger high momentum components. This
increase at high momenta is a consequence of the additional
correlations induced by 3NFs.

Figure 7 suggests that the variations of the momentum
distribution function due to the different averaging procedures
in the construction of the density-dependent force are very
small. Concentrating on the low momentum region, we find
that the absolute value of the depletion changes by less than
1%. The largest modifications are observed at high densities.
At density 2pp, a small spread in the different curves is
observed at high momentum. We observe that the largest high-
momentum population is induced by the correlated average
with full regulator. Because of these large high-momentum
components, we expect a higher total kinetic energy with
this average. Nonetheless, the total energy with the correlated
average with a full regulator is the less repulsive of all
constructions of the averaged force (see Fig. 8). This indicates
that the potential energy is also sensitive to the averaging
procedure. Following our arguments from the previous section,
the more regulated momenta should lead to a less repulsive
potential and hence to a smaller potential energy.
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FIG. 8. (Color online) SNM energy per nucleon as a function of
density at 7 = 0 MeV. The black solid line shows the 2B N3LO
calculation. Red dashed, green dot-dashed, and orange double-dot-
dashed curves correspond to results with 2B density-dependent forces
obtained, respectively, with a correlated and uncorrelated distribution
with full regulator and with the correlated version with the external
regulator. The orange cross represents the empirical saturation point.

At this point, we stress that, in spite of the cutoff in both
the 2NF and 3NF, a substantial population of high-momentum
components is found. Similarly, the spectral functions display
qualitatively important tails at high energies [27]. Traditional
microscopic 2NF would yield even larger high-momentum
components [57]. Our results highlight the importance of
considering such effects in many-body calculations, even with
relatively soft interactions like chiral forces. In particular, let
us stress that even when using these soft interactions, the
low-momentum SP properties are affected by correlations. A
depletion of around ~10% below pr is typical in our results.

We now discuss results for the total energy of symmetric
nuclear matter obtained using the extended SCGF formalism
which includes 3B forces [26,40]. As already explained, we
include 3NF at N2LO in the chiral expansion, constructing a
density-dependent 2B potential via an average over the third
particle. In the calculation, we include partial waves up to
J =4 (J = 8) in the dispersive (Hartree-Fock) contributions.
The total energy is computed via the modified Galitskii-
Migdal-Koltun sum rule defined in Eq. (6), where the 3B
expectation value is evaluated only at the HF level. To perform
the expectation value of (W) we exploit the 3B term of the
1B effective interaction [see the second term on the right-hand
side of Eq. (2)]. Namely we integrate this quantity over the
correlated momentum distribution and multiply by a factor
1/3 to account for the symmetry properties of (W) [27]. When
no 3B forces are included, the standard GMK sum rule is
applied [4]. As already mentioned in Sec. II A, we extrapolate
T =0 results from finite temperature data by relying on
the Sommerfeld expansion [27,54]. At low temperatures, the
Sommerfeld expansion indicates that the effect of temperature
is quadratic for both the energy and the free energy but with
opposite sign [54]. In other words, the finite temperature
energy and free energy read, respectively, e(T) ~ ey + aT?
and f(T) ~ ey —aT?. Consequently, the semisum of both
quantities calculated at 7 =5 MeV is an estimate of the
zero-temperature energy, w ~ eg.
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In Fig. 8, we show the curves of the energy per nucleon
obtained for SNM at 7 = 0 MeV. Again, we compare results
obtained with a 2NF only (solid lines) to results including a
density-dependent 2NF obtained from a variety of averaging
procedures. The effect of 3NFs is significant. As expected
from the partial-wave analysis, 3B forces induce a substantial
repulsion in the energy values. The amount of repulsion
increases with density and it is the main cause of nuclear-matter
saturation. When including 3NFs, we obtain a qualitatively
good saturation density of p ~ 0.14 fm~> and an underbound
saturation energy of % ~ —10 MeV. In contrast, the 2B
calculation, obtained with the N3LO potential of Ref. [46],
saturates at densities beyond the range of the figure. To be more
precise, saturation is observed at p = 0.40 fm—3 and % ~ =24
MeV. This extremely high saturation density is remedied by
the density-dependent 2NF, which shifts the minima of the
energy to densities close to the empirical value.

In agreement with the momentum distribution results of
Fig. 7, the different averaging procedures play a minor role
in the total energy. At saturation density, the curves obtained
including the contracted 3NFs show minute differences of less
than ~0.1 MeV. Within these differences, the trends are as
expected from the partial-wave analysis presented in Sec. II B.
Specifically, at the saturation density p = 0.14 fm™3, matter
is less bound when using the correlated average with the full
regulator (dashed line). The free average with full regulator
(dot-dashed line) is slightly more bound, and the correlated
average with the external regulator (double-dot-dashed line)
provides the highest binding energy. As already stressed, this
shift is extremely small, less than 2%, going from the most
attractive to the most repulsive result.

A larger spread is observed in the energy curves at high
densities. Compared to what is observed at saturation density,
at p = 0.32 fm™3 the behavior for the curves is reversed.
The correlated average with full regulator leads now to the
lowest energy value. The correlated average with external
regulator presents the more repulsive values, whereas the free
average with full regulator is about halfway between the two.
In absolute values, the effect of the different averages in the
total energy is the same both at py and at 2py. In fact, this is a
consequence of the arguments we put forward in Sec. II B. The
higher the availability of momentum states in the averaging
integration, the stronger the effect of the 3NF, whether in
attraction or in repulsion.

In any case, the differences between the various average
procedures are small, within 3 MeV of each other up to
twice saturation. This result is remarkable in that it validates
previous calculations performed with free propagators in the
internal average [21,28,45]. In other words, calculations for
both micro- and macroscopic properties of SNM with chiral
forces are rather insensitive to the regulators that are used. In
addition, and rather surprisingly, there is also a tiny dependence
on the use of correlations in the internal averaging procedure.
This suggests that the effect of single-particle correlations in
the construction of the density-dependent force is well under
control.

In this context, one can only hypothesize as to why the
saturation point that we obtain is still somewhat far away
from the empirical point. There are at least two factors that
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influence this result. First, the underlying interaction is not
completely set by the central values of the LECs. Variation on
the LECs and the regulator functions will transform each of the
single lines of Fig. 8 into bands. Because of the large number
of LECs and regulators acting in SNM, the propagation of
errors from the interaction into the many-body calculations can
be difficult to quantify [26,28]. We will attempt a first-order
exploration of these effects in PNM in the following section.
Second, the averaging procedure can still be improved. The
two-body average in the one-body effective interaction should
be performed with a fully correlated two-body propagator.
Similarly, the extended sum rule is now computed with a
Hartree-Fock 3B expectation value. Alternatives to this sum
rule, involving two-body Green’s functions, will be explored
in the future [40].

Before closing this section, we must point out that some
computational difficulties are encountered for SNM at dou-
ble saturation density. When using the correlated average
with a full regulator, numerical instabilities were found in
the iterative, self-consistent procedure. To overcome these
complications, we rely on the similarity of the momentum
distributions obtained with the different averaging procedures
(see Fig. 7). Instead of using a self-consistent n(p3) at each
iteration, we have set the momentum distribution to equal that
of the converged result with the uncorrelated average. This
momentum distribution is kept fixed at each iteration step.
The convergence pattern is substantially improved with this
procedure. We note that the momentum distributions obtained
in this approach are still self-consistent in that they enter all
the iterative procedure except for the determination of the
density-dependent matrix elements. The existence of these
instabilities points to a strong nonlinearity in the resolution
of the ladder approximation with 3NFs.

IV. NEUTRON MATTER

Using the extended SCGF method to include 3B forces,
we compute in this section the bulk properties of PNM. This
is particularly interesting in the context of nuclear chiral
interactions, because up to N3LO in the EFT expansion all
many-body forces among neutrons are predicted. In other
words, no coupling constants other than those present in
the 2B sector (c; and c3) need to be adjusted. The 3NF
terms proportional to ¢4, ¢p, and cg vanish at N2LO [21,58].
Recently, studies for PNM have been extended to include
full N3LO chiral interactions in perturbative many-body
calculations [29,59].

In PNM, as for the symmetric nuclear-matter case, we per-
form calculations complementing the N3LO 2NF of Ref. [46]
with the density-dependent force computed in neutron matter.
We will also show results obtained using the optimized 2B
N2LO chiral force of Ref. [47], which will therefore be
consistent in the order of the chiral expansion. In the Appendix,
we discuss in detail the modifications that are needed to
compute density-dependent forces in PNM.

We present in Fig. 9 the density dependence for the total
energy per nucleon in PNM extrapolated at zero temperature.
The density-dependent 2NFs bring in repulsion for all den-
sities. Similarly to SNM, this repulsion rises with increasing
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FIG. 9. (Color online) PNM energy per nucleon as a function of
density at 7 = 0 MeV. The black solid line shows the 2B N3LO
calculation. Red dashed, green dot-dashed, and orange double-dot-
dashed curves correspond to results with 2B density-dependent forces
obtained, respectively, with a correlated and uncorrelated distribution
with full regulator and with the correlated version with the external
regulator.

density. A stronger density dependence will result in a stiffer
equation of state for PNM. This is necessary in order to yield
neutron stars with large-enough radii and masses [60]. As a
matter of fact, the recent observation of pulsars with masses
>2Mg have ruled out a variety of microscopic descriptions
which lead to softer equations of state [61].

In the 2B only case plotted in Fig. 9, the total energy per
neutron is around ~13 MeV at the empirical saturation density,
0o = 0.16 fm~3. The energy increases around ~10 MeV up
to double saturation density, 2p9. The inclusion of 3NFs
contributes to increase the energy in the entire density range.
The repulsion caused by the density-dependent 2NF goes from
less than 1 MeV at half saturation to ~4 MeV at saturation
density. As already mentioned, the repulsive effect increases
with density and boosts up to ~15 MeV at double saturation
density. We point out that, thanks to the nonperturbative
nature of our calculation, we are not bound to low-density
regions. With a single many-body technique, we can access
the high density range. However, care must be taken into
account at higher densities due to the breaking down of
the chiral expansion. To avoid this inconvenience, previous
calculations, at those higher densities, relied on extrapolations
of the energy from low-density regions by means of polytropic
expansions [60].

We also present in Fig. 9 the variation in the total
energy curve due to the different averaging procedures in the
construction of the 2B density-dependent force. As observed
for SNM, the difference is negligible for low densities and
becomes appreciable only well above saturation. At 20, the
three different averages differ by about ~2 MeV. Over a total
value of 40 MeV, this represents a small 5% variation, in
agreement with the differences in SNM of Fig. 8. Again,
we stress that the curves overlap each other, hence there is
a substantial independence of the energy per nucleon on the
averaging procedure.

In SNM, the theoretical uncertainties are dominated by
errors on several LECs, including c¢p and cg. In contrast,
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in PNM the uncertainties associated to LECs are only due
to variations in the determination of ¢; and c¢3 [21,60].
These LEC relate NN, n N, and 3N interactions in the
chiral expansion. Their determination from w N scattering
is, within uncertainties, in agreement with the N N-scattering
extracted values. An analysis of these uncertainties leads to the
values ¢; = —(0.7-1.4) GeV~! and ¢; = —(3.2-5.7) GeV~!,
as described in Ref. [21]. As an initial estimate of error
propagation associated to these uncertainties, one can perform
many-body calculation with different values of these constants.
Taking the largest differences, one obtains an error band for
the energy per particle as a function of density which reflects
the uncertainty in the underlying LECs. Note that in the cases
studied here the more repulsive (attractive) values of the energy
are always associated to the lower (upper) bounds for the LECs.
No numerical instabilities have been observed in PNM.
Following the work presented by Hebeler er al. in
Refs. [21,60], we show the LEC-induced error band in
the PNM energy calculation in Fig. 10. We present three
sets of calculations. First, we show the results obtained
with the 2B N3LO Entem-Machleidt force [46] and the
associated density-dependent 2NF with a full regulator and
a correlated momentum distribution (dashed lines). In the
second set of results, the 2B has been evolved via a similarity
renormalization group (SRG) transformation down to a cutoff
of Asrg = 2.0 fm~! [9]. The associated density-dependent
2B force is consistently calculated with a cutoff at Asng =
2.0 fm~!. We note that no induced 3NF generated in the
SRG process are considered in this approach. Finally, the
hatched band is obtained from a calculation with the same
SRG-evolved 2NF plus a density-dependent force obtained
from the 3NFs at N2LO. In this latter case the many-body
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FIG. 10. (Color online) PNM energy per nucleon as a function of
density at 7 = 0 MeV including errors from LECs. Red dashed lines
show the calculation for the 2B N3LO plus the density-dependent
2NF obtained with a correlated momentum distribution and a full
regulator. The blue solid band corresponds to the calculation where a
SRG evolution is applied on the 2B N3LO potential down to Asgg =
2.0 fm~!. The hatched band shows results obtained by Drischler
etal. [21,62] in a perturbative calculation up to second order with the
same SRG-evolved input 2B potential and a density-dependent 2NF
obtained from 3NFs at N2LO. The bands reflect the uncertainty on
the underlying LECs, as explained in the text.
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results are obtained in a perturbative many-body calculation
up to second order [21,62]. The band in all three cases reflects
the uncertainty associated to the LECs.

The width of the band is indicative of the systematic
uncertainties in the calculations. We observe that in all cases
the spread in results due to theoretical uncertainties in the
LECs ranges from less than 1 MeV at subsaturation densities
to about 4 MeV at pg. As expected, the error band increases
with density and at 2p, the width becomes almost 10 MeV
wide. Error quantification is one of the major advantages of
chiral EFT-based potentials.

A complete error propagation scheme should also consider
variations on regulators and cutoff constants [29,30]. Whereas
a systematic study lies beyond the scope of our analysis, we
note that the agreement between the results based on a bare
2NF and a SRG-evolved force indicates that these additional
error sources are not significant up to about saturation density.
Looking at Fig. 10, we indeed observe that all three bands
overlap very well up to saturation density, confirming results
already presented in Ref. [60]. In this sense, the theoretical
uncertainties in the neutron-matter equation of state are well
under control. This agrees with indications from perturbative
calculations [21,29,30]. If we now turn to double saturation
density, the difference between the dashed line and the full
band is about 5-7 MeV wide. The fact that this is smaller than
the total width of the band pushes towards the idea that the
uncertainty in the LECs dominates the error of the many-body
calculations at high densities. However, other sources of error
must be investigated, such as missing three- and four-body
forces at higher order in the chiral expansion, as well as missing
induced forces in the SRG-evolved calculation. Furthermore,
the variation of ¢; and c3 should be consistently considered in
both the 2B and 3B sector [30].

Finally, we present a series of results to discuss the
consistency within the chiral expansion associated to the
many-body results. We note that from this point on we do
not provide any error analysis. To be consistent in the order
of the chiral expansion, and following our previous study in
SNM [26], we perform PNM calculations at N2LO using the
newly optimized N2LOopt 2NF of Ref. [47]. We construct a
corresponding density-dependent 2NF associated to the N2LO
3B interaction with the corresponding c¢; and c3 constants. This
density-dependent force is obtained from a fully correlated
and regulated average. The results obtained with 2NF only
and with the density-dependent 2B forces are presented in
Fig. 11.

We find that whether or not we include density-dependent
2NFs, results obtained with N2LOopt are more repulsive than
the N3LO calculations throughout the whole density regime.
In the 2B only case, the repulsion is around ~2 MeV at
po = 0.16 fm~> and grows with density, up to ~10 MeV at
200. When the 3B force is included, the difference between the
N2LO and N3LO results is a bit larger. At the highest density
considered here, a repulsive effect of ~15 MeV is found. We
note, however, that the effect of including 3NFs is very similar
in both cases. This is indicative of the similarity between
the density-dependent 2B forces at N2LO, which are only
modified by (a) a change in the LECs and (b) the differences in
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FIG. 11. (Color online) PNM energy per nucleon as a function
of density at 7 = 0 MeV for different chiral interactions. The black
solid line and the green dot-dashed lines show results with 2NF
only, with either N3LO or N2LOopt potentials. The red dashed line
corresponds to calculation performed with 2B N3LO plus the N2LO
density-dependent force obtained in the correlated version with a
full regulator. The blue double-dot-dashed line is obtained from a
2B N2LOopt potential and a density-dependent 2B force with the
corresponding cy,c3 of N2LOopt [47]. The arrows connect the curves
obtained with the N2LO (green dot-dashed) and with the N3LO (black
solid) 2NFs with the respective curves including 3NFs. The symbols
are data from the pp-hh coupled-cluster calculations of Baardsen
et al. [35] and of Hagen et al. [36].

the correlated momentum distribution of each calculation. The
underlying differences in the N2LO and N3LO 2B forces are
more difficult to identify and would ultimately be responsible
for the large variation in the results [26]. We also note that
if the chiral expansion is valid, the error bands associated to
LEC variations at N2LO should be larger than at N3LO [5].

In addition to the uncertainties associated to the N N force,
the theoretical calculations we present are affected by the
systematic uncertainty associated to the many-body method
at choice. Figure 10 indicates that neutron matter is well
described perturbatively below saturation density. Further-
more, a comparison of our nonperturbative calculations with
up-to-third-order results in the energy expansion presented
by Coraggio et al. in Ref. [30] tests the PNM perturbative
behavior up to densities above saturation density. One should
therefore not expect large differences associated to the use
of many-body techniques. We confirm that results are rather
independent of the many-body method at choice by comparing
our results to recent coupled-cluster calculations [35,36]. The
latter account for particle-particle and hole-hole correlations
in the equation of state from a coupled-cluster perspective
rather than a SCGF one. We find that our calculations are
in good agreement with the coupled-cluster results for the
N2LOopt interactions. Calculations with harder interactions
for both methods could provide a benchmark on their quality
at the many-body level. Moreover, comparisons with other
many-body calculations (Monte Carlo, for instance) would
provide indications of the importance of ladderlike correlations
in the equation of state.
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V. CONCLUSIONS

We have presented calculations for SNM and PNM ex-
ploiting the recently extended SCGF method. We include
consistently chiral 2B and 3B forces in the ladder approxi-
mation. To take into account the effect of 3NFs without the
need to explicitly calculate the 3B dressed GF, we have used
1B and 2B effective interactions. These include reducible
effects of 3B physics in both 1B and 2B interactions. The
effective interactions are averages of the original 3B force per-
formed with the use of dressed propagators. Unlike previous
calculations, the results presented here include consistently
dressed internal propagators in the construction of a correlated
density-dependent 2B and 1B forces. The use of consistent
1B Green’s functions in the averaging procedure is the main
innovation of this paper.

In fact, to evaluate the effective 2B operator, we have im-
plemented the correlated SP momentum distribution function
obtained consistently at each step of iteration in the SCGF
approach. The density-dependent force has been calculated
from the contraction of the 3B terms appearing at N2LO
in the chiral expansion. Particular attention has been paid
in considering all possible terms arising in the averaging,
following previous works from Refs. [21,45]. We have tested
the modifications of partial waves when including the density-
dependent force on top of the 2B N3LO force. Furthermore,
we have analyzed different ways of evaluating the 3B force
average. These include the use of an uncorrelated momentum
distribution, as well as variations on the regulator function
in the momentum integrals of the 3B chiral force. We find
small differences between different averaging procedures. This
validates results obtained with uncorrelated averages in the
literature. The small differences between approximations can
be ascribed to the availability of momenta when integrating
over the third particle.

We have subsequently analyzed the effect of including
the correlated density-dependent 2B force in microscopic and
macroscopic properties of SNM. The momentum distribution
at different densities is rather insensitive to the inclusion of
3NFs. In addition, it is independent from the average procedure
used in the construction of the contracted force. A similar
independence has been observed for the total energy of SNM.
We find a small enhancement of the absolute values of the
total energy in going from a lower to a higher availability of
momentum states in the average.

For the first time, we have presented results for PNM in the
framework of the extended SCGF method. We find a repulsive
effect associated to the inclusion of the contracted 3NFs in
the entire density range. We have explored the dependence of
our results on the underlying uncertainties associated to the ¢
and c3 LECs in the 2B and the 3B nuclear force. By applying
a low-momentum evolution on the 2B part, we have tested
the perturbative nature of PNM. We have observed that the
LECs uncertainty dominates at high densities; however, other
sources of error in the calculation must be taken into account in
order to drive a sound conclusion over this aspect. We have also
performed calculations for PNM exploiting the N2LOopt 2BF.
This has allowed for a consistent comparison with infinite-
matter coupled-cluster calculations. The agreement between
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both methods is very good, which indicates that many-body
errors are under control.

The work presented here has focused on the construction of
correlated chiral density-dependent forces consistent with the
many-body framework used. The dressed average takes into
account the correlations which characterize the system in the
specific conditions under study and therefore goes beyond pre-
vious uncorrelated calculations. Further improvements include
two-body averages using fully dressed two-body potentials
and systematic studies of the uncertainties associated to the
interaction. We consider these a step forward in the consistent
inclusion of 3NFs in infinite nuclear-matter calculations.
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APPENDIX: CORRELATED DENSITY-DEPENDENT
TWO-BODY FORCE AT N2LO

In this Appendix, we provide explicit expressions for
the density-dependent interaction obtained by applying the
averaging procedure of Eq. (13) to a chiral N2LO 3NF. We
follow the notation of Ref. [45], but we highlight explicitly
the effect of correlations and regulators in the one-body
momentum integrations. In the limit of a zero-temperature
uncorrelated momentum distribution and an external regulator
(as defined in the text), we recover the expressions of Ref. [45].

Whatever the structure of the 2B density-dependent force,
it can always be expressed in a generic form [56]. Consider,
for instance, the most general form for the matrix elements of a
two-nucleon potential which is charge independent, Hermitian,
and invariant under translation, particle exchange, rotation,
space reflection, and time reversal,

Vka@ =V, + -0V + [V, + 11 12V ]o - 02
+[V§q +7T1- TzVJLI]Ul “qoy-q
+[Vi, + 11 12V i1 +02) - (g x k)
+[ViL+ 111V ]or - (@ x Ko - (q x K).
(A1)

The subscripts denote the following: ¢ for the central term,
o for the spin-spin term, oq for the tensor term, SL for
the spin-orbit term, and oL for the quadratic spin-orbit
term. All contributions are presented in an isoscalar V* and
isovector V" form. This expression is useful in identifying the
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different contributions of the density-dependent interaction
which arise from contractions of the 3NF terms written in
Egs. (7)—~(9). Furthermore, this form is helpful in finding the
partial-wave decomposition of the matrix elements [45,56,63].
We only consider matrix elements which are diagonal in rel-
ative momenta, i.e., |k| = |k’| = k. The generalization of the
previous expression to off-diagonal elements is possible. For
nondiagonal momentum matrix elements, however, Eq. (A1)
includes a further operatorial structure [56], which complicates
the partial-wave decomposition. We therefore extrapolate off-
diagonal momentum matrix elements from diagonal ones with
the prescription k> — (k> + k'*)/2 as proposed in Ref. [45].

1. Symmetric nuclear matter

We now present expressions for averaged matrix elements
in SNM. PNM results are discussed in the following subsec-
tion. Evaluating the trace of Eq. (13) for the TPE contribution
of Eq. (7) depicted in Fig. 4(a), one finds three contracted terms
for the in-medium 2B interactions. These are represented in
Figs. 5(a)-5(c). The first term, Fig. 5(a), is an isovector tensor
contribution. This is analogous to a 1w exchange, with an
in-medium pion propagator,

~ 3INF gapr(or-q)oy - (I)
TPE-1 — 2F3 [q +M2]

1 Ta2e M2 4+ ¢3¢7],

(A2)

where p; is the integral of the correlated momentum distribu-
tion function weighed by the regulator function,

Pr_

v o) Q@n )3
where v is the spin-isospin degeneracy of the system (v = 4
for SNM, v = 2 for PNM). If the regulator does not depend
on the internal momentum, ps, the integral reduces to the total
density of the system, p,

P Py flk).
v v

> n(p3) f(k k. ps), (A3)

(A4)

Consequently, whenever the regulator is external, the value
of this integral is independent of whether the momentum

J

SINF . 8a

TPE-3 = m{—quMﬁ [2To(k) —

+3(2M3 + qz)zGO(k,Q)] +4dcat - T2(01 - 024° — 01 - qo2 -
(2M2 + ¢*)(Golk.q) +2G1(k.)] —
+4cyt) - 1201 - (q x K)oy - (q x K)[Go(k,q) + 4G (k,q) + 4G3(k,q)]}.

x [2Tg(k) + 2T (k) —

Golk,q)(2M? + q%)] — c3[8k; —
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distribution is correlated or not. This comment is relevant for
two other contributions [see Eqgs. (A17) and (A19) below]. In
other words, half of the density-dependent contributions are
insensitive to correlations if external regulators are used.

The second term, Fig. 5(b), is also a tensor contribution to
the in-medium N N interaction. It adds up to the previous term
and contributes to V., . This term includes vertex corrections
to the 17 exchange due to the presence of the nuclear medium
as follows:

VINF gi Ul'q(TZ'qr )
TPE—-2 — 87T2F7$ q2+M7% 1
+ Lol — (¢3 + ca)lg*(To(k) + 2T (k)

+ T3(k)) + 4T2(k)] + 4esZ ()} . (AS)

We introduce the functions I'g(k), I'1(k), T'2(k), I'3(k), and
Z(k), which are integrals over a single pion propagator,

Tz{—461M,2,[F1(k)

_ [ dps
roo = [ Fnteor, e Eu et (SUSNTC
_ 1 dps k-ps3
Iy(k) = p/gﬂ(m)mﬂkhm), (A7)
1 dps p3k? — (k- p3)’
Fa(k) = 2k2/ (3)mf(k,k,l73), (A8)

1 [ dps 3(k - p3)* — pik?
I3(k) = 2k4/_ (p3 )m}‘(k,k’ml (A9)

d + kJ?
Ttk = / (e [p; + K]

——————— f(k,k, p3).
ps + k1> + M2

(A10)
These integrals are formally equal to those presented in
Ref. [45] but differ in the use of a correlated momentum
distribution and the explicit weighing of an internal regulator.

The last TPE contracted term, depicted in Fig. 5(c),
includes in-medium effects for a 2w exchange 2B term. This
expression contributes to all operatorial structures of Eq. (A1).
Specifically, it contributes to the scalar central term V, to the
isovector spin-spin V, and tensor term V7, , to the spin-orbit in
both isoscalar V§, and isovector form V¢, , and to the isovector
quadratic spin-orbit term V?; as follows:

12(2M; + ¢*)To(k) — 6¢°T (k)

QGalk,qg) — Bz +caty - 12)i(01 +02) - (@ X K)
12¢;M2 (0 + 02) - (q x K)[Go(k,q) + 2G1(k,q)]
(A11)

Here we have introduced the function Gy(k,q), which is an integral over the product of two different pion propagators,

{p3.p2.p3}

d
GO,*,H(k,CI)Z/z—I:n(PS)

[k + q -+ ps1? + M2][[ps + KI> + M2]
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The starred G functions, G,(k,q), G.(k,q), and G1.(k,q) are auxiliary functions in that they are only used to define G,(k,q),

G, (k,q), and G3(k,q) as follows:

Totk) — (M2 + k*)Go(k,q) — G, (k,q)

Gi(k,q) = pTER (A13)
3Ta(k) + k*T3(k) — (M2 + k?) G, (k,q) — Gk,
Grulhng) = 2(k) 3(k) (4k2 2) (k,q) ( CI)’ (Al4)
—q
Ga(k.q) = (M} +k*)G(k.q) + G.(k.q) + G1.(k.q), (A15)
I(k)/2 —2(M? + k)G, (k,q) — 2G1,.(k,q) — G, (k,
Gtk = D02 = 2(Mr + )G q) — 261 q) — Gulka) Al6)

At this point, we note that all I', and G, functions need
to be evaluated numerically within the correlated approach.
Special care is needed in the treatment of the high-momentum
components.

Integrating Eq. (13) for the OPE 3NF term, given in
Eq. (8), yields two contributions. The first one, Fig. 5(d), is a
tensor contribution which reads as a vertex correction to a 1w
exchange NN term,

SNE . Cp8apy(01-q)(02-q)
o 8 F7 Ay q* + M

(T1-12).  (Al7)

As f(?r the nygfl terrp, ngéil is proportional to o, and
contributes only to the isovector tensor term, V;’q.

The second term arising from the 3NF OPE is depicted
in Fig. 5(e). It defines a vertex correction to the short-range
contact N N interaction. This in-medium interaction is formed
of a variety of contributions: a central scalar V?, a spin-spin
Vy,atensor V2 , and a quadratic spin-orbit V7, term. It reads
as follows:

PANE CDEA
OPE=2 ™ 16m2F4A,
T

2 2k2
X |o1-0, 2k2—q— +(0;-qo- Q|1 ——
2 q>

2
2% -(qu)Uz-(qu)}

{ [[Fo(k) + 200 (k) + T'3(k)]

+ 20 (k) (o - 02)](T1 “To) + 6I(k)}. (A18)
The last density-dependent contribution, shown in Fig. 5(f),
arises from a contraction of the contact 3NF term given in
Eq. (9). This yields a scalar central contribution to the in-
medium N N interaction, proportional to oy,

SINF . SCEPy
cont ZF;AX .

(A19)

We note that since this is a momentum-independent term, it
will contribute only to S partial waves.

We stress once again that the in-medium 2B interaction
terms, Egs. (A2), (AS), (Al1), (A17), (A18), and (A19), are
formally the same as those obtained by the authors in Ref. [45].

4k? — g

(

The difference lies in the intermediate integrals, which are
performed using the correlated momentum distribution func-
tion n(ps), and a full regulator function f(k,k’, p3). Because
of their self-consistent nature, these density-dependent matrix
elements are computed numerically.

2. Pure neutron matter

In the case of PNM, the evaluation of Eq. (13) is simplified
as the trace over isospin is trivial. Consequently, the exchange
operator of Eq. (12) reduces only to the momentum and
spin part. It can then be proved that the terms proportional
to c4,cp,cg go to zero in PNM when using a nonlocal
regulator [21,58].

In summary, the only density-dependent contributions
which are nonzero in PNM are those proportional to ¢; and
c3 in Eq. (7). Formally, the density-dependent terms obtained
in PNM will only differ with respect to those in SNM by
some prefactors. This is because of the disappearance of
the isospin-exchange operation in PNM matrix elements. To
account for the fact that Eq. (A4) has a different degeneracy in
PNM, we need to replace p; — 2p inthe V5L | contribution
of Eq. (A2). In addition, the isovector tensor terms

VN and
ViNF ., given in Egs. (A2)—(AS5), change prefactors according
to

(A20)
(A21)

~3NF . 1
Vipp_; 1 T1 -T2 — 3T1- T2,

73NF | 1
VTPE72 LT Ty —> Z(T] c Ty — 2)

Further, the isoscalar part of the density-dependent potential
appearing in Vbl ; becomes

Vi 1= L (A22)

With these changes, the density-dependent 2B matrix elements
can be used in PNM calculations. We note that, as in the
SNM case, the fully correlated matrix elements are very
similar to the uncorrelated ones presented previously in the
literature [21,45].
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