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In this paper we improve an empirical mass formula constructed by Jänecke and collaborators. This formula
is enlightened by the Garvey-Kelson mass relations. The new version of the Jänecke formula reproduces 2275
atomic masses with neutron number N � 10 and proton number Z � 6, at an average accuracy of 128 keV, by
employing 576 parameters. The predictive power of our formula is exemplified by comparison with predicted
results of other mass models.
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I. INTRODUCTION

Nuclear mass (or binding energy) and nucleon-separation
energies are fundamental quantities in both nuclear physics and
astrophysics [1]. Generally speaking, the approaches toward
describing and understanding nuclear masses are classified
into two types, one of which is usually called global, and the
other local. Examples of global formulas are the Duflo-Zuker
(D-Z) model [2], Skyrme-Hartree-Fock-Bogoliubov theory
[3–5], finite-range droplet model (FRDM) [6], and improved
Weizsäcker mass formula [7]. The local mass formulas predict
the mass of a nucleus by using available experimental data
of its neighboring nuclei, i.e., by extrapolation. We mention
three methods of local mass relations: the Audi-Wasptra
extrapolation [8–11], mass relations connected with neutron-
proton (n-p) interactions [12–16], and the Garvey-Kelson
mass relations (GKs) [17–34].

The purpose of this paper is to suggest an improved version
of the mass formula developed by Jänecke and collaborators
[19–24]. This formula was enlightened by the compact
form of the Garvey-Kelson mass relations. If one chooses
different subsets of experimental masses (called “skeletons”
in Ref. [25]) to set up an ensemble, the mass of a given
nucleus is predicted to be the ensemble average of different
subsets [28–31]. In another context, the Garvey-Kelson mass
relations were treated as partial difference equations, and their
general solutions were obtained from the least-squares fit to
all experimental masses [18–24]. In this paper, we go one step
forward along the latter line.

This paper is organized as follows. In Sec. II we present
a short introduction to the Jänecke formula and derive its
new version. In Sec. III we investigate the interpretive
and predictive power of our formula for nuclear masses
and nucleon-separation energies, with the refinement of the
generalized hybrid method. Our summary and conclusion are
given in Sec. IV.

*Corresponding author: ymzhao@sjtu.edu.cn

II. MASS FORMULAS

In this section we shall review the efforts made by Jänecke
and collaborators in construction of mass formulas which
are applicable to the whole nuclear chart but with many
parameters. Then we shall present the improved version of
the Jänecke mass formula. The main difference is inclusion
of the pairing interaction and an isospin-dependent term.
These two terms are found to be very useful in reducing the
root-mean-squared deviation of the formula from experimental
data.

A. Previous efforts

Let us begin with a short historical survey of previous efforts
along this line. Garvey and Kelson [18] proposed two simple
relations of masses for six neighboring nuclei,

M(N,Z + 1) + M(N − 1,Z − 1) + M(N + 1,Z)

−M(N,Z − 1)− M(N−1,Z) − M(N + 1,Z + 1) = 0,

(1)

M(N,Z − 1) + M(N − 1,Z + 1) + M(N + 1,Z)

−M(N,Z + 1)− M(N−1,Z) − M(N + 1,Z − 1) = 0,

(2)

where M(N,Z) denotes the mass of a nucleus with neutron
number N and proton number Z. Equation (1) is called the
longitudinal Garvey-Kelson relation (GKL), and Eq. (2) the
transverse (GKT). For the GKL and GKT, odd-odd nuclei
with N = Z should be excluded, and N � Z is addition-
ally required for the GKT. Numerical experiment by using
the Atomic Mass Evaluation 2012 (AME2012) [11] yields
the root-mean-squared deviation (RMSD) ∼200 keV [33].
The Garvey-Kelson relations can be rewritten in terms of
mass number A = N + Z and neutron excess E = N − Z
as below:

M(A + 1,E − 1) + M(A − 2,E) + M(A + 1,E + 1)

−M(A − 1,E + 1) − M(A − 1,E − 1)

−M(A + 2,E) = 0, (3)
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FIG. 1. Values of g1(N ), g2(Z), g3(A), and g4(E) with g5(N,Z) = 0 and g6(N,Z) = Ep. One sees that g1(N ) and g2(Z) are smooth and
that g3(A) and g4(E) exhibit odd-even staggerings.

M(A − 1,E + 1) + M(A,E − 2) + M(A + 1,E + 1)

−M(A + 1,E − 1) − M(A − 1,E − 1)

−M(A,E + 2) = 0. (4)

Neutron excess E is equivalent to the z projection of the isospin
Tz = 1

2 (N − Z) = 1
2E.

According to Eqs. (1) and (3), the GKL connects three
pairs of nuclear masses which have the same N , Z, or E;
and according to Eqs. (2) and (4), the GKT connects three
pairs of nuclear masses which have the same N , Z, or A. As
suggested by Garvey, Kelson, and their collaborators in their
review paper [18], one would conjecture that nuclear masses
take the following forms:

ML(N,Z) = f1(N ) + f2(Z) + f3(E), (5)

MT(N,Z) = g1(N ) + g2(Z) + g3(A), (6)

corresponding to the GKL and GKT, respectively. Here fi(k)
and gi(k) are arbitrary point functions. Garvey et al. further
constructed a formula which satisfied both the GKL and GKT

as follows:

M(N,Z) = h1(N ) + h2(Z) + λNZ + 1
2μ[1 − (−1)NZ], (7)

where hi(k) were arbitrary point functions and λ and μ were
constants.

Unfortunately, Eq. (7) does not well describe experimental
data [18], and thus two improvements have been developed.
The first is to take Eqs. (5) and (6) separately, even though
they are based on the same physical consideration [18–20].
Garvey et al. adopted this idea and presented all values of
fi(k) and gi(k) in tabular form which were obtained by
minimizing the deviations from measured masses [18]. In
Ref. [19], the authors pointed out that Eq. (6) was more
accurate than Eq. (5). In Ref. [20], the experimental data of
neutron-rich and proton-rich nuclei were treated separately
to reduce systematic errors in long-range extrapolations. In
doing so, there are 928 adjustable parameters for about 1550
mass values by using Eq. (6) [20].

The second improvement is to consider a so-called inho-
mogeneous term into the GKL and GKT [21–24], and this
can be done in two approaches. The first approach is to

TABLE I. σM/σSn/σSp values, i.e., the RMSD values of masses, one-neutron separation energies, and one-proton separation energies. These
RMSD values are calculated by using Eqs. (6), (14), and (15), with g6(N,Z) taking the form of Eq. (13). Here we also present these RMSD
values separately for even-N and even-Z (ee), even-N and odd-Z (eo), odd-N and even-Z (oe), odd-N and odd-Z (oo) nuclei. The last row
enumerates the numbers of the experimentally known masses assumed in our calculations.

Total ee eo oe oo

Eq. (6) 323/238/271 347/247/279 303/254/270 315/236/267 325/210/267
Eq. (14) 221/195/226 245/190/232 194/203/211 222/196/233 218/193/230
Eq. (15) 128/161/161 152/149/158 107/150/161 117/184/160 128/157/164
Numbers 2275/2120/2074 605/549/544 563/500/529 579/564/503 528/507/498
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take general solutions of so-called homogeneous equations
as corrections. In Ref. [22], the GKL and GKT were derived
from the neutron-proton interaction between the last neutron
and proton, viz.,

δV1n-1p(A,E)

= B(A,E) + B(A − 2,E)

−B(A − 1,E − 1) − B(A − 1,E + 1)

= −M(A,E) − M(A − 2,E)

+M(A − 1,E − 1) + M(A − 1,E + 1). (8)

In terms of δV1n-1p, the GKL and GKT are rewritten as

δV1n-1p(A + 2,E) − δV1n-1p(A,E) = 0, (9)

δV1n-1p(A + 1,E − 1) − δV1n-1p(A + 1,E + 1) = 0. (10)

If δV1n-1p(A,E) is E dependent only, one obtains the GKL and
its general solution as given in Eq. (5); if δV1n-1p(A,E) is A
dependent only, one obtains the GKT and its general solution
Eq. (6). In Ref. [22], the authors assumed δV1n-1p(A,E) to
be constant (separately for even-A and odd-A nuclei) and
obtained a general solution M∗(N,Z), a correction term of
theoretically calculated mass [denoted as M th(N,Z)]. The
final predicted mass is M th + M∗. The second approach is
to evaluate corrections based on the general solutions of
so-called inhomogeneous equations. For example, Ref. [24]
showed that an inhomogeneous term is required in the GKT,
and that the inclusion of the T 3

z term led to remarkable
improvement in long-range extrapolations. The disadvantage,
however, is that the parameters of this approach are very
unstable [24].

B. Improved Jänecke mass formula

Because Eq. (6) is more accurate than Eq. (5), Eq. (6)
has been more widely applied in previous studies [20–25].
Equation (6) assumes the A dependence in nuclear mass, while
Eq. (5) assumes the isospin dependence. In this paper, we take
a more general form which includes both Eqs. (5) and (6), viz.,

MLT(N,Z) = g1(N ) + g2(Z) + g3(A) + g4(E). (11)

Substituting Eq. (11) into Eq. (8), one obtains

δV1n-1p(A,E) = −[g3(A) + g3(A − 2) − 2g3(A − 1)]

+ [g4(E + 1) + g4(E − 1) − 2g4(E)]

= G3(A) + G4(E). (12)

References [14,20] studied the A and E dependence of
δV1n-1p(A,E), indicating that corrections are still needed for
Eq. (11).

In Refs. [32,33] it was pointed out that to the third order
the smooth dependence of N and Z was canceled out in
the GKL and GKT. Recently, an odd-even feature of the
GKL and GKT was observed and explained in terms of a
refined form of pairing interaction [33]. We include a smooth
function g5(N,Z) and a nonsmooth function [35,36] g6(N,Z)
in Eq. (11). In this paper we take g5(N,Z) in the form of the
Coulomb energy EC and symmetry energy (including both
volume-symmetry energy Esv and surface-symmetry energy
Ess) as in the Weizsäcker mass formula, and g6(N,Z) the form
of the pairing interaction [37] as below.

Ep = apA
−1/3 ×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 − |I |, N and Z even,

|I |, N and Z odd,

1 − |I |, N even, Z odd, N > Z,

1 − |I |, N odd, Z even, N < Z,

1, N even, Z odd, N < Z,

1, N odd, Z even, N > Z.

(13)

Here I = (N − Z)/A is the charge-asymmetry parameter. In
recent years this form of the pairing interaction has been
adopted by many authors [7,14,33,38–40]. Our mass formula
takes the following form:

M(N,Z) = g1(N ) + g2(Z) + g3(A) + g4(E)

+ g5(N,Z) + g6(N,Z). (14)

Although we adopt g5 and g6 as the form of the Coulomb
energy, symmetry energy, and the pairing interaction in the
Weizsäcker mass formula, they should not take the same
magnitudes as in the Weizsäcker mass formula, as the essential
parts have already been considered in Eq. (11), namely, the
g1(N ), g2(Z), g3(A), and g4(E) terms. We shall see in the
next section that the inclusion of g5 does not improve our

FIG. 2. (Color online) Deviations D(N,Z) = M th(N,Z) − Mexpt(N,Z) (in keV) of calculated masses from experimental data. Panels (a),
(b), (c) correspond to results obtained by using Eqs. (6), (14), (15), respectively.
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FIG. 3. (Color online) Correlation between deviations D(N,Z) = M th(N,Z) − Mexpt(N,Z) and D [see Eq. (15)] for different parity of
(N,Z). r represents the linear correlation coefficients and is around −0.8 here. This means a strong correlation between D(N,Z) and D.

mass formula [Eq. (14)], and that the inclusion of g6 in the
refined form [Eq. (13)] is very useful to reduce the deviations
of calculated results from experimental data.

III. INTERPRETIVE AND PREDICTIVE POWER
OF THE NEW FORMULA

In this section we investigate the accuracy of our mass
formula, Eq. (14), by using the AME2012 database [11], as
well as comparisons of the RMSDs with other approaches. We
shall also make use of the so-called generalized hybrid method
to improve our approach.

A. Description of available experimental data

Calculation of gi(k) for each integer k was performed in
Ref. [18]. We follow the same procedure to optimize the
coefficients in Eq. (14), by the least-squares fitting of the
AME2012 database [11] for 10 � N � 160, 6 � Z � 110 and
N > Z or N = Z = even (mass number 16 � A � 270, and
neutron excess 0 � E � 59), in total 2275 nuclei. Besides
the very few coefficients in g5 and g6, there are P = 571
parameters here. For the very few cases without known masses
(such as Z = 107), we take their gi(k) values by using a
parabolic fit to their neighbors.

According to our calculation, the inclusion of g6(N,Z) is
very useful in improving our formula in both description of

the known masses and evaluation of the unknown ones. The
resultant ap = −4.9644 MeV is slightly different from that
in Ref. [7] where ap = −5.5108 MeV and that in Ref. [41]
where ap = −5.4423 MeV. As will be discussed later, the
pairing interaction is partly taken into account in g3(A) and
g4(E). The usefulness of g6(N,Z) is not surprising, because
the pairing interaction [Eq. (13)] reproduces subtle odd-even
features of the Garvey-Kelson mass relations [33] and these
features are not reflected in the g1, g2, g3, and g4 functions.
The inclusion of g5(N,Z) does not considerably improve
the agreement between Eq. (14) and experimental data, and
furthermore the values of parameters in g5(N,Z) are unstable
in different regions. This is not surprising, as the Coulomb
energy is well considered in the g3(Z) term and the symmetry
energy in the g4(E) term. The motivation of including the g5

term is to further improve the description of the smooth part
of our mass formula, and this part is now well considered by
the g1, g2, g3, and g4 functions.

In Fig. 1 we plot g1(N ), g2(Z), g3(A), and g4(E). Their
values are also listed in Table IV in the Appendix. In Fig. 1,
one sees that g1(N ) and g2(Z) are smooth and that g3(A) and
g4(E) exhibit odd-even staggerings. According to Ref. [18],
the nuclear masses are generally parabolic along lines of
constant N , Z, and A. Here, however, g1(N ), g2(Z), and
g3(A) behave in a more complicated manner. According to the
isobaric multiplet mass equation (IMME) [42], the masses of

FIG. 4. (Color online) Deviations D(N,Z) (in MeV) for Eqs. (6), (14), and (15) versus mass number A. The results in panel (a) correspond
to the 2275 nuclei considered in this paper, and those in panel (b) correspond to deviations of theoretical masses based on the AME2003
database [10] with respect to the AME2012 database (without those known nuclei in the AME2003 database).
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TABLE II. σM and σSn for a few global models with respect to the AME2003 database [10]. Here HFB-14, HFB-17, FRDM, WS, WS∗, and
WS∗ + �T represent the Hartree-Fock-Bogoliubov (HFB) calculations in Ref. [45], the HFB in Ref. [46], the FRDM calculations by Möller
et al. in Ref. [47], the modified Weizsäcker mass formula in Ref. [7], the mass formula in Ref. [41], and the mass formula in Ref. [41].

HFB-14 HFB-17 FRDM WS WS∗ WS∗ + �T Eq. (6) Eq. (14) Eq. (15)

σM 729 581 656 516 441 417 292 211 137
σSn 598 506 399 346 332 330 240 203 184

isobaric nuclei are given by M(A,Tz) = aT 2
z + bTz + c. Here

indeed g4 is approximately parabolic (separately for even-E
and odd-E) with E. The odd-even staggerings in g3(A) and
g4(E) are reflections of the pairing interaction.

In the first and second rows of Table I we present the
RMSDs of our calculated masses (denoted by σM ) by using
Eqs. (6) and (14) with respect to experimental data [11]. One
sees that the σM are different for different parity of (N,Z).
The results of one-neutron separation energies and one-proton
separation energies (denoted by Sn and Sp, respectively) are
shown. The RMSDs for M , Sn, and Sp obtained by using
Eq. (14) are smaller than those obtained by using Eq. (6)
by 32%, 18% and 17%, respectively. In Fig. 2 we plot
the deviations D(N,Z) = M th(N,Z) − Mexpt(N,Z) for the
2275 nuclei considered in this paper. One sees substantial
improvements by including the g4 and g6.

Now we discuss the g4(E) term. In Ref. [24], the authors
suggested that higher-order corrections in isospin proportional
to T 3

z might have important influence in long-range extrapola-
tions. However, the calculated results are very sensitive to the
form of this term and the shells [24]. In this paper g4(E) is
close to parabolic (different for even-E and odd-E) which is
much simpler than that of Ref. [24].

It is also useful to investigate the possible correlations
among the deviations of Eq. (14) from experimental data.
Enlightened by the radial basis function (RBF) approach
[43] and the hybrid method for α-decay energies [44], we
investigate this correlations in a procedure as follows. We
denote the predicted mass of a given nucleus with neutron
number N and proton number Z based on Eq. (14) by using
M th1(N,Z). We calculate the average deviation, denoted as
D(N,Z), of its neighboring nuclei (N ′,Z′), with the require-

ment |A − A′| � 2, and N �= N ′, Z �= Z′. From Fig. 3 one
easily sees a statistically linear correlation between D and D.
Here the linear correlation coefficient r values are about −0.80
which corresponds to strong linear correlation. Therefore our
new predicted mass [denoted by using M th2(N,Z)] can be
written in the form

M th2(N,Z) = M th1(N,Z) + D(N,Z)φ,

D(N,Z) =
∑N

i=1[Mexpt(N ′,Z′) − M th1(N ′,Z′)]
N , (15)

where the optimal φ equals −6.77, −6.97, −7.24, and
−7.42 for even-even, even-odd, odd-even, and odd-odd nuclei,
respectively.

The σ of M , Sn, and Sp for Eq. (15) are reduced by about
60%, 32%, and 41%, respectively, in comparison with the
results of Eq. (6). The deviations of masses for Eq. (15) from
experimental data are plotted in Figs. 2(c) and 4(a). In Table II
we present σM and σSn

by using Eqs. (6), (14), and (15)
and those by a few other popular models with respect to the
AME2003 [10]. One sees that the RMSDs of Eqs. (14) and
(15) are considerably smaller.

B. Extrapolation and predictive power

In this section we investigate the predictive power of our
formulas. We perform two numerical experiments. In the first
numerical experiment, we take the AME2003 database [10]
and predict new masses compiled in the AME2012 database
[11]. Namely, we predict unknown masses in the AME2003
database and compared our predicted results with experimental
data which were available afterward. We focus on the RMSD
values of our predicted results. We also study the behavior

TABLE III. σM/σSn/σSp of predicted results based on the AME2003 database [10]. The σM/σSn/σSp values are calculated only for those
which are unknown in the AME2003 database and are compiled in the AME2012 database [11], by using different formulas Eqs. (6), (11), (14),
and (15), and models [7,10,40,41,45–47]. The σM/σSn/σSp results of our formulas are smaller than other global models and are competitive
with local Audi-Wapstra extrapolation [10].

HFB-14 Eq. (6) WS FRDM HFB-17 WS∗ + �T

M/Sn/Sp M/Sn/Sp M/Sn/Sp M/Sn/Sp M/Sn/Sp M/Sn/Sp

A � 16 925/541/616 777/371/427 750/348/408 761/333/487 646/520/602 602/332/367
A � 60 878/486/464 752/353/394 704/325/381 658/311/406 611/453/483 580/320/355
A � 120 868/434/336 845/374/452 806/279/319 627/258/313 607/341/351 620/271/286

WS∗ Eq. (11) Bao Eq. (14) Eq. (15) Audi-Wapstra
M/Sn/Sp M/Sn/Sp M/Sn/Sp M/Sn/Sp M/Sn/Sp M/Sn/Sp

A � 16 582/331/367 545/334/367 515/287/350 475/271/334 396/235/306
A � 60 562/318/355 488/308/317 502/304/371 457/260/281 424/253/277 391/210/265
A � 120 600/265/286 395/281/326 387/241/270 361/225/271 326/207/267 270/171/224
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FIG. 5. (Color online) Contours of differences (in keV) between the extrapolated and experimental values of the excluding nuclei satisfying
|N − 126| � d and |Z − 82| � d , where panels (a), (b), and (c) correspond to d = 4,5, and 6, respectively.

of our formula when we are close to a shell gap. In the
second numerical experiment, we investigate the difficulty of
our predictions when the unknown subsets include a doubly
magic nucleus.

In Table III we present the RMSDs of several global
formulas in this paper as well as those from previous
studies [7,10,40,41,45–47]. One sees that Eq. (15) works
better than other global formulas except for the local Audi-
Wasptra extrapolation [10]. Based on this table, we note the
improvements in our formulas. The first improvement is the
isospin-dependence correction, the g4(E) term. This correction
is seen to be useful by comparing the results of Eqs. (6)
and (11). The second is the pairing term, i.e., g6(N,Z). The
usefulness of this term is clearly seen by comparing the results
of Eqs. (11) and (14). The third is a correlation term in Eq. (15).
This correction is useful for extrapolation close to the known
border. One sees its role by comparing the RMSDs of Eqs. (14)
and (15). In Fig. 4(b), we present the deviations D versus A
in the above investigation. The deviations are within 500 keV
for A � 150.

The second experiment concerns the predictive power of
our improved formula in the case of the unknown subset
with doubly magic nuclei. For this purpose, we remove
the experimental data for nuclei with |N − 126| � d and
|Z − 82| � d from the AME2003 database, with d = 4, 5, and
6, and calculate the deviations from the AME2012 database.
The deviations by using such a database are plotted in Fig. 5.
One concludes that the extrapolation deteriorates with d. One
sees also that the extrapolation is reasonable if the doubly
magic nucleus is not very far from the border of known masses
in the nuclear chart.

IV. SUMMARY

To summarize, in this paper we revisit the Jänecke mass
formula. This formula are given in explicit form of proton
number Z and neutron number N . We improve the Jänecke
formula by inclusion of the pairing interaction and an
isospin-dependent term. Although the number of parameters
[g1(N ),g2(Z),g3(A),g4(E)] are very large (576 in total), these
parameters do not change quickly in local regions; they

change in a smooth manner, instead (see Fig. 1). For the
current experimental database, our formulas provide us with a
description in a very good accuracy.

We investigate the predictive power of these new formulas
by numerical experiments. They are competitive with local
mass relations for unknown masses which are close to the
known borders of the current database in the nuclear chart.
Without details we note that the predicted results of the
formulas in this paper are reasonably consistent with those
of other models for nuclei far from the known borders. The
deviation of predicted results from experimental values is
large, if the unknown subset includes doubly magic nuclei.
As our formulas are global, we present our predictions based
on our formulas in the Supplemental Material [48].
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APPENDIX: VALUES OF POINT FUNCTIONS gi (k)

In Table IV we present the values of point functions g1(N ),
g2(Z), g3(A), and g4(E) in Eq. (14),

M(N,Z) = g1(N ) + g2(Z) + g3(A) + g4(E)

+ g5(N,Z) + g6(N,Z).

Here g5(N,Z) = 0 and g6(N,Z) takes the form of Eq. (13)
with ap = −4.9644 MeV. The values are obtained from the
least-squares adjustment to 2275 experimental masses in
the AME2012 database [11] for nuclei with 10 � N � 160,
6 � Z � 110 and N > Z or N = Z = even. There are 571
parameters for g1(N ), g2(Z), g3(A), and g4(E). There are in
addition four parameters for φ in Eq. (15) for different parity
of (N,Z). In total there are 576 parameters for Eq. (15).
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TABLE IV. Values of point functions g1(N ), g2(Z), g3(A), and g4(E) (in keV). The first line gives g1(1),g1(2), . . . ,g1(10); the second line
gives g1(11),g1(12), . . . ,g1(20), etc. As g4(E) starts from E = 0, for consistency g4 are given as g4(E − 1) with E = 1,2 . . . ,60. The last row
is the accumulated k of the gi(k) function in each column.

g1(N )

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 244524.6 10
216756.5 189994.9 165321.1 141002.3 118870.4 98548.6 80016.0 62743.8 46856.7 31205.3 20
18019.3 4937.5 −6810.1 −18621.8 −28965.4 −39042.9 −48026.4 −56924.7 −64057.8 −70214.5 30

−75756.1 −80656.9 −84475.8 −88068.0 −90690.5 −93481.7 −95127.1 −97089.2 −97893.7 −99021.0 40
−99009.9 −99433.3 −98774.4 −98764.9 −97675.4 −97161.7 −95813.2 −94953.5 −93271.9 −92154.9 50
−88718.4 −84941.9 −80985.9 −76981.2 −72599.8 −68443.6 −63680.1 −59246.6 −54285.1 −49963.2 60
−45024.3 −40686.7 −35653.2 −31158.3 −26001.2 −21461.0 −16190.9 −11683.3 −6375.1 −1870.1 70

3371.3 7772.2 12930.6 17072.7 21923.6 25794.3 30221.4 33858.9 37972.2 41210.8 80
44786.6 47996.6 53149.5 58044.1 62879.9 67359.1 71997.7 75944.8 80246.0 83511.3 90
87227.1 90059.1 93211.9 95753.8 98623.5 100730.1 103132.1 104812.5 106776.9 107986.6 100

109501.5 110292.4 111315.2 111650.1 112200.5 112036.9 112093.0 111387.1 111057.2 109854.9 110
108941.8 107101.8 105567.6 103041.4 100753.2 97456.9 94321.5 90301.0 86256.1 81315.4 120
76236.5 70385.3 64258.9 57405.8 50091.8 42657.6 36172.9 28857.3 21170.4 12563.8 130
3741.8 −6077.3 −16048.6 −26946.8 −38067.5 −50084.0 −62300.0 −75525.0 −88851.4 −103202.8 140

−117819.9 −133270.1 −149018.5 −165526.9 −182485.3 −200031.6 −218053.3 −236812.0 −256130.6 −275880.5 150
−296197.9 −317083.3 −338168.0 −359843.6 −381970.5 −404758.0 −428015.8 −451620.2 −475776.6 −500421.3 160

g2(Z)
0.0 0.0 0.0 0.0 0.0 643274.2 591241.8 540240.4 496067.4 452328.7 10

411463.7 371262.5 334480.6 298326.1 265510.1 234570.1 205746.8 178559.3 153184.2 128636.8 20
107282.1 86045.0 66428.2 47141.5 29051.7 11940.4 −3749.3 −18936.1 −31472.6 −42969.4 30
−53481.8 −63369.2 −71984.4 −80418.9 −87485.9 −94559.7 −100421.5 −106341.2 −110992.1 −115329.8 40

−118389.1 −121683.5 −123898.7 −126422.3 −127816.2 −129150.1 −129523.7 −130051.8 −129645.6 −129534.5 50
−126814.2 −124039.6 −120766.5 −117598.0 −113765.0 −110204.4 −105745.4 −101727.2 −96995.6 −92612.4 60

−87431.1 −82483.7 −76902.5 −71538.1 −65464.3 −59653.4 −53170.4 −47073.3 −40306.2 −33901.6 70
−26928.9 −20233.4 −13106.2 −6317.4 986.5 8061.6 15687.3 22987.0 30544.2 37726.2 80

45221.5 52689.8 61162.3 69243.7 77615.8 85277.9 93110.0 100231.6 107506.6 114186.4 90
120960.1 127247.6 133449.6 139285.9 144862.8 150229.2 155426.8 160325.3 165223.0 169775.6 100
174215.5 178566.3 182460.0 186173.6 189529.4 192653.4 195634.4 198311.2 200737.4 202913.2 110

g3(A)
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10
0.0 0.0 0.0 0.0 0.0 −834146.8 −834648.8 −757734.3 −761094.0 −687407.5 20

−693250.4 −621470.7 −629858.7 −560051.3 −569106.1 −500473.1 −511477.0 −445008.3 −457863.6 −393186.4 30
−407899.3 −344824.6 −360996.9 −299692.5 −317169.5 −256832.6 −275506.5 −216690.7 −236821.3 −179487.2 40
−200949.1 −144785.6 −167582.7 −112957.5 −137014.9 −83596.3 −109032.0 −56603.2 −82703.7 −30917.4 50
−57883.9 −6749.5 −34253.6 16019.3 −12521.5 36901.8 7688.2 56221.1 26083.6 73817.2 60

42828.2 89665.1 57985.4 104135.3 71707.9 117046.2 83957.6 128808.3 95168.6 139289.5 70
105031.9 148619.4 113633.8 156476.3 120874.2 163222.5 127131.7 169154.8 132567.9 174042.8 80
137187.3 178321.6 140849.9 181474.5 143541.9 183582.6 145218.5 184844.8 146073.4 185490.5 90

146438.0 185516.9 146149.3 184918.2 145219.8 183721.3 143818.0 182005.9 141776.2 179523.7 100
138999.6 176598.3 135809.4 173199.7 132181.2 169314.5 128128.4 165073.2 123745.4 160411.3 110
118806.9 155321.5 113501.0 149898.0 107816.7 143969.6 101759.8 137758.6 95368.5 131092.6 120
88517.1 124102.6 81347.4 116794.3 74008.9 109307.7 66497.3 101855.4 58952.5 94384.5 130
51493.3 86874.2 44094.9 79581.4 36891.5 72404.6 29745.8 65285.0 22590.0 58040.3 140
15331.1 50718.4 7906.3 43281.5 491.4 35903.0 −6904.8 28481.1 −14335.3 20962.7 150

−21931.9 13311.2 −29588.3 5602.7 −37264.7 −1995.6 −44805.0 −9458.8 −52162.9 −16660.3 160
−59275.4 −23744.4 −66216.1 −30558.2 −72938.0 −37055.4 −79336.6 −43396.3 −85469.7 −49407.6 170
−91341.2 −55092.1 −96951.1 −60549.5 −102182.5 −65559.2 −107128.2 −70410.0 −111765.9 −74969.3 180

−116256.6 −79215.9 −120397.5 −83131.9 −124084.9 −86774.3 −127545.2 −90106.4 −130741.5 −93236.1 190
−133774.8 −96051.6 −136464.9 −98594.6 −138715.6 −100614.5 −140521.5 −102162.2 −141722.1 −103046.3 200
−142298.9 −103225.6 −142178.9 −102762.5 −141281.2 −101421.9 −139515.9 −99097.2 −136725.9 −95853.0 210
−132918.4 −91535.0 −128175.3 −86346.7 −122521.9 −80360.6 −116269.0 −73841.9 −109411.6 −66635.6 220
−101843.1 −58769.6 −93625.2 −50150.1 −84678.6 −40903.4 −75023.8 −30882.4 −64630.4 −20037.3 230
−53431.0 −8312.9 −41287.8 4268.4 −28125.0 17933.6 −14084.3 32467.3 989.6 48044.3 240

17045.8 64628.4 34202.1 82200.2 52229.5 100605.0 71073.1 119981.8 90894.9 140205.9 250
111546.8 161282.7 133052.7 183282.1 155558.0 206227.4 178942.4 230051.8 203250.8 254784.0 260
228414.2 280536.0 254704.5 307051.2 281693.0 334506.1 309751.5 362911.0 338782.3 392242.2 270
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TABLE IV. (Continued.)

g4(E − 1)
−12187.6 20605.1 −24895.0 8531.6 −36510.1 −2609.4 −47019.5 −12604.3 −56434.9 −21602.8 10
−64848.5 −29354.2 −72016.5 −35946.1 −78041.8 −41465.6 −82980.8 −45751.8 −86636.0 −48874.7 20
−89145.4 −50865.8 −90538.6 −51663.2 −90743.3 −51278.7 −89734.2 −49664.1 −87490.0 −46779.0 30
−83983.1 −42639.1 −79147.0 −37035.7 −72670.5 −29784.7 −64681.6 −21013.2 −55120.9 −10616.0 40
−43837.6 1569.9 −30736.9 15645.6 −15737.5 31695.7 1355.3 49698.0 20366.4 69685.9 50

41339.1 91636.0 64274.1 115526.5 89095.6 141221.8 115636.1 168639.5 143905.5 197630.8 60
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