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Background: The neutron emission rates in thermal excited nuclei are conventionally described by statistical
models with a phenomenological level density parameter that depends on excitation energies, deformations, and
mass regions. In the microscopic view of hot nuclei, the neutron emission rates can be determined by the external
neutron gas densities without any free parameters. Therefore a microscopic description of thermal neutron
emissions is desirable that can aid in understanding such properties as the survival probabilities of superheavy
compound nuclei and neutron emissivity in reactors.
Purpose: To describe neutron emission rates in deformed compound nuclei, the external thermal neutron gases
are self-consistently obtained based on the finite-temperature Hartree-Fock-Bogoliubov (FT-HFB) approach.
Methods: The Skyrme FT-HFB equation is solved by the HFB-AX solver in deformed coordinate spaces. Based
on the FT-HFB approach, the thermal properties and external neutron gases are properly described with the
self-consistent gas substraction procedure. Then neutron emission rates can be obtained with the densities of
external neutron gases. The results are compared with the statistical model to explore the connections between
the FT-HFB approach and the statistical model.
Results: The thermal statistical properties of 238U and 258U are studied in detail in terms of excitation energies.
The thermal neutron emission rates in 238,258U and superheavy compound nuclei 278

112Cn and 292
114Fl are calculated,

which agree well with the statistical model by adopting variables from FT-HFB.
Conclusions: The coordinate-space FT-HFB approach can provide reliable microscopic descriptions of neutron
emission rates in hot nuclei, as well as microscopic constraints on the excitation energy dependence of level
density parameters for statistical models.
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I. INTRODUCTION

The study of highly excited compound nuclei, characteristic
of weakening quantum effects such as superfluity and shell
effects [1], is of great interest for heavy ion reactions. In
particular, the survival probabilities of compound superheavy
nuclei, as determined by the competition between thermal
neutron emission and fission rates, are related to the choice
of cold or hot fusion for the synthesis of new superheavy
elements [2]. The descriptions of thermal nuclear properties
are conventionally based on the statistical model [3,4], which is
very successful; however, it invokes a phenomenological level
density parameter based on parametrizations of the Fermi gas
model. While the microscopic calculations of level densities
are rare [5]. The level densities can also be determined by
the experimental neutron evaporation spectrum, though, up
to very limited excitation energies [6]. Various models of
level densities indeed can cause uncertainties in descriptions
of thermal properties and stabilities of hot nuclei. On the other
hand, the compound nuclei can be described by the finite-
temperature Hartree-Fock-Bogoliubov (FT-HFB) approach in
a microscopic view without any free parameters [7]. Thus
it is very desirable to explore the connections between two
pictures: the statistical model and the FT-HFB approach.

In the FT-HFB approach, the compound nuclei can be
self-consistently described by quasiparticle excitations due
to a finite temperature [1,7,8]. In our previous work, the
evolution of fission barriers and neutron gases in terms of
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excitation energies have been studied based on the FT-HFB
approach [9,10], which can be meaningful for the experimental
synthesis of superheavy nuclei [2]. As a further step, in
this work we like to study the neutron emission rates in
compound nuclei. In hot nuclei, the thermal equilibrium of
neutron evaporation can be obtained by the pressure produced
by the external neutron gas (or vapor) [11]. Then the neutron
emission lifetime is inversely proportional to the density of the
neutron gas [12,13]. Presently the FT-HFB approach is adopted
to self-consistently take into account the interplay between
single-particle motions and pairing in the thermal equilibrium.
For FT-HFB descriptions of hot nuclei, a crucial problem
is to treat the continuum contributions to external neutron
gases [12]. This can be realized by taking advantage of the
coordinate-space HFB approach, by which the nearly uniform
neutron gas in large distances can be obtained [9]. While the
conventional HFB approach based on a harmonic oscillator
basis expansion cannot treat such kind of surface asymptotics.

In this work, we adopted the HFB-AX solver with finite
temperatures to study the properties of hot nuclei in deformed
coordinate spaces [9,14]. The HFB-AX solver is based on B-
spline techniques for axially symmetric deformed nuclei [15].
The FT-HFB equation is solved with a mesh size of 0.6 fm
and the order of B-splines is taken as 12. To study systems
that need large coordinate spaces, the hybrid parallel scheme is
adopted. The aim of this paper is to study the neutron emissivity
in hot heavy and superheavy nuclei. In Sec. II, the relevant
FT-HFB formulas and the neutron emission models are given.
In Sec. III, the thermal properties of hot nuclei and calculated
neutron emission rates are discussed.
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II. THEORETICAL FRAMEWORK

A. FT-HFB theory

The FT-HFB equation in the coordinate space can be written
as [8][

hT (r) − λ �T (r)
�T (r) −hT (r) + λ

] [
ui(r)
vi(r)

]
= Ei

[
ui(r)
vi(r)

]
, (1)

where hT and �T are the temperature-dependent single-
particle Hamiltonian and pairing potential, respectively. For
the particle-hole interaction channel, the mostly used Skyrme
forces SLy4 [16] is adopted. For the particle-particle channel,
the density-dependent surface pairing interaction is used [17].
The pairing strengths are taken as V0 = 512 MeV fm3, which
can reasonably reproduce the neutron pairing gap of 120Sn with
a pairing cutoff window of 60 MeV [14].

Compared to the HFB equation at zero temperature, in the
FT-HFB equation the density ρ and pairing density ρ̃ have to
be modified as [7]

ρ(r) =
∑

i

|ui(r)|2fi + |vi(r)|2(1 − fi), (2)

ρ̃(r) =
∑

i

vi(r)∗(1 − 2fi)ui(r), (3)

where fi = 1
1+eEi /kT denotes the thermal Fermi distribution

(kT is the temperature). The temperature dependence of other
densities can also be derived straightforwardly. The entropy S
is given by [7]

S = −k
∑

i

[fi ln fi + (1 − fi) ln(1 − fi)]. (4)

The total free energy FT is given by FT = ET − ST , where
ET is the intrinsic energy based on the temperature-dependent
densities.

B. FT-HFB approach for neutron emission rates

Based on FT-HFB solutions, the hot nuclei are in thermal
equilibrium and surrounded by external gases. The external
gases, also called vapor, are contributed by unbound con-
tinuum states [12]. To extract the physical nuclear density
distribution, the FT-HFB equation is solved with and without
nuclear interactions. The free neutron gas contribution corre-
sponds to the FT-HFB solutions without nuclear interactions.
This method has been used in calculations of shell corrections
by subtracting the unphysical continuum levels based on the
Green’s function approach [18]. In FT-HFB iteration calcula-
tions, the total density distributions ρp,n(r) and the gas density
distributions ρ

gas
p,n(r) are obtained. Then the Fermi energies

λn and λp are self-consistently determined by satisfying the
particle number equation,

Z =
∫

d3r
[
ρp(r) − ρgas

p (r)
]
,

(5)

N =
∫

d3r
[
ρn(r) − ρgas

n (r)
]
.

In the case of large coordinate spaces and high temperatures,
the particle numbers contributed by the external gases can be

non-negligible and the self-consistent subtraction procedure
will become important.

Based on the coordinate-space FT-HFB solutions, the uni-
form neutron gas density distributions can be obtained. With
the uniform neutron gas density ngas, the neutron emission
widths �n can be given by the nucleosynthesis formula [12]

�n

�
= ngas〈σv〉, (6)

where σ is the neutron capture cross section; 〈v〉 is the average
velocity of particles in the external gas. For simplicity, the
neutron cross section σ is taken as πR2, i.e., the geometrical
cross section, where R is the nuclear radius that can be obtained
by FT-HFB calculations. The neutron emission lifetime τ is
related to the width by τ = �/�n. To calculate the statistical
average velocity 〈v〉, the Fermi occupation number f (εn) in
terms of neutron energies εn (i.e., kinetic energies) in the gas
is assumed, so that

〈v〉 =
∫ ∞

0 f (εn)v(εn)
√

εn dεn∫ ∞
0 f (εn)

√
εn dεn

, (7)

f (εn) = 1

1 + exp
(

εn−λn

kT

) , (8)

v(εn) =
√

2εn

m
. (9)

Differing from the procedure in Ref. [12], we explicitly
considered the density of the neutron gas, which is actually
equivalent to Bonche’s formula [12]. Although the FT-HFB
approach has been extensively applied to hot nuclei, neutron
star crusts, and atomic condensates [1,8,9,19–21], practical
calculations of neutron emission rates have been rarely
undertaken so far. Compared to calculations in Ref. [12], which
were based on the spherical FT-Hartree-Fock approach, we
extend the applicability of FT-HFB to neutron emission rates
in deformed cases as well as superheavy compound nuclei.

C. Statistical model for neutron emission rates

Statistical models have been widely used to study the
thermal neutron emission rates (or widths). The neutron
evaporation width �n with an excited energy of E∗ is given
by [4,22]

�n(E∗) = 2mgR2

2π�2ρ(E∗)

∫ E∗−Bn

0
ερ(E∗ − Bn − ε) dε, (10)

where ρ(E) is the level density in terms of excitation energies,
and g = 2s + 1 is the spin factor of neutron; the excitation
energy E∗ is the difference in the intrinsic energies (E∗ =
ET − ET =0) from FT-HFB; Bn is the neutron separation
energy. The level density ρ(E∗) is based on the Fermi gas
model, defined as [23]

ρ(E∗) =
√

π exp(2
√

aE∗)

12a1/4E∗5/4
, (11)

where a is the level density parameter taken as A/13 MeV−1

as suggested in [24]. To compare FT-HFB and the statistical
model, the variables Bn, E∗, and R in Eq. (10) are taken as the
same values as in the FT-HFB approach.
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FIG. 1. (Color online) FT-HFB calculated neutron density distri-
butions of 238U at different temperatures. The density profiles ρz and
ρr are shown along the cylindrical z axis and the perpendicular r axis,
respectively.

III. RESULTS AND DISCUSSIONS

We have performed calculations for nuclei 238U and 258U at
temperatures up to kT = 2 MeV. The statistical bulk properties
such as nuclear density distributions, excitation energies,
entropy, and neutron Fermi energies at different temperatures
are discussed in detail. These statistical properties are directly
related to the formula of neutron emission rates. To see the
box size dependence, large coordinate spaces of 24 and 30 fm
are adopted. Then the neutron emission rates are calculated
microscopically and compared with the statistical model. To
study the superheavy compound nuclei, the neutron emission
rates in selected 278

112Cn (cold fusion) and 292
114Fl (hot fusion) have

also been studied.

A. Statistical bulk properties of hot nuclei

First we studied the density distributions of the deformed
nucleus 238U, as displayed in Fig. 1. In Fig. 1, we can
see that as temperature increases, (1) the central density
fluctuations become weaker and (2) the density distributions
in the z-axis direction shrink and the associated shape
deformations decrease. These two observations both agree
with the fact that shell effects are diminished as temperatures
increase [1,13]. Note that the Thomas-Fermi approximation
cannot take into account such density oscillations [25]. In
the case of cylindrical coordinates, the differences between
the density profiles ρz(r = 0) and ρr (z = 0) actually reflect the
surface deformations of axially symmetric nuclei. However,
the deformation transition to a spherical shape can happen at
higher temperatures, depending on different effective nuclear
interactions [1,19].

To study the temperature-dependent neutron densities
including external gases, the neutron density distributions of
238U and 258U are plotted in the logarithmic scale, as shown in
Fig. 2. As expected, the neutron gas gradually increases with
increasing temperatures. At nuclear surfaces, the neutron gas
has a uniform density distribution (values are given in Table I).

FIG. 2. (Color online) Calculated neutron densities of 238U and
258U at different temperatures. The neutron densities are plotted in
logarithmic scale. The external neutron gases are also displayed.

Thus the contributions to particle numbers from gases can be
easily estimated. With the same temperature, 258U always has
larger gas densities than 238U, due to its larger Fermi energies,
as shown in Fig. 5. In addition, in both 238U and 258U, one

TABLE I. External neutron gas density ngas (fm−3) and the
calculated neutron emission widths (MeV) of 238U and 258U. The Stat-
M widths �(a) are obtained by the statistical model with the constant
level density parameter. The widths �(b) are obtained by statistical
model with the excitation-energy-dependent level density parameter.
See text for details.

kT FT-HFB Stat-M

(MeV) ngas � �(a) �(b)

238U
1.0 2.07×10−6 3.69×10−3 1.11×10−3 1.15×10−3

1.5 2.09×10−5 4.57×10−2 6.15×10−2 2.96×10−2

2.0 7.67×10−5 1.94×10−1 2.56×10−1 1.55×10−1

258U

1.0 1.67×10−5 3.16×10−2 1.73×10−2 1.02×10−2

1.5 7.82×10−5 1.82×10−1 2.04×10−1 1.10×10−1

2.0 2.11×10−4 5.70×10−1 7.71×10−1 4.10×10−1
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FIG. 3. (Color online) Neutron density distributions (including
neutron gas) of 238U at T = 2.0 MeV, obtained by solving FT-HFB
equations with box sizes of 24 and 30 fm.

can see that the gas densities increase slower than exponential
functions of temperatures. This behavior has also been shown
in compound superheavy nuclei [10]. The proton gases are
not shown and their contributions are much smaller due to the
Coulomb potential.

In Fig. 3, the neutron density distributions of 238U at kT =
2.0 MeV are calculated with the box sizes of 24 and 30 fm. It
is important to get convergent neutron gas densities as well as
thermal properties by adopting large box sizes [13]. With larger
box sizes, the neutron gas contributions become much larger
(∝R3

box). Compared to our earlier work that adopted a box size
of 20 fm [9], the box size adopted in this work is larger and
the gas contributions are non-negligible, particularly in 258U
at kT � 1.5 MeV. In our calculations with the self-consistent
subtraction procedure [see Eq. (5)], the neutron gas density of
30 fm is slightly less that of 24 fm, within 5%. This means
our calculations are converged and not sensitive to box sizes,
in which the subtraction procedure is essential.

To further illustrate the importance of the self-consistent
subtraction procedure, the entropy S and excited energies E∗
as a function of temperatures are shown in Fig. 4. We can see
that the gas subtraction has greater influence in the neutron-rich
258U than in 238U. The subtraction corrections can reduce the
entropy and in particular the excitation energies. Generally,
such corrections are significant for temperatures higher than
1.5 MeV.

The Fermi energies (or chemical potentials) of 238,258U as
a function of temperature are shown in Fig. 5. Figure 5 shows
that the Fermi energies are weakly dependent on temperature
and slightly increase with the subtraction approach, implying
increased neutron gas densities. As summarized in Figs. 4
and 5, we have demonstrated that the subtraction procedure
is very important; however, it has not been widely adopted in
FT-HFB calculations due to additional computing costs.

B. Neutron emission rates in hot nuclei

The main aim of this work is to study neutron emission
rates based on the neutron gas solutions in the FT-HFB

FIG. 4. (Color online) Entropy S and excited energies E∗ in 238U
and 258U as a function of temperatures. The solid and dashed lines
represent results obtained by using and not using the self-consistent
gas subtraction procedure, respectively.

FIG. 5. (Color online) Neutron Fermi energies λn of 238U and
258U as a function of temperatures. The solid and dashed lines
represent results obtained by using and not using the self-consistent
gas subtraction procedure, respectively.
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TABLE II. Similar to Table I, but for 278
112Cn and 292

114Fl.

kT FT-HFB Stat-M

(MeV) ngas � �(a) �(b)

278
112Cn

1.0 5.53×10−7 1.09×10−3 1.36×10−4 5.14×10−4

1.5 8.84×10−6 2.14×10−2 2.76×10−2 2.04×10−2

2.0 3.76×10−5 1.06×10−1 2.21×10−1 1.21×10−1

292
114Fl

1.0 1.15×10−6 3.69×10−3 5.36×10−4 9.04×10−4

1.5 1.51×10−5 3.79×10−2 3.13×10−2 2.64×10−2

2.0 5.45×10−5 1.58×10−1 2.51×10−1 1.48×10−1

approach. In this method the neutron emission rates can
be calculated microscopically without any free parameters.
The formulas have been given in Sec. II. Conventionally the
neutron emission rates (or widths) are calculated by statistical
models that depend on level density parameters.

Table I displays the calculated neutron emission widths as a
function of temperature in 238U and 258U, by both the FT-HFB
approach and the statistical model. In the statistical model,
the neutron emission rates are sensitive to the level density
parameter a. First we adopted the constant a = A/13 that was
suggested in [24]. We can see that the agreement between the
FT-HFB and the statistical model is satisfactory. For low exci-
tation energies, the statistical model tends to underestimate the
emission rates compared to FT-HFB results. On the contrary,
statistical models [�(a)] overestimate the emission rates com-
pared to FT-HFB with high excitation energies. The discrep-
ancy is due to the utilization of a constant level density param-
eter a that can have temperature dependence to some extent. In
fact, based on the FT-HFB approach, we can extract the level
density parameter a by three definitions [12]: a = S

2T
, a = E∗

T 2 ,

and a = S2

4E∗ . Here we adopt a = E∗
T 2 from FT-HFB solutions

to calculate the neutron emission rates by the statistical model
[�(b)]. In this case, the agreement between two approaches is
also good, but slightly underestimate the widths systematically.
For comparison, S2

4E∗ gives the smallest level density parameter
and overestimates neutron emission rates. While E∗

T 2 gives
the largest level density parameter, which is consistent with
earlier calculations [13]. This demonstrated that the excitation-
energy-dependent level density parameter (a = E∗

T 2 ) can be
used to connect the microscopic FT-HFB and the statistical
model. Experimental studies of the level density of 238U at
high excitation energies can provide meaningful examinations;
unfortunately, this is known for E∗ only up to 6 MeV [26].

Table II displays the calculated neutron emission rates
of superheavy compound nuclei 278

112Cn and 292
114Fl, which

are typical cold fusion and hot fusion compound nuclei,
respectively. Again the neutron widths given by FT-HFB and
by the statistical model with the excitation-energy-dependent
level density parameter (a = E∗

T 2 ) agree very well. However, the
agreement between FT-HFB and the statistical model with the
constant level density parameter is less satisfactory, compared
to Table I. The statistical model with the constant a gives
very small widths [�(a)] at low temperatures compared to
FT-HFB results. This indicates that the constant level density
parameter may not be suitable for the superheavy mass region.
The neutron emission rates of 278

112Cn (cold fusion) are smaller
than those of 292

114Fl (hot fusion) with the same temperature.
Or we can say that the cooling of 292

114Fl is more favorable
by neutron evaporation than 278

112Cn. This is mainly due to its
smaller neutron separation energy. The microscopic FT-HFB
calculations of neutron emission rates can be useful for the
synthesis of superheavy nuclei. The level density connection
between FT-HFB and statistical models as pointed out in this
work can also be useful for fission studies.

IV. SUMMARY

In summary, the finite-temperature HFB approach has been
applied to calculations of neutron emission rates of compound
nuclei in the microscopic view. The FT-HFB equation is
solved in the deformed coordinate space so that the continuum
contributions to external neutron gas can be precisely obtained.
We have demonstrated that the self-consistent gas subtraction
is important to properly describe statistical properties of hot
nuclei. The FT-HFB calculated neutron emission rates of
compound deformed 238,258U and superheavy nuclei agree
well with the statistical model. Furthermore, we demonstrated
that by adopting inputs from FT-HFB (an excitation-energy-
dependent level density parameter, excitation energies, and
neutron separation energies), the statistical model can be
connected to the microscopic FT-HFB approach. Our approach
can be useful in the synthesis of superheavy nuclei, and further
FT-HFB study of thermal fission rates are in progress.
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