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Beyond-mean-field calculations of collectivities of neutron-rich Fe and Cr isotopes
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The rotational symmetry is broken in mean-field models. The symmetry breaking may lead to significant
effects even on the ground states of nuclei. The recent observations of enhanced collectivities in neutron-rich Fe
and Cr isotopes are challenging the current calculations of mean-field models. By performing angular-momentum
projection on mean-field potential energy surface (PES), we can obtain an angular-momentum-conserved PES at
each given spin. With the projected PES, we have investigated the collectivity of neutron-rich Fe and Cr isotopes.
The calculations reproduce well the excitation energies and electric quadrupole transitions of the collective
excited states of the isotopes, indicating the importance of the restoration of the rotational symmetry.
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I. INTRODUCTION

Mean-field approaches have achieved remarkable success
in understanding nuclear properties, especially for the col-
lectivities of deformed nuclei [1]. However, the deformed
mean-field wave function breaks necessarily the rotational
symmetry. It results in spurious overlaps between the ground
state and excited configurations. For example, the zero-
point energy correction associated with the recovery of the
rotational symmetry is somehow proportional to deformation,
ranging from a few keV for nearly spherical configurations
to several MeV for well-deformed states [2,3]. For a shape-
soft nucleus, i.e., with a flat potential-energy surface (PES)
with respect to deformation, the energy correction could be
quantitatively comparable to the energy differences between
different shapes and thus it topologically alters the PES [3,4].
Therefore, one may expect that the beyond-mean-field effect
stemming from the restoration of the rotational symmetry is of
significant importance in describing the collectivities of soft
nuclei [5].

Recently, experiments observed low-lying 2+
1 states [6–8]

with increased deformation lengths δ [9] and large E2 transi-
tion probabilities B(E2; 0+

1 → 2+
1 ) [10–13] in neutron-rich Fe

and Cr isotopes, indicating enhanced collectivities. However,
mean-field calculations showed that quadrupole deformations
decrease rapidly when the neutron number approaches N = 40
in Fe and Cr isotopes [14–16], implying fewer collectivities. In
these mean-field calculations, flat PES’s with shallow minima
were obtained, see, e.g., Ref. [17]. As noted, the influence from
symmetry breaking would be significant for soft nuclei.

In the present work, we want to see what effects may be
brought by the recovery of the rotational symmetry. Starting
from a simple mean-field model, we employ the angular-
momentum projection technique to restore the rotational sym-
metry. Though the sophisticated calculations of the angular-
momentum projection based on the Skyrme- [4] or Gogny-type
mean field [18,19] have been performed, these calculations
have not included multiquasiparticle (multi-qp) components
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in the wave functions. The multi-qp configurations break the
time-reversal symmetry, raising a time-odd term in mean-field
models, which increases the difficulty for the projection
calculation. However, multi-qp configurations are important
for the descriptions of excited states [20]. It was noted that the
overestimated energies of low-lying states calculated in Refs.
[5,19] would be due to the absence of the components with the
time-reversal symmetry breaking [19].

To include the multi-qp configurations, the angular-
momentum projection performed within the Nilsson model
has a significant advantage for simplicity, which is called
the projected shell model (PSM) [21–25]. However, the
existing PSM applies to deformation-fixed calculations, i.e.,
assuming a fixed deformation in calculations. In principle,
the deformation-variation effect can be well included in the
PSM by configuration mixing if the model space taken is
large enough. In order to include effects from both shape
variation and multi-qp components, we have explored the
angular-momentum projection calculation within the frame-
work of the simple macroscopic-microscopic (MM) model.
It has been well known that the PES calculated by the MM
model is one of the most powerful tools to predict nuclear
shapes. By performing the angular-momentum projection,
we can obtain an angular-momentum-conserved PES. Such
a projected energy surface method has been suggested also by
Tu and her coauthors, investigating a well-deformed nucleus,
172W [26].

II. THE MODEL

The details of the PSM can be found in Refs. [21,27].
To avoid the spurious pairing collapse encountered in the
Bardeen-Cooper-Schrieffer (BCS) method which is used in the
existing PSM, we have improved the pairing treatment by using
the Lipkin-Nogami approach. As commented, the inclusion
of excited qp configurations is important. In the present
calculation of even-even nuclei, the configurations considered
include zero-qp, two-quasineutron, two-quasiproton, and four-
qp (two quasineutrons plus two quasiprotons) components,
i.e., {|�ξ 〉} = {|0〉,a†

νi
a†

νj
|0〉,a†

πi
a†

πj
|0〉,a†

νi
a†

νj
a†

πk
a†

πl
|0〉}, where

|0〉 is the qp vacuum. The PSM many-body wave function can
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be expressed in terms of various projected configurations [21],

|�I 〉 =
∑

ξ

f I
ξ P̂ I

MK |�ξ 〉, (1)

where P̂ I
MK is the angular-momentum projection operator.

|�ξ 〉 denotes a mean-field configuration (before projection),
and the coefficient f I

ξ is the corresponding weight factor which
is obtained by diagonalizing the eigenvalue equation,

∑

ξ
′

(
HI

ξξ
′ − EINI

ξξ
′
)
f I

ξ
′ = 0, (2)

where HI
ξξ

′ and NI
ξξ

′ are the matrix elements of the Hamilto-
nian and the norm, respectively, defined by

HI
ξξ

′ = 〈�ξ |Ĥ P̂ I

Kξ K
′
ξ
′
|�ξ

′ 〉, NI
ξξ

′ = 〈�ξ |P̂ I

Kξ K
′
ξ
′
|�ξ

′ 〉. (3)

The weight factor f I
ξ reflects the mixing amplitudes of

different qp configurations. An axially symmetric shape is
assumed, and thus each basis state can be labeled by the good
quantum number of the spin projection K onto the symmetry
axis. The state |�I 〉 is a linear superposition of various K
states, i.e., K mixing.

The Hamiltonian takes the following form, which in-
cludes the quadrupole-quadrupole (QQ) interaction and the
monopole plus quadrupole pairings [21],

Ĥ = Ĥ0 − χ

2

∑

μ

Q̂
†
2μQ̂2μ − GMP̂ †P̂ − GQ

∑

μ

P̂
†
2μP̂2μ,

(4)

where Ĥ0 = ∑
α eαc†αcα with eα for spherical Nilsson single-

particle energies [21]. The monopole-pairing strength GM is
determined by the average gap method [28]. The quadrupole-
pairing strength GQ is taken to be proportional to GM , with a
constant factor of 0.24, i.e., GQ = 0.24GM . We will discuss
the strength χ of the QQ interaction in more detail later.

In the PSM calculations, one usually needs a cutoff of the
model space to reduce the computational task. The existing
PSM considers three major Nilsson shells in calculations [21].
This means that the energy 〈�I |Ĥ |�I 〉 given by the PSM wave
function |�I 〉 in Eq. (1) is not the total energy of the nucleus
but the energy of the valence particles. We can well assume
that the angular momentum of an excited state is generated by
the valence particles, but the total energy (not only the energy
of valence particles) should be used in the determination of
nuclear shape by minimizing the energy against deformations.
In the MM model, nuclear shape can be obtained by plotting
the total energy surface. This similar method has also been
adopted in the cranking shell model in which the total energy
(in the body-fixed frame) of a rotational state is written as the
total energy of the nucleus at rest and the energy change due
to rotation [29,30]. Similarly, only the valence particles are
taken into account in cranking calculations. With comparisons
above, we can write the projected total energy for an excited
state at spin I as

EI (N,Z,β̂) = EMM(N,Z,β̂) + EI
rot(N,Z,β̂), (5)

where β̂ represents a set of deformation parameters.
EMM(N,Z,β̂) is the total energy of the nucleus at rest, which

can be calculated by the MM model, including the macroscopic
energy, the microscopic shell correction, and the pairing
energy in the standard Strutinsky method. EI

rot(N,Z,β̂) gives
the energy gain due to rotation (including possible intrinsic
excitation energy if the rotational state has, e.g., a broken-pair
intrinsic structure), defined by

EI
rot = 〈�I |Ĥ |�I 〉

〈�I |�I 〉 − 〈0|Ĥ |0〉
〈0|0〉 . (6)

The first term is the energy of the valence-particle system at
spin I (with a given intrinsic structure), which is calculated
by the projected wave function |�I 〉. The second term is
the energy of the valence-particle system before angular-
momentum projection, which is calculated by the unprojected
qp vacuum |0〉. Note that the energy EI

rot is not equal to zero
even for the I = 0 ground state of an even-even nucleus.
For the ground-state case, it is in fact an energy correction
due to the restoration of the rotational symmetry. This energy
correction can be sensitive to deformation and therefore would
play a significant role in the determinations of nuclear shapes,
even for the ground state. In the present calculations, the
macroscopic energy is calculated by the new version of the
liquid-drop model (called new liquid drop (NLD) in Ref. [31])
with the inclusion of a Gauss-curvature term, which takes the
following form [31]:

Emac(N,Z,β̂)

= bvol(1 − κvolI
2)A + bsurf(1 − κsurfI

2)A2/3Bsurf(β̂)

+ bcurG(1 − κcurGI 2)A0 + 3

5
e2 Z2

rch
0 A1/3

BCoul(β̂)

− C4
Z2

A
+ EW, (7)

where I = (N − Z)/A. bvol, κvol, bsurf, κsurf bcurG, κcurG, rch
0 ,

and C4 are the liquid-drop model parameters. The Wigner
term EW is given as EW = −10 exp (−42|I |/10) according to
Refs. [31,32].

The PES is calculated in the (β2,β4) deformation space. In
the deformation-fixed PSM calculations, the QQ interaction
strength χ is determined by the assumption that the PSM
Hamiltonian gives the same QQ interaction as that derived
from the Nilsson model [21]. In the present calculations, we
obtain a χ value at each deformation point of the (β2, β4)
lattice using the method above. At the same time we can
obtain the PES of the ground state which is analyzed for
the determination of the χ parameter. Note that the χ value
obtained thus can change slightly with changing deformation
in the PES lattice. We assume that the χ value obtained at the
PES minimum (i.e., at the deformation of the ground state)
should be the most reasonable value. With such a χ value, we
perform the deformation-variable PSM calculations, obtaining
the projected PES for each given angular momentum. The ex-
citation energy and deformation at a given spin are obtained by
minimizing the corresponding projected PES. Several different
PES’s at the same spin I may be obtained, corresponding to
different intrinsic configurations.

Before practical calculations, we thought that the liquid-
drop model parameters were determined by fitting data without
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TABLE I. The parameter readjustments of the new version of
liquid-drop model [31]. The NLD parameters are the original values
of the parameters given in Ref. [31].

Parameters Present work NLD

bvol (MeV) −15.4920 −15.4721
κvol 1.6410 1.6411
bsurf (MeV) 16.3879 17.0603
κsurf 0.4545 0.7546
bcurG (MeV) 26.0575 10.3574
κcurG 8.0876 13.4235
rch

0 (fm) 1.19599 1.21610
C4 (MeV) 0.9124 0.7952

the restoration of the rotational symmetry [31]. In the present
work, we readjust the liquid-drop model parameters in order to
include possible effects from the restoration of the rotational
symmetry. At each readjustment of the parameters, we perform
a projected PES calculation for the ground state, which
gives both the χ determination and binding energy (at the
readjusted parameters). Then the final values of optimized
parameters are determined by fitting experimental binding
energies. The projected PES calculations are computationally
time-consuming. We selected about 150 nuclei which cover
the Cr and Fe mass region, mass ∼180, and actinide regions
for the parameter readjustments. The refitting result gives a
root-mean-square deviation of 0.725 MeV for the ground-state
binding energies between the calculations and data (taken from
Ref. [33]). The readjusted parameters are listed in Table I,
compared with the NLD parameters of Ref. [31]. As a further
test of the readjusted parameters and projected PES’s, we

[34]
[35]
[36]

FIG. 1. (Color online) Calculated inner and outer fission-barrier
heights for Pu and Cm isotopes, compared with experimental data
[34–36] and the FRLDM calculations [37].

[14]
[15]

[16]

[39]

FIG. 2. (Color online) Ground-state β2 deformations for neutron-
rich Fe and Cr isotopes. The present results are shown as black solid
lines, compared with the previous mean-field calculations [14–16,39]
and experimental data [38].

have calculated two-humped fission barriers for Pu and Cm
isotopes in which experimental information has been available,
shown in Fig. 1. It is seen that obtained barrier heights
are in reasonable agreements with the values extracted from
experiments [34–36] and the calculations by the finite-range
liquid-drop model (FRLDM) [37]. Since the projected PES
calculations are restricted to (β2,β4) deformation, one may
expect that the description of fission barriers would be further
improved with inclusion of the axially asymmetric γ and
reflection-asymmetric β3 deformations.

III. CALCULATIONS AND DISCUSSIONS

As noted in the Introduction, experiments indicate enhanced
collectivities in 64−68Fe and 62,64Cr [11–13], while mean-field
calculations which break the rotational symmetry gave reduced
collectivities in neutron-rich Fe and Cr isotopes near N = 40
[14–16]. This region thus provides a good testing ground to
study effects arising from the rotational-symmetry restoration.
Figure 2 plots our calculated ground-state deformations for
56−68Fe and 54−66Cr, compared with experimental data [38].
Our results exhibit a remarkably increasing trend in defor-
mations towards N = 40, reproducing well the experimental
values. We see that the majority of mean-field calculations
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FIG. 3. (Color online) Left panel: Angular-momentum-
conserved (projected) PES’s at different spins for the 66Fe
ground-state band. At each β2 value, the energy has been
minimized with respect to the β4 deformation. The dashed line
indicates the calculation without the angular-momentum projection.
Inset: The PES’s of the 68Ni ground state with and without the
angular-momentum projection. Right panel: The level scheme
of the 66Fe ground-state band calculated with fixed and variable
deformations, compared with data [7].

give decreased deformations when neutron number approaches
40. Only the extended Thomas-Fermi plus Strutinsky integral
(ETFSI) method [39] and the present calculations show the
increased deformations in both Fe and Cr isotopes when
approaching N = 40. In the ETFSI model [40], a phenomeno-
logical rotational correction, Erot = −〈Ĵ2〉/(2J ), has been
added, where Ĵ is the angular-momentum projector and J
is the moment of inertia fitted to the experimental level spectra
[40]. The 〈Ĵ2〉 is the expectation value calculated with the
mean-field wave function [1,41]. The comparisons in Fig. 2
tell us that the effect from the rotational symmetry restoration
is crucial to reproduce the experimental deformations of these
nuclei.

A direct probe into deformation and associated collectivity
is the γ -ray spectroscopy of a nucleus. A low-lying 2+

1 state
is considered as the fingerprint of a well-deformed shape. In
the present work, we can obtain the energy of an excited state
by minimizing the corresponding projected PES at the given
spin. As an example, Fig. 3 displays the projected PES’s at
different spins for 66Fe with the neutron number at the N = 40
subshell closure. The calculation without angular-momentum
projection gives a spherical shape for the ground state, while
the projection leads to a definite deformation for the semi-
shell-closure nucleus, reproducing well the observation (see
also the upper panel of Fig. 2). We see that the deformation
(i.e., the location of the minimum) changes by increasing the
angular momentum. The projected PES calculations give the
excitation energies of 0.538 MeV for the 2+

1 and 1.405 MeV
for the 4+

1 states in 66Fe, agreeing well with the experimental
values of 0.573 and 1.414 MeV [6].

In the right panel of Fig. 3, we plot the calculated level
scheme of the ground-state band, showing the improvement
of the calculations by the projected PES, compared with
experimental data. The “standard” PSM itself [21] cannot
give nuclear deformation by using the PES method if only

[38]
[10]

[13]
[11]

[38]

[44]

[12]
[13]

[45]

FIG. 4. (Color online) Calculated excitation energies of the 2+
1

and 4+
1 states (upper panels) and B(E2; 0+

1 → 2+
1 ) values (lower pan-

els) for neutron-rich Fe and Cr isotopes, compared with experimental
data taken from National Nuclear Data Center (NNDC) [43] and Refs.
[10–13,38,44,45].

the valence particles are taken into account in the calcu-
lation. Normally, the ground-state deformation obtained by
nonprojected PES should be used for the deformation-fixed
PSM calculation. In the 66Fe case, however, the ground-state
nonprojected PES gives a spherical deformation (see Fig. 3). A
spherical shape cannot lead to any collective rotational band.
In the deformation-fixed PSM calculations of the level scheme
in Fig. 3, we take the deformation parameters given by the
ground-state projected I = 0 PES (which are β2 = 0.253 and
β4 = 0.009). One may question if the projected PES would
always give a deformed shape. The inset of Fig. 3 shows
the PES’s of the ground state for another N = 40 nucleus
68Ni, calculated with and without the angular-momentum
projection. Both calculations give a spherical deformation.
The spherical shape has been supported by the experimental
observation [42].

Figure 4 gives the calculated excitation energies of the
first 2+ states for the Fe and Cr isotopes. In general, both
calculated and experimental excitation energies decrease with
increasing neutron number, implying increased collectivities
when approaching N = 40. This phenomenon seems to be
“abnormal.” One would expect that the collectivity should
be decreased when neutron number approaching a magic or
semimagic number.

The reduced E2 transition probability B(E2) provides
another probe into the collectivity of a nucleus. The wave
function �I defined in Eq. (1) allows us to calculate the B(E2)
value. The B(E2) value from an initial state with spin (I − 2)
to a final state at spin I is given by

B(E2; I − 2 → I ) = 1

2I − 3
|〈�I ||eτ r

2Y2||�I−2〉|2, (8)

where both �I and �I−2 are obtained with the ground-state
deformation determined by the projected PES. eτ denotes
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FIG. 5. (Color online) Calculated neutron and proton E2 tran-
sition amplitudes (upper panels) and neutron-to-proton ratios of
transition matrix elements (lower panels) for the 2+

1 → 0+
1 transitions

in neutron-rich Fe and Cr isotopes. Experimental data are taken from
Ref. [12].

the effective charge with eπ and eν for proton and neutron,
respectively. It was commented that the “standard” effective
charges of eπ = 1.5e and eν = 0.5e result in overestimated
B(E2) values in this mass region [11,12]. We therefore adopt
the effective charges of eπ = 1.31e and eν = 0.46e which can
provide the better descriptions of the B(E2) values [13]. As
shown in the lower panels of Fig. 4, our calculations are in
good agreement with experimental B(E2) data.

It has been a subject of considerable interest what nucleus
attains the maximum collectivity in this region near N = 40
[12,13]. Experimentally, Baugher et al. [12] pointed out that
a saturation in collectivity has been reached in 62Cr with N =
38. From the lower panels of Fig. 4, we see that both our
calculations and experimental data indeed suggest the largest
quadrupole collectivity in 62Cr and 64Fe with N = 38.

For a further analysis of the proton and neutron contribu-
tions to the B(E2) values, we rewrite Eq. (8) by B(E2; 0+

1 →
2+

1 ) = 5(eπAπ + eνAν)2 [12,13], where Aπ and Aν are the
proton and neutron E2 transition amplitudes, respectively.
We plot the calculated Aπ and Aν in the upper panels of
Fig. 5. It is seen that the proton E2 transition amplitude
Aπ stays essentially constant in both Fe and Cr isotopes.
By contrast, the neutron contribution increases significantly
with increasing neutron number until N = 38. In general,
these results are consistent with the large-scale shell-model
calculations [13]. The present calculations give a peak at
N = 38 for the neutron E2 transition amplitude, which should
correspond to the peak of experimental B(E2) data (see Fig.
4). However, the calculations seem to underestimate the B(E2)
value (or the E2 transition amplitude) of 68Fe with N = 42,
compared with data. This may indicate that the “standard”
Nilsson parameters would not work well for nuclei far from
the stability. The large-scale shell-model calculation gives a

significant increase in the Aν amplitude with neutron number
increasing from N = 36 to N = 40 (38), and a smooth increase
from N = 40 (38) to N = 42 in the Fe (Cr) chain [13].
The authors of Ref. [13] used an effective interaction which
was tuned especially for this neutron-rich mass region [46],
reproducing well the experimental B(E2) value of the N = 42
neutron-rich Fe isotope [13].

We have also investigated the neutron-to-proton ratio of
the transition matrix element Mν/Mπ (relative to N/Z). Since
this quantity removes the dependence on nucleon numbers, it
can be regarded as a “unified” criterion to evaluate collectivity
in the whole nuclear chart [47,48]. Mν/Mπ is related to the
neutron and proton deformation lengths (δν and δπ ) via [47]

Mν

Mπ

= Nδν

Zδπ

. (9)

In the picture of the “pure” collective excitation, neutrons
and protons have equal deformation lengths, resulting in
(Mν/Mπ )/(N/Z) = 1. In a nucleus with a closed neutron
(proton) shell, valence protons (neutrons) dominate the low-
lying excitation, which leads to Mν/Mπ < N/Z (Mν/Mπ >
N/Z) [47,48]. Experimentally, Mν/Mπ can be obtained by
combining Coulomb excitation and proton scattering data
[47]. In our calculations, the neutron and proton E2 transition
matrix elements can be obtained by the generalized effective
charge model [47,49], i.e., Mν = Aνeπ + Aπeν and Mπ =
Aπeπ + Aνeν . From the lower panels of Fig. 5, we see
that the calculated (Mν/Mπ )/(N/Z) values of the 2+

1 → 0+
1

transitions agree well with the existing data of 0.87(19)
for 60Cr and 0.89(17) for 62Cr. All the calculated Mν/Mπ

values are around 0.9(N/Z), indicating that the low-lying
excitations follow the simple picture of the collective mode
with nearly equal contributions from protons and neutrons in
the investigated neutron-rich Fe and Cr nuclei.

IV. SUMMARY

By incorporating the angular-momentum projection into
the macroscopic-microscopic model, we have developed the
PES calculation which preserves a good angular momentum
in the whole deformation lattice. Since the original liquid-
drop model does not considered explicitly the problem of
the angular-momentum conservation, we have calibrated the
liquid-drop model parameters by refitting nuclear binding en-
ergies and tested by calculating fission barriers. The projected
PES gives, in a self-consistent manner, the energy and defor-
mation of a nuclear state at a given spin. Such calculations are
particularly important for soft nuclei. By calculating projected
PES’s, we have investigated the quadrupole collectivities of
neutron-rich Fe and Cr isotopes. It is found that the effect from
the rotational-symmetry restoration is crucial to reproduce
the experimental deformed shapes of the neutron-rich Fe
and Cr isotopes, while usual mean-field calculations without
considering the angular-momentum correction give spherical
shapes. The calculated excitation energies and E2 transition
probabilities of the 2+

1 states are in reasonable agreement
with experimental data. For the isotopes around N = 40, the
large B(E2) values obtained in both the present calculations
and experiments indicate large deformations. The calculated
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neutron-to-proton ratios of the E2 transition matrix elements
are close to the limit of the collective motion, agreeing well
with the existing data.
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H. Uhrenholt, and S. Åberg, Phys. Rev. C 79, 064304 (2009).

[38] B. Pritychenko, J. Choquette, M. Horoi, B. Karamy, and
B. Singh, At. Data Nucl. Data Tables 98, 798 (2012).

[39] Y. Aboussir, J. M. Pearson, A. K. Dutta, and F. Tondeur, At.
Data Nucl. Data Tables 61, 127 (1995).

[40] J. M. Pearson, Y. Aboussir, A. K. Dutta, R. C. Nayak, and
M. Farine, Nucl. Phys. A 528, 1 (1991).
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