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The properties of dynamic (least action) fission paths are analyzed and compared to the ones of the more
traditional static (least energy) paths. Both the Barcelona-Catania-Paris-Madrid and Gogny D1M energy density
functionals are used in the calculation of the Hartree-Fock-Bogoliubov (HFB) constrained configurations
providing the potential energy and collective inertias. The action is computed as in the Wentzel-Kramers-Brillouin
method. A full variational search of the least-action path over the complete variational space of HFB wave
functions is cumbersome and probably unnecessary if the relevant degrees of freedom are identified. In this paper,
we consider the particle number fluctuation degree of freedom that explores the amount of pairing correlations
in the wave function. For a given shape, the minimum action can be up to a factor of 3 smaller than the action
computed for the minimum energy state with the same shape. The impact of this reduction on the lifetimes is
enormous and dramatically improves the agreement with experimental data in the few examples considered.
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I. INTRODUCTION

The description of fission in the atomic nucleus (see
Ref. [1] for a recent account) is the subject of a renewed
interest as a consequence of potential applications both at
the level of fundamental science and industrial applications.
The mechanism of fission involves a delicate balance between
quantum mechanical effects inherent to the quantum many-
body problem and properties of the nuclear interaction that
are not well understood yet. Deepening our understanding
of fission is therefore important in order to understand both
aspects of the dynamics of the atomic nucleus. Fission is also
relevant to other areas outside traditional nuclear physics like
astrophysics, where the understanding of the nucleosynthesis
of heavy elements in explosive galactic environments through
the r-process is of great relevance. A deeper understanding
of fission is also of interest in safe energy production in the
new generation of nuclear reactors or in novel mechanisms
to degrade radioactive waste. The theoretical interpretation
of fission is based on two properties of the parent nucleus:
the evolution of the energy as the system traverses from
its ground state to scission and the inertia associated with
the collective motion along that path. To improve in the
former, properties of the fission energy landscape as the
inner and outer barrier heights have been considered as a
physical constraint in the fitting protocol of several energy
density functionals (EDFs) [2–5]. On the other hand, an
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effort to improve the description of the collective inertias is
underway [6,7]. The gross features of fission can be understood
rather well from a microscopic perspective using the mean
field Hartree-Fock-Bogoliubov (HFB) theory [8] along with
effective phenomenological interactions of different kinds.
Therefore, it is not surprising that there have been numerous
studies devoted to this subject with Skyrme interactions
[5,9–11], Gogny ones [2,12–21], or those based on the
relativistic mean field [22–24] or other kind of energy density
functionals recently proposed [25,26].

The traditional paradigm in fission is to describe the path to
the scission configuration by looking at the minimum energy
in multidimensional energy landscapes. Several deformation
parameters associated with multipoles of different orders are
routinely used in those calculations. Surprisingly the role
played by pairing in the dynamical aspects of the theory has
attracted little attention and only recently the uncertainties
associated with that degree of freedom in the values of
fission observables have been explored [20,21,26]. The static
(minimum energy) description is an approximation of the more
quantal approach where the action of the collective degrees of
freedom is the quantity driving the dynamics (the dynamical
description). Assuming a static description simplifies the
computational problem and, in addition, it was argued [27] that
both approaches give equivalent results when shape degrees
of freedom alone are considered as collective degrees of
freedom (see [28] for a recent result). On the other hand, that
pairing is a fundamental ingredient for fission dynamics was
already pointed out 40 years ago by Moretto and Babinet [29]
in a seminal paper where the impact of pairing correla-
tions on the action was analyzed in a simple, yet realistic,
model.
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The main conclusion of this paper is that the competition
between the collective inertia, decreasing as the square of the
inverse pairing gap [30,31], and the energy, increasing as the
square of the pairing gap, lead to a minimum of the action at a
pairing gap twice as large as the one of the minimum energy.
The importance of pairing vibrations in nuclear dynamics was
empathized by Bés et al. [32] in the context of the cranking
model and by Gozdz et al. [33–35] in the generator coordinate
method (GCM) framework. The idea of coupling pairing
vibrations to nuclear fission dynamics was pursued further
by the Lublin school [35] in a series of papers where realistic
fission calculations seeking for the minimum of the action
were performed; see [36] for a recent overview and additional
references. When pairing was included as dynamical variable
they observed reductions of a few orders of magnitude (up
to 8 in Cm isotopes) in the spontaneous fission lifetimes tSF

as compared to the minimum energy results. In nuclei with
higher and broader barriers (like the ones considered here) the
reduction is expected to be larger.

In this paper we study the predictions for spontaneous
fission lifetimes when considering the minimum action scheme
instead of the minimum energy one. We will consider pairing
as a relevant degree of freedom in the parameter space used
in the minimum action search. Calculations with effective,
yet realistic, interactions including finite range ones (Gogny
D1M [37,38]) and pure energy density functionals like the
Barcelona-Catania-Paris-Madrid (BCPM) functional [25] will
be considered. We will restrict ourselves to several isotopes
of uranium where experimental data are available. The main
reason for this choice is the large discrepancies observed
between theory and experiment that are due to too high and
too wide fission barriers.

II. METHODS

The path from the ground state to the scission point is
assumed to be driven by the least-action principle, where the
action is computed as

S = 2
∫ b

a

ds
√

2B(s)[V (s) − E0]. (1)

The variable s is used to parametrize the fission path, and all
the relevant collective degrees of freedom depend upon it. The
inertia is given by the general expression

B(s) =
∑
ij

Bij

dqi

ds

dqj

ds
, (2)

where the qi(s) are the values along the fission path of the
relevant degrees of freedom like the axial quadrupole (Q20),
octupole (Q30), and hexadecapole (Q40) moments and in our
case the particle number fluctuation �N2. The Bij are the
collective inertias for each pair of degrees of freedom and com-
puted using the perturbative cranking approximation [7,39].
Both the expressions obtained in the adiabatic time dependent
HFB (ATDHFB) or the GCM approximations will be used. The
potential V (s) is given by the HFB energy, with corrections
from beyond mean field effects included, as

V (s) = EHFB(s) − εROT(s) − εfluc(s). (3)

The most important is the rotational energy correction εROT(s)
which is the correlation energy gained by restoring angular
momentum quantum numbers. It is proportional to quadrupole
deformation and can reach several MeV and therefore has the
potential to substantially reduce the fission barrier heights. It
has been computed using a well performing approximation
to the exact quantity [40]. Less important for fission are the
zero point energy corrections εfluc(s) associated with quantum
fluctuations of the collective variable s. The E0 is the ground
state energy computed as the minimum of V (s) plus a zero
point energy corresponding to quadrupole fluctuations and
taken, for simplicity, as a constant value of 1 MeV.1 Details
on how all those quantities are evaluated are given in [26].
The constrained HFB wave functions obtained with state-
of-the-art semiphenomenological energy density functionals
of the Gogny and BCPM type are used in the calculations.
Axial symmetry is preserved in the calculation but reflection
symmetry is allowed to break at any stage of the calculations.

For this exploratory calculation we have made several
simplifying assumptions:

(i) Separated proton and neutron pairing correlations are
not considered. Instead, a single constraint in the
total particle number fluctuation is considered. This
simplification reduces the computational cost by a
factor of a few tens (depending on the number of
〈�N2〉 values considered).

(ii) The fission path is parametrized by the mass
quadrupole moment. As customary in fission cal-
culations based in the minimum energy principle,
the coupling with other degrees of freedom in the
evaluation of the inertia [Eq. (2)] is neglected and
only the quadrupole inertia is considered.

(iii) As a consequence, the determination of the minimum
action path does not require sophisticated linear
programming techniques. It reduces to a simple
minimization for fixed quadrupole moments of the
integrand in the action considered as a function of the
other degrees of freedom.

The constrained HFB wave functions |ϕ(Q20,〈�N2〉)〉
are obtained using an approximate second-order gradient
method [41] with the HFBAXIAL code [42]. Two EDFs will be
used in the calculation to make sure that the conclusions are
independent of the details of the nuclear interaction. First we
use the Gogny [37] force with the D1M [38] parametrization,
whose main characteristic is its finite range, which allows a
consistent treatment of pairing correlations using the same
two-body force that determines de particle-hole Hartree-
Fock potential. Although D1M was specifically tailored to
describe binding energies, it has been shown in a series of
papers [20,21,43–46] that D1M provides good results for many
low-energy nuclear observables. The other EDF used is the
recently proposed BCPM EDF [25] with its density-dependent

1Much in the same way as the one-dimensional harmonic oscillator
ground state energy is given by the sum of the potential energy at the
minimum plus half of the oscillator frequency times �.
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FIG. 1. (Color online) (a) HFB energy, (b) collective inertia, and (c) action represented as functions of particle number fluctuation �N2

for several relevant Q20 values (given in barns). All the curves start at the �N2 values of the minimum energy solutions.

pairing and effective mass equal to unity. Again BCPM has
been fitted to reproduce binding energies but has proved to
produce consistent low-energy results in a variety of cases [25]
including fission [26].

III. RESULTS

To illustrate the procedure, we will focus on the nucleus
234U whose fission properties were thoroughly studied in [26]
using the BCPM and Gogny D1M functionals. For both
functionals, the nucleus presents its ground state minimum at
Q20 = 12 b. Also for both functionals, the first fission barrier
is located at Q20 = 26 b, the fission isomer minimum is at
Q20 = 42 b, and the second fission barrier is at Q20 = 62 b.
As discussed thoroughly in [26] the main difference between
the two functionals is the inertia, which is roughly three times
larger for BCPM. This is probably a consequence of its larger
effective mass and the different pairing interactions used.

To find the 〈�N2〉 value minimizing the action, we carry
out constrained HFB calculations starting at the 〈�N2〉 value
minimizing the energy for each Q20 value of the fission
path. In this way we obtain curves for the relevant physical
quantities as a function of 〈�N2〉 for each value of Q20.
An example of such curves is shown in Fig. 1 for the Q20

values corresponding to the first and second fission barriers
and to the fission isomer, and at Q20 = 100 b, which was
chosen as a characteristic value for very large elongations.
We observe in Fig. 1(a) an almost parabolic behavior for the
energy as a function of 〈�N2〉 with the minimum located
at the self-consistent solution. In Fig. 1(b) the decrease of
the inertia with the inverse of 〈�N2〉2 (corresponding to the
law B ≈ 1/�2 [30,31]) is noticed. Finally, the integrand in
the action S of Eq. (1), computed with the ATDHFB version
of the inertia is plotted in Fig. 1(c). It shows a minimum
at 〈�N2〉 values much larger than the ones of the minimum
energy solution. The minimum value of the action integrand
does not coincide with the value obtained (self-consistently)
from the minimization of the energy, because the latter is up to
a factor of 3 larger. This large quenching reduces considerably

the action [Eq. (1)] that appears in the exponential of the
WKB formula. Therefore, the impact on the tSF values is
large. In this case we obtain 0.18×1023 and 0.21×1019 s
depending on the choice of the collective mass, ATDHFB or
GCM, respectively. Those values have to be compared with the
ones obtained minimizing the energy, namely, 0.81×1043 and
0.70×1030 s. We observe a reduction of 20 and 11 orders
of magnitude, which brings the theoretical predictions in
much closer agreement with experiment. Another beneficial
side effect of the action minimization is that results are
much less sensitive to the approach used to compute the
inertias. This remarkable reduction was observed in previous
calculations [36] by the Lublin group in other heavy nuclei.

The minimum action solutions have 〈�N2〉 values much
larger than the minimum energy configurations and therefore
have stronger pairing correlations. In [20,21,26] we analyzed
the impact on tSF of modifying the pairing strength and a strong
influence was observed. We have repeated those calculations
but now computing the lifetimes using the minimum action
principle. The results obtained with BCPM [26] (the ones for
Gogny D1M are similar [20]) are shown in Fig. 2 as a function
of the factor η used to modify the pairing strength.

We observe that the strong dependence of tSF with η in
the minimum energy calculation gets severely reduced in the
minimum action case. This is not so surprising because in the
minimum action case we are already exploring the appropriate
amount of pairing correlations in the search for the minimum
action configuration. This search can somehow compensate
for the changes induced by the varying interaction strength.
It is also noteworthy to mention that now both the ATDHFB
and GCM results are in much closer agreement than in the
minimum energy case.

Recently, fission calculations based on the minimum action
principle and using one of the Skyrme variants have been
presented [28]. The variables considered are the axial Q20

and triaxial Q22 multipole moments. The main conclusion
of that work is that minimum energy and minimum action
results are essentially the same. Obviously, the result is not
in contradiction with ours since different degrees of freedom
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FIG. 2. Spontaneous fission lifetimes of 234U obtained with
different approaches as a function of the η factor multiplying the
pairing interaction strength.

are considered. To further investigate this aspect we have
carried out action minimization calculations considering the
pairs of collective variables (Q20, Q30) and (Q20, Q40) to
explore the minimum action trajectory. The results obtained
with BCPM are summarized in Table I. The results obtained
considering Q30 and Q40 in the minimization of the action are
much closer to the ones obtained minimizing the energy than
the results obtained using pairing correlations as a relevant
collective variable in the action. This result can be understood
as a consequence of the weak dependence of the collective
inertia B(Q20) with Q30 and Q40 and agrees with previous
results also considering multipole moments in the action
minimization [27,28]. It is worth recalling that the coupling
between collective variables as in Eq. (2) is not considered in
the present calculation. It could lead to a stronger dependence
of the inertia on those variables and therefore to a larger
difference with the energy minimization results. However,
based on the difference of many orders of magnitude observed
in the pairing results, we can conclude that the pairing degree
of freedom is more relevant for the action minimization
calculations than the other multipole moment variables.

TABLE I. Spontaneous fission lifetimes computed with the
ATDHFB and GCM approximations to the collective inertias. Results
for different sets of collective variables used to search for the
minimum of the action are given.

Method tSF (ATDHFB) tSF (GCM)

Emin 0.81×1043 0.70×1030

Smin(Q20,�N 2) 0.18×1023 0.21×1019

Smin(Q20,Q30) 0.44×1042 0.64×1029

Smin(Q20,Q40) 0.12×1043 0.10×1029

TABLE II. Spontaneous fission lifetimes for several uranium
isotopes obtained using the minimum action principle with the
ATDHFB (A) and GCM (G) variants of the collective inertias.

Gogny D1M BCPM Expt.

Smin (A) Smin (G) Smin (A) Smin (G)

232U 5.4×1020 1.5×1017 8.6×1019 8.2×1016 2.5×1021

234U 7.3×1021 2.7×1018 1.7×1022 2.1×1018 4.7×1023

236U 2.8×1023 9.9×1019 1.9×1022 1.2×1018 7.8×1023

238U 1.6×1024 6.7×1020 6.1×1021 6.2×1017 2.6×1023

Finally, we show in Table II a summary of the tSF obtained
minimizing the action and using the two EDFs considered
and the two variants of the collective inertia for several
isotopes of uranium. When compared with the results obtained
minimizing the energy [20,21,26], the action minimization
results show a much better agreement with experiment as
well as a much reduced dispersion with the interaction used
and the variant of the collective mass considered. This is a
very important result because the theoretical interpretation of
fission was hampered by the large variability in the tSF values
depending on the pairing strength [20,21,26].

IV. CONCLUSIONS

The main conclusion of the paper is that the scheme in
which the minimum action principle is used to compute
tSF and the amount of pairing correlations is considered as
a collective variable gives results that strongly differ from
the ones where the fission path is determined by energy
minimization. The spontaneous fission lifetimes computed
minimizing the action are several orders of magnitude smaller
than the ones obtained from the traditional minimization of the
energy. This decrease improves dramatically the agreement
with the experimental data. In addition, the minimum action
results show a weaker dependence with the ingredients of
the calculation than the minimum energy ones. This is an
important result for the credibility of mean field techniques to
adequately reproduce fission observables. It is also shown that
considering other variables in the minimization of the action
such as the multipole moments Q30 and Q40 has little impact on
the results being equivalent to the energy minimization ones.
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Nucl. Phys. A 386, 79 (1982).

[4] N. Nikolov, N. Schunck, W. Nazarewicz, M. Bender, and J. Pei,
Phys. Rev. C 83, 034305 (2011).

[5] J. McDonnell, N. Schunck, and W. Nazarewicz, in Fission and
Properties of Neutron-Rich Nuclei (World Scientific, Singapore,
2013), p. 597.

[6] E. Yuldashbaeva, J. Libert, P. Quentin, and M. Girod, Phys. Lett.
B 461, 1 (1999).

[7] A. Baran, J. A. Sheikh, J. Dobaczewski, W. Nazarewicz, and A.
Staszczak, Phys. Rev. C 84, 054321 (2011).

[8] P. Ring and P. Shuck, The Nuclear Many-Body Problem
(Springer-Verlag, Berlin, 1980).

[9] M. Bender, P.-H. Heenen, and P.-G. Reinhard, Rev. Mod. Phys.
75, 121 (2003).

[10] J. Erler, K. Langanke, H. P. Loens, G. Martinez-Pinedo, and
P.-G. Reinhard, Phys. Rev. C 85, 025802 (2012).

[11] A. Staszczak, A. Baran, and W. Nazarewicz, Phys. Rev. C 87,
024320 (2013).

[12] J. L. Egido and L. M. Robledo, Phys. Rev. Lett. 85, 1198
(2000).

[13] M. Warda, J. L. Egido, L. M. Robledo, and K. Pomorski, Phys.
Rev. C 66, 014310 (2002); ,Intl. J. Mod. Phys. E 13, 169 (2004).

[14] J.-P. Delaroche, M. Girod, H. Goutte, and J. Libert, Nucl. Phys.
A 771, 103 (2006).

[15] N. Dubray, H. Goutte, and J.-P. Delaroche, Phys. Rev. C 77,
014310 (2008).

[16] V. Martin and L. M. Robledo, Int. J. Mod. Phys. E 18, 788
(2009).

[17] S. Perez-Martin and L. M. Robledo, Int. J. Mod. Phys. E 18, 861
(2009).

[18] W. Younes and D. Gogny, Phys. Rev. C 80, 054313 (2009).
[19] M. Warda and L. M. Robledo, Phys. Rev. C 84, 044608

(2011).
[20] R. Rodrı́guez-Guzmán and L. M. Robledo, Phys. Rev. C 89,

054310 (2014).
[21] R. Rodrı́guez-Guzmán and L. M. Robledo, Eur. Phys. J. A 50,

142 (2014).
[22] H. Abusara, A. V. Afanasjev, and P. Ring, Phys. Rev. C 82,

044303 (2010).

[23] B. N. Lu, E. G. Zhao, and S. G. Zhou, Phys. Rev. C 85, 011301
(2012).

[24] A. V. Afanasjev, in Fission and Properties of Neutron-Rich
Nuclei (World Scientific, Singapore, 2013), p. 303.

[25] M. Baldo, L. M. Robledo, P. Schuck, and X. Viñas, Phys. Rev.
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