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Relativistic description of nuclear matrix elements in neutrinoless double-β decay
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Background: Neutrinoless double-β (0νββ) decay is related to many fundamental concepts in nuclear and
particle physics beyond the standard model. Currently there are many experiments searching for this weak
process. An accurate knowledge of the nuclear matrix element for the 0νββ decay is essential for determining
the effective neutrino mass once this process is eventually measured.
Purpose: We report the first full relativistic description of the 0νββ decay matrix element based on a state-of-
the-art nuclear structure model.
Methods: We adopt the full relativistic transition operators which are derived with the charge-changing nucleonic
currents composed of the vector coupling, axial-vector coupling, pseudoscalar coupling, and weak-magnetism
coupling terms. The wave functions for the initial and final nuclei are determined by the multireference covariant
density functional theory (MR-CDFT) based on the point-coupling functional PC-PK1. Correlations beyond the
mean field are introduced by configuration mixing of both angular momentum and particle number projected
quadrupole deformed mean-field wave functions.
Results: The low-energy spectra and electric quadrupole transitions in 150Nd and its daughter nucleus 150Sm are
well reproduced by the MR-CDFT calculations. The 0νββ decay matrix elements for both the 0+

1 → 0+
1 and 0+

1 →
0+

2 decays of 150Nd are evaluated. The effects of particle number projection, static and dynamic deformations,
and the full relativistic structure of the transition operators on the matrix elements are studied in detail.
Conclusions: The resulting 0νββ decay matrix element for the 0+

1 → 0+
1 transition is 5.60, which gives the most

optimistic prediction for the next generation of experiments searching for the 0νββ decay in 150Nd.
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I. INTRODUCTION

Double-β (ββ) decay is a second-order weak process in
which a nucleus decays to the neighboring nucleus by emitting
two electrons and, usually, other light particles [1],

(A,Z) → (A,Z + 2) + 2e− + light particles. (1)

Owing to the huge β decay background, events of this process
could, so far, only be recorded in some even-even nuclei,
where the β decay is energetically forbidden. There are several
ββ decay modes including the two-neutrino double-β (2νββ)
decay mode,

(A,Z) → (A,Z + 2) + 2e− + 2ν̄e, (2)

and the neutrinoless (0νββ) decay mode,

(A,Z) → (A,Z + 2) + 2e−. (3)

The 2νββ mode is allowed in the standard model (SM),
while the existence of the 0νββ decay would require to go
beyond the SM. Evidence for the 0νββ decay would be a proof
that neutrinos with definite masses are Majorana particles
and that neutrino masses have an origin beyond the SM [2].
This conclusion is independent of the underlying mechanism
governing the weak process [3].
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So far, half-lives of the 2νββ decay have been measured in
11 isotopes, which are of the order of 1018−24 y [4,5]. However,
the 0νββ event has never been seen. Only limits of the half-
lives can be drawn from current experiments, which are T 0ν

1/2 >

1021−25 y. Searches for the 0νββ signals in the ββ candidates
are ongoing or proposed in a number of laboratories around
the world (see Refs. [1,6,7] for comprehensive reviews).

Limits of the half-lives T 0ν
1/2 drawn from experiments

provide stringent limits on the parameters associated with
the assumed underlying mechanism. Assuming a long-range
interaction based on the exchange of a light Majorana neutrino
between two weak interaction vertices and restricting the
currents to the standard (V − A) form, the part that is
proportional to the neutrino mass will be picked out from
the neutrino propagator by the same helicity of the coupled
leptonic currents [1,8]. Therefore, in this case the associated
parameter is the effective Majorana neutrino mass. This is
called the mass mechanism. Being regarded as the minimal
extension of the SM, the mass mechanism is the most popular
assumption in current existing theoretical calculations.

Using the mass mechanism, one expects that the 0νββ
observation, combined with the results of neutrino oscillation
experiments, will allow to obtain important information about
the character of the neutrino mass spectrum, about the minimal
neutrino mass m1 and about the Majorana Charge-Parity
violating phase [2,9]. To extract the neutrino mass, the inverse
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half-life can be factorized as

[
T 0ν

1/2

]−1 = G0νg
4
A(0)

∣∣∣∣ 〈mν〉
me

∣∣∣∣
2

|M0ν(0+
I → 0+

F )|2, (4)

where the axial-vector coupling constant gA(0) and the electron
mass me are constants, and the kinematic phase-space factor
G0ν can be determined precisely [10]. Therefore, the accurate
knowledge of the nuclear matrix element (NME) M0ν plays
a crucial role for extracting the effective neutrino mass 〈mν〉
from the measurement of the decay rate.

The calculation of the NME requires two main ingredients.
One is the decay operator, which reflects the mechanism
governing the decay process. The other is the wave functions
of the initial and final states. They are provided by theoretical
nuclear models and carry the nuclear structural information.
Methods used in the literature to calculate the wave func-
tions include the quasiparticle random phase approximation
(QRPA) [11–17], the interacting shell model (ISM) [18–20],
the interacting boson model (IBM) [21,22], the projected
Hartree-Fock-Bogoliubov (PHFB) [23–25], and the nonrel-
ativistic energy density functional (NREDF) theories [26–29].
In the PHFB, the beyond-mean-field correlation connected
with the restoration of broken rotational symmetry is taken
into account. In the NREDF, additional correlations connected
with particle number projection, as well as fluctuations in
quadrupole shapes [26] and pairing gaps [29], are included.
Therefore, this method is also referred to as the multireference
density functional theory. All these methods used so far are
based on nonrelativistic quantum mechanics. The nonrelativis-
tic reduced transition operators are therefore adopted in the
calculations of the NMEs for the neutrinoless double-β decay.

In the past decades, covariant density functional theory
(CDFT) has been proven to be a very powerful tool in nuclear
physics. On the mean-field level, the single-reference CDFT,
or the relativistic mean-field (RMF) theory, provides a good
description of the static ground-state properties for finite
nuclei [30–34]. The relativistic version of energy density func-
tional (REDF) takes into account Lorentz invariance, which
puts stringent restrictions on the number of parameters. The
spin-orbit potential is included naturally and uniquely, as well
as the time-odd components of the nuclear mean field. With
the merits inherited, this method has also been generalized
beyond the static mean-field level by the RPA [35,36] and
QRPA [37–40] or by the multireference CDFT (MR-CDFT)
method [41–47], so that it could be applied for the description
of the excited states, electromagnetic properties, and the weak
transitions including the single- and double-β decay.

Relativistic QRPA calculations based on the CDFT have
been carried out for the NMEs of the 2νββ decay [48], where
the transition operator has the same form as that used in the
nonrelativistic studies. However, research in the 0νββ mode
has still to be done. The purpose of this work is to close this
gap and to give a relativistic description for the NMEs of
the 0νββ decay within the framework of MR-CDFT. First,
MR-CDFT is able to give a unified description of all the 0νββ
candidates including heavy deformed nuclei. Furthermore,
reliable wave functions can be provided, with the restoration
of symmetries by angular momentum projection (AMP) and
particle number projection (PNP), as well as the inclusion

of configuration mixing by the generator coordinate method
(GCM). In addition, because the wave functions are Dirac
spinors, the transition operator derived from the Feynman
diagram of weak interaction, which is a 4 × 4 matrix, can be
directly sandwiched between the initial and final states without
further reduction. Therefore, this investigation also provides a
way of testing the validity of the nonrelativistic reduction for
the decay operator adopted in the nonrelativistic studies.

As the first attempt we investigate the 0νββ decay of 150Nd,
which is one of the most promising candidates for the 0νββ
decay experiments. It has the second highest end-point energy
(Qββ = 3.37 MeV) and the largest phase-space factor G0ν

for the decay [10]. It does not seem feasible that this heavy
deformed nucleus can be treated in the near future by a reliable
shell-model calculation. However, research has been done with
other methods so that comparisons can be made. In particular,
detailed discussion can be found for 150Nd and the daughter
nucleus 150Sm in Ref. [26], including the results for the spectra
of low-lying excited states, the E2 transition probabilities, the
collective wave functions, and the NMEs between them. We
investigate the same nuclei to have a direct comparison of
the results from two different state-of-the-art energy density
functional (EDF) methods, one of them nonrelativistic and
another relativistic. Previous research has shown that the
nuclear deformation is responsible for the suppression of
the transition matrix element for 150Nd. Therefore, we pay
particular attention to the effects of deformation and the
corresponding shape fluctuations. Moreover, 150Nd is one of
the two isotopes where the transition to the first 0+ excited
states of their daughter nuclei have been recorded in the 2νββ
decay experiments [4]. Therefore, from the experimental point
of view, it is interesting to evaluate also the 0+

1 → 0+
2 transition

in addition to the ground-state to ground-state transition.
There have been numerous discussions about the un-

certainties in the calculated NMEs related to the closure
approximation, the inclusion of the high-order currents and the
tensorial part induced by the high-order currents, the treatment
of the finite nucleon size correction as well as the short-range
correlation, and the use of different renormalized values for
the axial-vector coupling constant gA(0), for instance, in
Refs. [11,13,24,25,49–51]. Because it is not our prior task in
this paper to estimate these uncertainties, we just clarify here
a few things about our calculations. (1) The matrix elements
are calculated in the closure approximation. (2) The high-order
currents are fully incorporated and the tensorial part is included
automatically in the relativistic formalism. (3) The finite
nucleon size correction is taken care of by the momentum-
transfer-dependent form factors. (4) According to a recent
study [52], realistic values of short-range correlation have
only a small effect (<7%) on the matrix elements; thus, we
omit the contribution of short-range correlation presently. (5)
Investigations [53,54] show that the chiral two-body hadronic
currents provide important contributions to the quenching of
Gamow-Teller transitions. A momentum-transfer dependence
for this quenching effect is predicted. Therefore, it is more
reasonable to include the contributions of two-body currents
approximately (on the one-body level) by introducing an
effective geff

A (q2) than introducing a renormalized constant
geff

A (0). Because the study on the effect of chiral two-body
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currents is far beyond the scope of this paper, the coupling
constant is set to gA(0) = 1.254 (not to some renormalized
values) in the following discussion.

This paper is organized in the following way. In Sec. II, the
derivation of the 0νββ decay operator in the mass mechanism,
the formalism of the MR-CDFT, and the expressions for
the 0νββ decay matrix elements in MR-CDFT are briefly
introduced. Section III is devoted to the numerical details.
In Sec. IV we present the results for the nuclear structure
properties and the NMEs of the 0νββ decay. Last, the
investigations are summarized in Sec. V.

II. THEORETICAL FRAMEWORK

A. Decay operator

Derivations of the 0νββ decay operator can be found in
many papers, such as Refs. [6,11,14]. However, the authors
end up with the nonrelativistic reduced operator. Therefore, to
have a consistent relativistic description, it becomes necessary
to repeat the crucial steps of the derivation and to show the
form of the relativistic operator involved in our calculations.

The starting point is the semileptonic charged-current weak
Hamiltonian [55],

Hweak(x) = GF cos θC√
2

jμ(x)J †
μ(x) + H.c., (5)

where GF is the Fermi constant, θC is the Cabbibo angle, and
the standard leptonic current adopts (V − A) form:

jμ(x) = ē(x)γ μ(1 − γ5)νe(x). (6)

The hadronic current is expressed in terms of nucleon field ψ ,

J †
μ(x) = ψ̄(x)

[
gV (q2)γμ + igM (q2)

σμν

2mp

qν

− gA(q2)γμγ5 − gP (q2)qμγ5

]
τ−ψ(x), (7)

where mp is the nucleon mass, qμ is the momentum transferred
from leptons to hadrons, τ− is the isospin lowing operator, and
σμν = i

2 [γμ,γν]. The form factors gV (q2), gA(q2), gM (q2),
and gP (q2), in which the effects of the finite nucleon size are
incorporated, represent respectively, in the zero-momentum-
transfer limit, the vector, axial-vector, weak-magnetism, and
induced pseudoscalar coupling constants. We adopt here the
same expressions for the form factors as in Ref. [11].

By using the long-wave approximation for the outgoing
electrons and neglecting the small energy transfer between
nucleons, the NME M0ν of the 0νββ decay can be obtained
after a few steps [9],

M0ν(0+
I → 0+

F ) ≡ 〈0+
F |Ô0ν |0+

I 〉, (8)

where |0+
I/F 〉 is the wave function of the initial (I )/final (F )

state, and the decay operator reads

Ô0ν = 4πR

g2
A(0)

∫∫
d3x1d

3x2

∫
d3q

(2π )3

eiq·(x1−x2)

q

×
∑
m

J †
μ(x1)|m〉〈m|J μ†(x2)

q + Em − (EI + EF )/2
, (9)

where R = r0A
1/3, with r0 = 1.2 fm introduced to make

the NME dimensionless. The summation runs over all the
possible states |m〉 of the intermediate nucleus, and Em is the
corresponding energy of each state.

Replacing the state-dependent energy with an average one:
Em → Ē, the intermediate states can be eliminated by making
use of the relation

∑
m |m〉〈m| = 1. Then the operator becomes

4πR

g2
A(0)

∫∫
d3x1d

3x2

∫
d3q

(2π )3

eiq·(x1−x2)

q

J †
μ(x1)J μ†(x2)

q + Ed

,

(10)

where Ed ≡ Ē − (EI + EF )/2 is the average excitation en-
ergy. There are claims that this closure approximation is
reliable in the calculation of M0ν , because different values
of the energy parameter Ed within a certain range will not lead
to dramatic changes of M0ν [25,49–51]. The sensitivity of the
matrix elements to the changes of Ed is discussed further later.

Considering the four terms in Eq. (7), the operator can
be decomposed into the vector coupling (VV), axial-vector
coupling (AA), axial-vector and pseudoscalar coupling (AP),
pseudoscalar coupling (PP), and weak-magnetism coupling
(MM) channels, as

Ô0ν =
∑

i

Ô0ν
i , (i = VV,AA,AP,PP,MM) , (11)

with each component being

Ô0ν
i = 4πR

g2
A(0)

∫∫
d3x1d

3x2

∫
d3q

(2π )3

eiq·(x1−x2)

q(q + Ed )
[J †

μJ μ†]i ,

(12)

and the “two-current” operators [J †
μJ μ†]i being

g2
V (q2)(ψ̄γμτ−ψ)(1)(ψ̄γ μτ−ψ)(2), (13a)

g2
A(q2)(ψ̄γμγ5τ−ψ)(1)(ψ̄γ μγ5τ−ψ)(2), (13b)

2gA(q2)gP (q2)(ψ̄γ γ5τ−ψ)(1)(ψ̄qγ5τ−ψ)(2), (13c)

g2
P (q2)(ψ̄qγ5τ−ψ)(1)(ψ̄qγ5τ−ψ)(2), (13d)

g2
M (q2)

(
ψ̄

σμi

2mp

qiτ−ψ

)(1) (
ψ̄

σμj

2mp

qjτ−ψ

)(2)

. (13e)

B. Nuclear wave function

This work is based on the MR-CDFT, discussed in detail in
Ref. [45], taking into account the symmetry restoration by the
projection method and the configuration mixing by the GCM.
Therefore, the wave functions for the initial and final nuclei
in Eq. (8) are derived by the MR-CDFT calculations. The trial
projected GCM wave function |JMNZ; α〉 reads [47]

|JMNZ; α〉 =
∑
q,K

f JK
α (q)P̂ J

MKP̂ N P̂ Z|q〉, (14)

where α = 1,2, . . . distinguishes different eigenstates of the
collective Hamiltonian for given angular momentum J , and |q〉
denotes a set of RMF + BCS states with different quadrupole
deformations q ≡ (β,γ ). The particle number projectors P̂ Nτ
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have the form

P̂ Nτ = 1

2π

∫ 2π

0
dϕτ e

iϕτ (N̂τ −Nτ ) (τ = n,p), (15)

and the operators P̂ J
MK for three-dimensional AMP are

P̂ J
MK = 2J + 1

8π2

∫
d�DJ∗

MK (�)R̂(�), (16)

where � represents the Euler angles (φ,θ,ψ), and the
measure is d� = dφ sin θdθdψ . DJ

MK (�) is the Wigner D
function. The rotational operator is chosen in the notation of
Edmonds [56]: R̂(�) = eiφĴz eiθĴy eiψĴz .

The weight functions f JK
α (q) in the wave function of

Eq. (14) are determined by requiring that the expectation value
of the Hamiltonian is stationary with respect to an arbitrary
variation δf JK

α (q), which leads to the Hill-Wheeler-Griffin
equation [57],∑

q ′,K ′

[
H J

KK ′(q,q ′) − EJ
α N J

KK ′ (q,q ′)
]
f JK ′

α (q ′) = 0, (17)

where the kernel function contains a Hamiltonian kernel
H J

KK ′ (q,q ′) and a norm kernel N J
KK ′(q,q ′) [45].

Solving the above equation as in Ref. [45], one can
determine both the energies EJ

α and the amplitudes f JK
α (q),

f JK
α (q) ≡ f J

α (i) =
∑

k

gJα
k√
nJ

k

uJ
k (i), (18)

where the index i has a one-to-one correspondence with the
mesh point (K,q) in the K

⊗
q space and nJ

k and uJ
k (i)

are the eigenvalues and the corresponding eigenstates of the
norm N J (i,i ′). EJ

α and gJα
k are the eigenvalues and the

corresponding eigenvectors, respectively, of the Hamiltonian
constructed with the “natural states” [58] with nJ

k 	= 0:

HJ
kl =

∑
ii ′

uJ∗
k (i)√
nJ

k

H J (i,i ′)
uJ∗

l (i ′)√
nJ

l

. (19)

The collective wave functions gJ
α (i) are constructed as

gJ
α (i) =

∑
k

gJα
k uJ

k (i), (20)

where gJ
α (i) are normalized as

∑
i g

J∗
α (i)gJ

α′(i) = δαα′ and,
therefore, |gJ

α (i)|2 can be interpreted as a probability ampli-
tude. More details about the calculations of observables within
this framework can be found in Ref. [45].

C. Evaluation of NME

In the following investigation we concentrate on the wave
functions with axial symmetry, with one collective coordinate
q = β, and we restrict ourselves to states with the quantum
numbers Jπ = 0+. With the GCM wave functions the NME
in Eq. (8) can be expressed as

M0ν =
∑
βI ,βF

f ∗
0+

F
(βF )f0+

I
(βI )M0ν(βI ,βF ), (21)

with the projected NMEs at different deformations:

M0ν(βI ,βF ) = 〈βF |Ô0νP̂ J=0P̂ NI P̂ ZI |βI 〉. (22)

In these matrix elements we keep explicitly the projection
operators on one side of the operator only (single projection),
because it is equivalent to the double projection on both
sides. To prove this we consider for the sake of simplicity
only the projection onto good proton number. In this case
the wave function P̂ Z|βI 〉 contains only components with
proton number Z. The operator Ô0ν creates two protons and
therefore the wave function Ô0νP̂ Z|βI 〉 has only components
with proton number Z + 2. Applying P̂ Z+2 onto this function
is equivalent with the unity, i.e.,

〈βF |P̂ Z+2Ô0νP̂ Z|βI 〉 = 〈βF |Ô0νP̂ Z|βI 〉. (23)

The NME M0ν in Eq. (21) can be regarded as a weighted
summation over the matrix elements with different initial
and final deformations. This summation leads, therefore, to
configuration mixing in the nuclear wave functions.

The wave function P̂ J=0P̂ N P̂ Z|β〉 in Eq. (22) is not
normalized. For later convenience and to compare with PHFB
calculations [24,25], we also introduce a single-configuration
transition matrix element M̃0ν(βI ,βF ) between the normalized
initial and normalized final states with definite deformations
βI and βF ,

M̃0ν(βI ,βF ) = NFNI 〈βF |Ô0νP̂ J=0P̂ NI P̂ ZI |βI 〉, (24)

with N−2
a = 〈βa|P̂ J=0P̂ Na P̂ Za |βa〉 for a = I,F . Note that

this single-configuration matrix element is normalized at each
configuration (βI ,βF ) with the norm of the two projected
states. This quantity gives the results of the PHFB method for
the NME. It shows the influence of the nuclear deformations on
the strength of the 0νββ decay, but it does not take into account
fluctuations in deformation space, which are very important in
transitional nuclei.

Writing the projection operators explicitly and using the
second-quantized form of Ô0ν , the matrix element in Eq. (22)
becomes

M0ν(βI ,βF ) =
∑
abcd

〈ab|Ô|cd〉
∫ π

0

sin θdθ

2

×
∫ 2π

0

dϕn

2π
e−iϕnNI

∫ 2π

0

dϕp

2π
e−iϕpZI

×〈βF |c(π)†
a c

(π)†
b c

(ν)
d c(ν)

c |β̃I 〉, (25)

where c
(ν)
d ,c(ν)

c are neutron annihilation and c
(π)†
a ,c

(π)†
b are

proton creation operators. The indices c,d run over a complete
set of single neutron states and a,b over a complete set of
single proton states. The shorthand notation |β̃I 〉 stands for

|β̃I 〉 ≡ eiθĴy eiϕnN̂ eiϕpẐ|βI 〉. (26)

The crucial part that contains the nuclear structural in-
formation in Eq. (25) is the two-body transition density,
〈βF |c(π)†

a c
(π)†
b c

(ν)
d c(ν)

c |β̃I 〉. Provided that the states |βF 〉 and |β̃I 〉
are not orthogonal, one can use the extended Wick’s theorem
of Refs. [59,60] and express the two-body transition density
as a product of a norm overlap and two one-body transition
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pairing tensors as

〈βF |c(π)†
a c

(π)†
b c

(ν)
d c(ν)

c |β̃I 〉
= n(θ,ϕn,ϕp; βI ,βF )κ01∗(π)

ab (θ,ϕp; βI ,βF )

× κ
10(ν)
cd (θ,ϕn; βI ,βF ). (27)

The norm overlap is given by

n(θ,ϕn,ϕp; βI ,βF ) ≡ 〈βF |β̃I 〉, (28)

and the transition pairing tensor matrices are

κ
01∗(π)
ab (θ,ϕp; βI ,βF ) ≡ 〈βF |c(π)†

a c
(π)†
b |β̃I 〉(π)

〈βF |β̃I 〉(π)
, (29a)

κ
10(ν)
cd (θ,ϕn; βI ,βF ) ≡ 〈βF |c(ν)

d c(ν)
c |β̃I 〉(ν)

〈βF |β̃I 〉(ν)
. (29b)

Details about the evaluation of the two-body matrix element
(TBME) 〈ab|Ô|cd〉 in Eq. (25) is given in the next section and
in the Appendix.

III. NUMERICAL DETAILS

In the present work we restrict ourselves to axial symmetry.
In this case the complicated GCM + PNP + 3DAMP model
is reduced to a relatively simple GCM + PNP + 1DAMP
calculation.

On the mean-field level, to obtain the set of intrinsic
states |β〉 with different deformations β, constrained RMF
calculations are performed with the pair correlations treated
by the BCS method. To solve the Dirac equation, the single-
particle states are expanded in the three-dimensional harmonic
oscillator basis [61] with Nsh = 12 major shells. We use
the nonlinear point-coupling functional PC-PK1 [62] in the
particle-hole channel, and the density-independent δ force
in the particle-particle channel. In particular, the pairing
strength constants Vτ for neutrons and protons are adjusted
by reproducing the average pairing gap,

�v2 ≡
∑

k fkv
2
k�k∑

k fkv
2
k

, (30)

provided by the separable finite-range pairing force [63,64],
where fk = f (εk) is an energy-dependent cutoff func-
tion given in Ref. [65]. With the adopted values Vn =
−314.55 MeV fm3 and Vp = −346.5 MeV fm3, the average
pairing gaps are reproduced very well at different deforma-
tions, as shown in Fig. 1.

In the PNP + 1DAMP (PNAMP from now on) procedure,
a Gaussian-Legendre quadrature is used for the integrals over
the gauge angle ϕ and the Euler angle θ . Convergence of
the potential energy curves (PECs) can be reached when the
numbers of mesh points for ϕ and θ in the interval [0,π ] are
chosen to be nϕ = 7 and nθ = 14.

In the GCM calculation, the generator coordinates are
chosen in the interval β ∈ [−0.4,0.6] with a step size �β =
0.1. In the Hill-Wheeler-Griffin equation, eigenvectors of the
norm overlap kernel with very small eigenvalues nJ

k /nJ
max < χ

are removed from the GCM basis [45]. For the chosen
generator coordinates and the cutoff parameter χ = 1 × 10−3,

FIG. 1. (Color online) Average pairing gap �v2
for (a) neutrons

and (b) protons in 150Nd as a function of deformation β obtained
by the RMF + BCS method, using the separable finite-range pairing
force (BCS-s) and the δ pairing force with adjusted strength constants
Vτ (BCS-δ), respectively.

fully converged results can be achieved for the low-lying states
with J � 6 in 150Nd and 150Sm. Finally ten natural states are
included for the J = 0 states.

From the last section we see that we obtain the transition
matrix element M0ν(βI ,βF ) by evaluating expression (25). As
a basis we use for the large and small components of the
single-particle spinors |a〉, |b〉, |c〉, |d〉 the spherical harmonic
oscillator (SHO) states [for details, see Eq. (A5)]. In this case
the following expression has to be calculated at every mesh
point of the Euler angle θ , the gauge angles (ϕn,ϕp), and the
generator coordinates (βI ,βF ):∑

1234

(12|Ô2×2|34)n(θ,ϕn,ϕp; βI ,βF )

×κ
01∗(π)
12 (θ,ϕp; βI ,βF )κ10(ν)

43 (θ,ϕn; βI ,βF ). (31)

The notation |1) refers to the SHO wave function |1) ≡
|n1l1j1m1p1〉 with the radial quantum number n, the angular
momentum quantum numbers j,m, and the quantum number
p = f,g characterizing large and small components of the
relativistic spinor. Because we express here the scalar product
of the initial and final spinors explicitly, the operator Ô2×2,
depending on p1, p2, p3, and p4, is part of the full 4 × 4 matrix
Ô in Eq. (25). The summation

∑
1234 in Eq. (31) includes

a fourfold loop of the complete SHO basis. To reduce the
computational effort we introduce additional cutoff parameters
ζ1 and ζ2 to avoid in this loop the calculation of terms with
small contributions:

κ
01∗(π)
12 < ζ1 or κ

01∗(π)
12 κ

10(ν)
43 < ζ2. (32)

In the case of spherical symmetry corresponding numerical
checks have been carried out. In Fig. 2 we study the influence
of the cutoff parameters on the single-configuration matrix
elements M̃0ν(βI ,βF ) defined in Eq. (24). In the following
applications we used the values of ζ1 = 10−4 and ζ2 = 10−5

with resulting errors less than 1% for M̃0ν(βI ,βF ), and with a
considerable reduction of computer time.

At last, the reliability of the closure approximation has to
be tested in the relativistic scenario. To that end, we change the
values of Ed in Eq. (10) from 0 to 20 MeV and compare the
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FIG. 2. (Color online) Single-configuration matrix element
M̃0ν(βI ,βF ) defined in Eq. (24) between the spherical states of
150Nd and 150Sm, as a function of the cutoff parameters ζ1 and
ζ2, respectively. The horizontal dash-dotted line denotes the value
corresponding to ζ1 = 0 and ζ2 = 10−5.

corresponding single-configuration matrix element M̃0ν(βI =
0,βF = 0). In Fig. 3 it is shown that the matrix element and
the contributions from different channels are insensitive to the
change of Ed . In particular, the calculations with 8 MeV �
Ed � 20 MeV lead to similar values for the matrix element
with derivations less than 10% from its central value. The
empirical value Ed = 1.12A1/2 MeV � 13.72 MeV proposed
by Haxton et al. [66] is used in the present calculations. This
is very close to the central value we just mentioned.

IV. RESULTS AND DISCUSSION

A. Nuclear structure properties

The GCM + PNAMP calculations have been carried out
to obtain the wave functions for the initial and final states
used in the evaluation of the NMEs for the 0νββ decay. In
Fig. 4 the intrinsic PECs are shown derived from constrained

FIG. 3. (Color online) Single-configuration matrix element
M̃0ν(βI ,βF ) between the spherical states of 150Nd and 150Sm, as a
function of the energy denominator Ed in Eq. (10). The empirical
value of Ed = 1.12A1/2 MeV is marked by a vertical dash-dotted
line.

FIG. 4. (Color online) The intrinsic (RMF) and the PNAMP
(N&Z,J = 0,2,4,6) PECs, together with the energy and the average
axial deformation of the lowest GCM state for each angular
momentum in 150Nd and 150Sm. The AMP PECs, which are provided
by calculations without exact number projection, are also presented
for J = 0.

RMF + BCS calculations for the nuclei 150Nd and 150Sm, as
well as the corresponding angular momentum and particle
number projected PECs with J = 0,2,4,6. For β = 0 the
AMP has no influence. The lowering in energy at this point is
therefore caused only by number projection. For both nuclei we
observe energy gains of 2−5 MeV by the number projection.
A prolate deformed minimum and an oblate deformed local
minimum are observed for each of the PECs. For 150Nd the
unprojected prolate minimum is rather flat. In fact, as observed
in experiment [67] and also found in GCM calculations [68]
based on the PC-F1, this nucleus is very close to a quantum
phase transition from spherical to prolate with a spectrum
of X(5) character [69]. Therefore, it is essential to take into
account for this nucleus quantum fluctuations in deformation
space. For both nuclei rotational yrast bands are constructed
by AMP after the variation based on the wave functions around
the prolate minimum, with average axial deformations β � 0.3
for 150Nd and β � 0.2 for 150Sm.

In Fig. 4, the angular momentum projected energy curves
(without PNP) of J = 0 with the average particle numbers
constrained [45,46] are also included (dash-double-dotted
line). By comparison one can see that the exact PNP shifts
the position of the energy minimum for 150Nd to smaller
deformation. This could be possibly understood by the fact
that PNP increases slightly the pairing correlations driving to
smaller deformations.

In Fig. 5 we show the squares of collective wave functions
defined in Eq. (20) for the 0+ states, which denote the proba-
bility distributions of the corresponding states in deformation
space. For the ground state of 150Nd, wave functions calculated
by both the GCM + PNAMP and the GCM + AMP methods
are peaked at β = 0.3, but the probability distribution shifts
from the right side of the peak with larger deformation to
the left side with weaker deformation after considering the
PNP. The change in collective wave functions of this nucleus
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FIG. 5. (Color online) Squares of collective wave functions
|gJ=0

α (β)|2 obtained by the GCM + PNAMP and GCM + AMP
methods for the ground states of 150Nd and 150Sm, as well as for
the first excited 0+ state of 150Sm.

is consistent with the change of shapes of the J = 0 energy
curve observed in Fig. 4(a) with and without PNP. Meanwhile,
the wave functions of the 0+

1 and 0+
2 states of 150Sm obtained

by the two methods are very similar. Consequently, the overlap
between 150Nd(0+

1 ) and 150Sm(0+
1 ) increases by PNP, while the

overlap between 150Nd(0+
1 ) and 150Sm(0+

2 ) decreases.
To prove the validity of our model for the description of

150Nd and 150Sm, we show in Fig. 6 their low-lying excitation
properties obtained by the GCM + PNAMP and GCM + AMP
methods and compare them with available experimental data.
It turns out that the GCM + AMP calculation reveals similar

FIG. 6. (Color online) Low-lying energy levels and E2 transition
probabilities for the nuclei 150Nd and 150Sm obtained by the
GCM + PNAMP and GCM + AMP methods in comparison with
experimental data.

characteristics as the GCM + PNAMP method. The level
schemes are in rather good agreement with the data, but in
both cases the calculated spectra are systematically stretched
as compared to the experimental bands. This is a well-known
fact observed also in other calculations of this type [47]:
Because AMP is performed only after variation, time-odd
components and alignment effects are neglected, leading to an
underestimated momentum of inertia. The agreement of the
calculated E2 transition probabilities with data is remarkable,
especially in the case of GCM + PNAMP. This indicates
that our GCM + PNAMP-wave functions have very good
deformation properties as compared to experiment.

B. Nuclear matrix elements

1. Effects of number projection

To check the numerical accuracy of our projection tech-
niques, we investigate the relation (23) numerically; i.e., we
show that single PNP is equivalent to double PNP in the
calculation of the matrix element for the 0νββ decay operator.

In Table I, nϕI
(nϕF

) denotes the number of mesh points
used in the integrals (25) over the gauge angle in the neutron
or proton number projection for the initial (final) state. The
calculation reduces to the pure AMP case when the number of
mesh points is set to 1. As shown in the table, for the matrix
elements of Ô0ν , calculations with single PNP for the initial
state, with single PNP for the final state, and with double PNP
for both of the states lead, as expected, to identical results.
This shows clearly that number projection is carried out with
sufficient accuracy in our calculations. Therefore, in practice,
we only keep the projection operators on the side of the mother
nucleus.

To investigate the effect of number projection on the 0νββ
decay matrix elements, we display in Fig. 7 the values of
single-configuration matrix elements M̃0ν(βI ,βF ) in Eq. (24)
obtained with and without PNP in the case of βI = βF . As
we can see, for both the spherical and the deformed cases,
the values of the single-configuration matrix elements are not
significantly affected by PNP. Of course, this applies only for
the matrix elements with fixed deformation. However, as we
see in Fig. 5, the weights of the different deformations in the
GCM wave functions depend on PNP and therefore, when
using the full GCM matrix elements, one should include PNP.

TABLE I. Matrix elements of the 0νββ decay operator
〈βF |P̂ NF P̂ ZF Ô0ν P̂ J=0P̂ NI P̂ ZI |βI 〉 and contributions from the var-
ious coupling channels. The results without PNP (nϕI

= 1, nϕF
= 1),

with single PNP for the initial state (nϕI
= 7, nϕF

= 1), with single
PNP for the final state (nϕI

= 1, nϕF
= 7), and the results with double

PNP (nϕI
= 7, nϕF

= 7) are compared.

nϕI
nϕF

VV AA AP PP MM Total

1 1 2.552 12.588 −4.025 1.698 0.519 13.332
7 1 0.196 0.982 −0.309 0.130 0.040 1.039
1 7 0.196 0.982 −0.309 0.130 0.040 1.039
7 7 0.196 0.982 −0.309 0.130 0.040 1.039
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FIG. 7. (Color online) Single-configuration matrix elements
M̃0ν(βI ,βF ) defined in Eq. (24) with βI = βF for transitions from
150Nd to 150Sm, obtained by calculations with PNP (PNAMP) and
without (AMP).

2. Effects of deformation

The NME M0ν in Eq. (21) is a superposition of un-
normalized matrix elements M0ν(βI ,βF ) with various de-
formations (βI ,βF ) multiplied with specific weights. From
Eq. (21) it is evident that configuration mixing occurs and that
the regions of maximal overlap between the three quantities
f ∗

0+
F

(βF ), f0+
I
(βI ), and M0ν(βI ,βF ) contribute mostly to the

total matrix element M0ν . In Fig. 8, the distribution of
f ∗

0+
F

(βF )f0+
I
(βI )M0ν(βI ,βF ) is displayed for the transition

between 150Nd(0+
1 ) and 150Sm(0+

1 ) in panel (a). Therefore,
this figure shows which configurations contribute dominantly
in the βI -βF plane. As we can see in Fig. 8(a) the largest
contributions come from the region βI � βF � 0.2. Similar

FIG. 8. (Color online) (a) Distributions of the total transition
matrix element M0ν of Eq. (21) between the ground states of
150Nd and 150Sm in the various regions of the βI -βF plane,
calculated with the GCM + PNAMP method and (c) normalized
matrix element M̃0ν(βI ,βF ) of Eq. (24) obtained by the single-
configuration calculation with PNAMP. (b) Squares of ground-state
wave functions obtained with the GCM + PNAMP method and (d)
pairing energies (33) from the RMF + BCS calculation for initial and
final nuclei are shown for comparison.

deformation of the initial and final states is favored by the
decay process. Therefore, a large overlap between the initial
and the final collective wave functions is important. In Fig. 8(b)
we show the collective wave functions for the ground states of
the two nuclei as a function of the deformation. It is clearly
seen, that these distributions are peaked at β � 0.3 for the
nucleus 150Nd and at β � 0.2 for the nucleus 150Sm. However,
the distributions show a relatively large width and therefore
there is an overlapping region of considerable size in between.
It is evident that deformation fluctuation plays an essential role
in the description of the transition matrix element.

The situation is rather different when we consider the
normalized single-configuration matrix element M̃0ν(βI ,βF )
defined in Eq. (24). This matrix element is shown in Fig. 8(c)
as a function of the initial and final deformations βI and
βF . It is no longer related to collective wave functions;
rather it is assumed that the initial nucleus has a fixed
intrinsic deformation βI and the final nucleus has another
intrinsic deformation βF . The value of the matrix element
is then taken from the corresponding point in Fig. 8(c).
Obviously, this method provides a reasonable approximation
only for transitions between nuclei with well-defined intrinsic
deformations, i.e., sharp minima in the PECs and narrow
collective wave functions.

Figure 8(c) shows that the single-configuration matrix
element is peaked at zero deformation. This fact is consistent
with the previous nonrelativistic GCM + PNAMP calculations
of Ref. [26]. It can be understood by the fact that the expression
given in Eq. (31) has in the diagonal case a structure similar
to that of the pairing energy,

Epair(β) = 1

2

∑
1234

〈12|V pp|34〉κ12(β)κ43(β), (33)

where V pp is the effective pairing interaction in the pp
channel. Therefore, a strong correlation can be found between
M̃0ν(βI ,βF ) and the pairing correlations. It is well known
that minima in the PEC are strongly connected with low
level densities and weak pairing, whereas maxima in the PEC
are connected with high level densities and strong pairing
correlations. Therefore, we have at zero deformation enhanced
pairing energies and enhanced transition matrix elements
M̃0ν(βI ,βF ). Similar effects have been observed in double
humped fission barriers [70]. Figure 8(d) shows the pairing
energy as a function of the deformation. We have to keep in
mind, however, that the strongly enhanced transition matrix
elements at small deformation have little to do with the 0νββ
decay matrix element between the ground states of the nuclei
150Nd and 150Sm with strong intrinsic deformations.

In Table II we show the influence of correlations owing
to projections and of fluctuations treated in GCM on the
0νββ matrix elements. In the second column we show single-
configuration matrix elements with and without change of the
intrinsic deformation. These NMEs M̃0ν(βI ,βF ) with βF 	= βI

are given at the deformations corresponding to the minima
on the Jπ = 0+ energy surfaces of 150Nd and 150Sm. We
observe that AMP enhances the NMEs and additional number
projection reduces them. Also listed are NMEs neglecting
the change of deformation (βF = βI ). They are considerably
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TABLE II. NMEs for the 0νββ decay between 150Nd and 150Sm,
with different correlations considered in the nuclear ground-state
wave functions. Single-configuration matrix elements in the second
column are compared with GCM results in the third column.

M̃0ν(βI ,βF ) M0ν(0+
1 → 0+

1 )

βF 	= βI βF = βI

BCS 3.56 6.38
AMP 3.88 6.79
PNAMP 3.27 6.02

GCM + AMP 4.68
GCM + PNAMP 5.60

larger, because it is well known that the many-body overlap
functions 〈β|Ô|β ′〉 are sharply peaked at β = β ′. In the third
column fluctuations are taken into account in the framework
of the GCM method. As discussed in the last paragraph this
enhances the transition matrix elements, compared to the
matrix element between energy minima (the βF 	= βI case),
because of the enhanced overlap owing to the width in the
collective wave functions [see Fig. 8(b)]. In this case PNP
leads to an additional increase of the transition matrix element
M0ν , because, as shown in Fig. 5, the changes in the collective
wave functions induced by PNP lead to an enhanced larger
overlap.

Summarizing this section, we see that in transitional nuclei
the 0νββ decay matrix elements depend in a sensitive way on
the deformation and on the pairing properties of these nuclei,
which are taken into account with different accuracy in the
various methods. The details depend much on the nucleus
under consideration. GCM + PNAMP is, of course, the most
appropriate method. It could be possibly further improved in
specific nuclei with triaxial deformations by 3D AMP and
2D-GCM in the (β,γ ) plane. This, however, leads in medium-
heavy and heavy nuclei to considerable numerical efforts at the
limit of the present days’ computer facilities [47]. As shown in
Ref. [47], investigations of nuclear spectra calculations within
microscopic versions of the 5D-collective Bohr Hamiltonian
provide a very successful alternative which can be applied
even in heavy nuclei [71]. It remains to be investigated in the
future whether these methods can be used also successfully
for studies of the 0νββ decay matrix elements.

3. Validity of nonrelativistic reduced calculations
and the contribution of the tensor term

One advantage of our method is that it is fully relativistic
and therefore it allows us to investigate the nonrelativistic
approximation applied in most calculations. In this case,
the hadronic current J †

μ(x) in Eq. (10) is expanded in
terms of |q|/mp. If terms are kept up to the first order,
the fully relativistic operator of Eq. (10) is reduced to the
nonrelativistic operator used in previous studies [14,72]. The
resulting nonrelativistic “two-current” operator [J †

μJ μ†]NR

can be decomposed, as in other nonrelativistic calculations,
into the Fermi, the Gamow-Teller, and the tensor parts,[ − hF (q2) + hGT(q2)σ12 + hT (q2)Sq

12

]
τ

(1)
− τ

(2)
− , (34)

with the tensor operator S
q
12 = 3(σ (1) · q̂)(σ (2) · q̂) − σ12 and

σ12 = σ (1) · σ (2). Each channel (K : F,GT,T ) of Eq. (34) can
be labeled by the terms of the hadronic current from which it
originates, as

hK (q2) =
∑

i

hK−i(q2), (i = VV,AA,AP,PP,MM),

with

hF -VV(q2) = −g2
V (q2), (35a)

hGT-AA(q2) = −g2
A(q2), (35b)

hGT-AP(q2) = 2

3
gA(q2)gP (q2)

q2

2mp

, (35c)

hGT-PP(q2) = −1

3
g2

P (q2)
q4

4m2
p

, (35d)

hGT-MM(q2) = −2

3
g2

M (q2)
q2

4m2
p

, (35e)

hT -AP(q2) = hGT-AP(q2), (35f)

hT -PP(q2) = hGT-PP(q2), (35g)

hT -MM(q2) = −1

2
hGT-MM(q2). (35h)

In Fig. 9 we compare the results calculated with the
nonrelativistic reduced operator with those of the full operator,
for the NME in each coupling channel, and for both the
0+

1 → 0+
1 and 0+

1 → 0+
2 transitions. In all circumstances the

dominant contributions come from the AA coupling channel.
In the nonrelativistic approximation it represents the Gamow-
Teller channel if neglecting the high-order currents. In this
comparison, the relativistic effect �Rel. ≡ (M0ν − M0ν

NR)/M0ν

is roughly 5% in the 0+
1 → 0+

1 transition and 24% in the
0+

1 → 0+
2 transition.

We divide our GCM + PNAMP NME obtained with the
nonrelativistic operator into the Gamow-Teller, the Fermi,
and the tensor matrix elements, as M0ν

NR = MGT − MF + MT ,

FIG. 9. (Color online) Contribution from each coupling channel
to the total NMEs of the 0νββ decay from 150Nd to 150Sm for both
the (a) 0+

1 → 0+
1 and the (b) 0+

1 → 0+
2 transitions. Values of the

matrix elements evaluated using the full relativistic operator M0ν

(Rel.) are compared with those obtained with the nonrelativistic
reduced operator M0ν

NR (Non-rel.). The results are calculated with
the GCM + PNAMP method.
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TABLE III. NMEs for the 0νββ decay between the ground states
of 150Nd and 150Sm based on the nonrelativistic reduced operators,
including the contributions of the Gamow-Teller, Fermi, and tensor
terms. Our results with the GCM + PNAMP methods (REDF-I) are
compared to the NMEs given by the NREDF calculation [26] and the
IBM-2 model [22].

M0ν
NR MGT MF MT χF (%) χT (%)

REDF-I 5.32 4.22 −0.99 0.11 23.5 2.6
NREDF 1.71 1.28 −0.43 — 33.6 —
IBM-2 2.32 2.03 −0.18 0.11 8.9 5.4

and show for the 0+
1 → 0+

1 transition in Table III. They
are compared with the NREDF results [26] and the IBM-2
calculations [22]. Note that the definition of the Fermi matrix
element MF is different from Eq. (19) in Ref. [22] by a
factor of [gV (0)/gA(0)]2. Considering χF = −MF /MGT and
χT = MT /MGT, the ratios of the Fermi and tensor parts to
the dominant Gamow-Teller part, one clearly recognizes the
contributions of the these terms.

It is shown that the Fermi contribution (33.6%) in the
NREDF calculation is relatively large compared to our results,
while the IBM-2 model gives a much smaller value (8.9%).
As a matter of fact, the IBM-2 calculations provide very
small Fermi matrix elements for the nuclei in which protons
and neutrons occupy different major shells (for example,
150Nd-Sm) and very large values for those in which protons
and neutrons occupy the same major shell (for example,
76Ge-Se) [22]. A benchmark study is definitely required to
understand the discrepancy among different models in the
future. However, it has been pointed out in Ref. [73] that, with
partial isospin symmetry restoration by requiring M2ν

F = 0,
the value of χF for the matrix elements of neutrinoless
double-β decay should be close to 1/[3g2

A(0)]. We find that
our result (23.5%) is in good agreement with the value of
1/[3g2

A(0)] = 21%.
In the literature one finds rarely discussions about the tensor

effect for the case of 150Nd. However, by analyzing the results
for other isotopes, two different conclusions can be drawn.
On the one hand, the tensor effect is considered as negligible
according to the calculations in the ISM [19] and PHFB [25],
and in the QRPA studies of the Jyväskylä group [13],
and it is totally neglected in the NREDF calculations of
Refs. [26,29]. On the other hand, it is proven to be important
with considerable contributions in the QRPA calculations of
the Tübingen group [11] and in the IBM calculations [22].

Our result seems to agree with the later opinion. As we can see
from the table, while the absolute value for the tensor term in
our calculation is very close to that given by the IBM-2, χT is
smaller owing to the larger Gamow-Teller contribution. This
implies that we predict a relatively small tensor effect, but in
the same order of magnitude as the IBM-2 calculations [22].

4. Comparison and discussion

In Table IV we show the presently calculated 0νββ decay
matrix elements M0ν from 150Nd to 150Sm. The calculations
are carried out in the MR-CDFT framework with the GCM +
(PN)AMP method based on the REDF PC-PK1. These results
are compared with existing results that take into account the
nuclear deformations explicitly.

By taking into account nuclear deformations and config-
uration mixing simultaneously, we find in our calculation
a suppression of approximately 60% with respect to the
spherical NME. The difference between the NMEs obtained
with and without PNP (columns 2 and 3) can be traced back to
differences in the distributions of the collective wave functions.
As we have mentioned, the overlap between 150Nd(0+

1 ) and
150Sm(0+

1 ) is increased by PNP, resulting in a larger value of
the matrix element M0ν between them. The opposite holds for
the matrix element M0ν between 150Nd(0+

1 ) and 150Sm(0+
2 ).

NMEs obtained by the deformed QRPA calculations based
on a Woods-Saxon field with a realistic residual interaction (the
Brueckner G matrix derived from the Bonn-CD potential) [15]
can be found in column 5 of Table IV. These matrix
elements are suppressed by about 40% by including the
nuclear deformations as compared with the previous spherical
QRPA results in Refs. [49,50]. More recently, a self-consistent
Skyrme-HFB-QRPA calculation was carried out in Ref. [17].
It allows for an axially symmetric deformation and uses a
modern Skyrme functional for both the HFB mean field and
the QRPA. This investigation predicts a relatively small NME,
which is also listed in column 5.

Calculations within the IBM model in Ref. [21,22] provide
not only the NME for the transition to the ground state, but
also for the transition to the first 0+ excited state. The IBM-2
interaction is used and the NME corresponding to the 0+

1 → 0+
1

decay is 2.321 (column 6). The inclusion of deformation causes
only a reduction of about 20% [21].

The recent result from the PHFB model [25] with a pairing
plus quadrupole-quadrupole (PQQ) interaction is presented in
column 7. Here the QQ term is responsible for the nuclear
deformation.

TABLE IV. NMEs for the 0νββ decay from 150Nd to 150Sm evaluated with different models. Results of this work are obtained with the
GCM + PNAMP (REDF-I) and the GCM + AMP (REDF-II) methods. Also shown are the corresponding half-lives T 0ν

1/2 for an assumed
effective Majorana neutrino mass 〈mν〉 = 50 meV.

REDF-I REDF-II NREDF [26,29] QRPA [15,17] IBM-2 [22] PHFB [25]

M0ν(0+
1 → 0+

1 ) 5.60 4.68 1.71, 2.19 3.16, 2.71 2.321 2.83
T 0ν

1/2(0+
1 → 0+

1 ) [1025y] 2.1 3.1 22.9, 14.0 6.7, 9.1 12.4 8.4
M0ν(0+

1 → 0+
2 ) 1.48 2.42 2.81[74],— — 0.395 —

T 0ν
1/2(0+

1 → 0+
2 ) [1025y] 70.7 26.4 19.6,— — 992.7 —
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A GCM calculation with projection has been recently
carried out in the framework of the NREDF of Gogny D1S
in Ref. [26]. The concept is similar to ours. By choosing
the deformation β as the generator coordinate in the GCM
method, the final NME includes the shape mixing effect and
the resulting NME is M0ν = 1.71 (column 4). Compared to
the spherical case, this value is highly suppressed by more than
85%. NME for the transition to the 0+

2 state of 150Sm given by
the same approach is 2.81 [74]. Another dynamic fluctuation
effect, the pairing fluctuation, is included explicitly in a later
paper [29], where an increase of about 28% in the NME with
respect to the previous value 1.71 is found for 150Nd.

Nevertheless, our REDF results for M0ν are not consistent
with the NREDF calculations in Refs. [26,74]. Actually, for
the 0+

1 → 0+
1 decay mode, the values predicted by the two

EDF calculations set the upper and the lower boundaries for
the calculated results. The essential difference between these
two calculations is not the method, but the fact that the prolate
minimum in the PEC of the nucleus 150Nd has a considerably
smaller deformation for the relativistic functional PC-PK1 (see
Fig. 4 of this investigation) than for the Gogny functional
(see Ref. [75]). This is the reason why the E2 transition
probabilities in the spectrum of Fig. 6 of this paper are in
much better agreement with experimental data than those
obtained with the Gogny functional (see Fig. 1 of Ref. [26]).
In fact, the change in deformation from the initial nucleus
150Nd to the final nucleus 150Sm is considerably smaller for
the functional PC-PK1 than in the Gogny case. In addition,
the collective wave functions in the GCM-calculations based
on the relativistic functional PC-PK1 have a considerably
larger width than those obtained from the Gogny functional
(see Fig. 5 of this paper and Fig. 1 of Ref. [26]). All these
lead to the fact that the transition matrix element M0ν for
neutrinoless double-β decay is considerably larger in the
present investigation (M0ν = 5.6) than that obtained with the
Gogny functional (M0ν = 1.7) in Ref. [26].

Of course, so far, there is no experimental data on the value
of this matrix element. Considering, however, the fact that
the relativistic functional PC-PK1 reproduces the low-lying
experimental spectra of 150Nd and 150Sm in a better way than
the nonrelativistic functional Gogny D1S, we hope that our
calculated NMEs are more reliable. For the nucleus 150Nd,
it is also a fact that the quantum phase transition with the
X(5) character observed in the experiment of Ref. [67] is well
reproduced by the relativistic functional PC-F1 [68].

The half-lives T 0ν
1/2 predicted by different approaches are

listed in Table IV, assuming the Majorana neutrino mass
〈mν〉 = 50 meV. The half-life T 0ν

1/2(0+
1 → 0+

1 ) in the present
calculation turns out to be 2.1 × 1025 y, which is the most opti-
mistic prediction so far for the next generation of experiments
searching for the 0νββ decay in 150Nd.

V. SUMMARY

The first relativistic description for the NME of the 0νββ
decay has been given within the framework of the MR-CDFT
based on a point-coupling functional PC-PK1, where the
dynamic correlations related to the restoration of broken
symmetries and to the fluctuations of collective coordinates

are incorporated in the nuclear wave functions. For the
decay candidate 150Nd and its daughter nucleus 150Sm, the
low-energy spectra and electric quadrupole transitions are
reproduced very well with our nuclear model.

Comparing to other approaches, our calculations for the
0νββ decay matrix elements predict the most optimistic decay
rate for 150Nd. Inclusion of the PNP has small impact on
the single-configuration matrix elements, while it affects the
total GCM matrix element M0ν with configuration mixing
by changing the distributions of collective wave functions in
deformation space. Consideration of the nuclear static and
dynamic deformations leads to a dramatic suppression of
M0ν with respect to the matrix element between spherical
configurations. The relativistic effects that are omitted in the
nonrelativistic reduced decay operator are about 5% for the
ground-state to ground-state transition and about 24% for the
transition from the ground state to the 0+

2 state. Of course,
these conclusions require further systematic investigations to
confirm.
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APPENDIX: EVALUATION OF TWO-BODY
MATRIX ELEMENTS

In this section we derive explicit expressions for the TBMEs
〈ab|Ô|cd〉 defined in Eqs. (10) and (25) within the closure
approximation. This matrix element contains a sum over
the various channels i = VV,AA,AP,PP,MM and in each
channel the matrix element can be expressed as an integral
in momentum space over a product of single-particle matrix
elements in the following form:

〈ab|Ôi |cd〉 = 4πR

g2
A(0)

∫
d3q

(2π )3

gi1 (q2)gi2 (q2)

q(q + Ed )

×〈a|�i1e
iqr |c〉〈b|�i2e

−iqr |d〉. (A1)

The functions gi(q2) depend on the coupling constants and
the vertices �i are matrices in Dirac- and isospace given in
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Eq. (13). For i = P they also depend on the q. Using qeiqr =
−i∇eiqr this dependence is expressed by the gradient operator.

Using the multipole expansion for plane waves [76],

eiqr = 4π
∑
LM

iLjL(qr)Y ∗
LM (q̂)YLM (r̂), (A2)

and the orthonormality of spherical harmonics,∫
d�qY

∗
LM (q̂)YL′M ′ (q̂) = δLL′δMM ′ , (A3)

we find

〈ab|Ôi |cd〉 = 8R

g2
A(0)

∫
gi1 (q2)gi2 (q2)q2dq

q(q + Ed )

×
∑
LM

〈a|�i1jL(qr)YLM |c〉〈b|�i2jL(qr)Y ∗
LM |d〉.

(A4)

So far, the indices a, b, c, and d characterize an arbitrary
spinor basis. In a spherical basis the single-particle spinors
have the form

|1〉 = |n1l1j1m1〉 =
( |1)

i|1̃)

)
≡

(
fn1 (r)|l1j1m1)
ign1 (r)|l̃1j1m1)

)
. (A5)

For clarity, here the two-dimensional spinors in spin space are
expressed by round brackets. Here the upper part |1) represents
the large component with the radial wave function fn1 (r) and
the angular momentum quantum numbers j1l1m1. The lower
part |1̃) describes the small component with the radial wave
function gn1 (r) and the orbital angular momentum l̃1 = l1 ± 1
for j1 = l1 ± 1

2 .
Using angular momentum coupling techniques the spin

and angular parts of the matrix elements in the spherical
basis can be carried out analytically. The matrices �i contain
the matrices γ 0 and γ5 forming scalars in spin space. The
products γμ

(1)γ μ(2) are written as scalar products of operators
acting on the first and on the second particles. They have a
timelike part formed by scalars and a spacelike part formed by
vectors in spin space, γ = γ 0α = γ 0γ5�, with � = (σ σ).
The TBMEs can be expressed in terms of scalar products of
the spin operators,

�(1) · �(2) =
∑
M

(−)M�
(1)
M �

(2)
−M, (A6)

or/and the spherical harmonics,

Y
(1)
L · Y

(2)
L =

∑
M

(−)MY
(1)
LMY

(2)
L−M, (A7)

acting on the first and on the second particles.
Recoupling the spherical operators � (rank 1) and YLM

(rank L) by the relation

(�(1) · �(2))
(
Y

(1)
L · Y

(2)
L

)
=

L+1∑
J=L−1

(−)1+L+J
(
[�YL](1)

J · [�YL](2)
J

)
, (A8)

the corresponding operators become the scalar products of
single-particle operators [�YL]J acting on the spin and angular
coordinates.

In general, the operators Ôi can be expressed by scalar
products of single-particle operators of rank J acting on
the spin and angular coordinates of the first and the second
particles:

T̂
(1)
J · T̂

′(2)
J =

∑
M

(−)MT̂
(1)
JMT̂

′(2)
J−M. (A9)

Next we simplify the single-particle matrix element by
using the Wigner-Eckart theorem for spherical tensor operators
of rank J ,

〈jm|T̂JM |j ′m′〉 = (−)j
′−m′

√
2J + 1

C(jmj ′ − m′|JM)〈j ||TJ ||j ′〉;
(A10)

therefore, the angular part of TBMEs can be written as

〈12|T̂ (1)
J · T̂

′(2)
J |34〉 = 1

2J + 1
(−)j3−m3 (−)j4−m2

×C(j1m1j3 − m3|JM)〈1||T̂J ||3〉
×C(j4m4j2 − m2|JM)〈2||T̂ ′

J ||4〉.
(A11)

So far we calculated only uncoupled matrix elements. Ow-
ing to the Wigner-Eckart theorem, their m dependence is given
by Clebsch-Gordan coefficients. Exploiting the orthogonality
of the Clebsch-Gordan coefficients,∑

m1m2

C(j1m1j2m2|JM)C(j1m1j2m2|J ′M ′) = δJJ ′δMM ′ ,

(A12)
we can derive TBME coupled to good angular momentum J
(ph coupling):

〈12|Ô|34〉Jph =
∑
m1m3

(−)j3−m3C(j1m1j3 − m3|JM)

×
∑
m4m2

(−)j2−m2C(j4m4j2 − m2|JM)

×〈j1m1,j2m2|Ô|j3m3,j4m4〉. (A13)

We finally obtain for the spin and angular part of the different
TBMEs

〈12|T̂ (1)
J · T̂

′(2)
J |34〉Jph = (−)j4−j2

2J + 1
〈1||T̂J ||3〉〈2||T̂ ′

J ||4〉.
(A14)

The reduced matrix elements for the operators YL and
[σYL]J are given by

(l1j1||YL||l2j2)

= (−)j1−j2 (l2j2||YL||l1j1)

= 1 + (−)l1+l2+L

2

ĵ1ĵ2L̂√
4π

(−)L+j2− 1
2

(
j1 L j2

− 1
2 0 1

2

)
,

(A15)
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and

(l1j1||[σYL]J ||l2j2)

= (−)j1+j2+L+J (l2j2||[σYL]J ||l1j1)

= 1 + (−)l1+l2+L

2

ĵ1ĵ2L̂Ĵ√
4π

(−)l2+j1+j2+L+1

×
[

(−)l2+j2+ 1
2

(
1 L J
0 0 0

) (
j1 L j2
1
2 0 − 1

2

)

−
√

2

(
1 L J

−1 0 1

) (
j1 J j2
1
2 −1 1

2

)]
. (A16)

Here ĵ = √
2j + 1. Note that an extra phase factor

(−)(l1+1/2−j1)+(l2+1/2−j2) is added to the reduced matrix ele-
ments given in Ref. [76], because orbit-spin (LS) coupling
instead of spin-orbit (SL) coupling for the single-particle states
is used throughout the calculation.

For the radial part, the radial integrals (nl|jL(qr)|n′l′) for
spherical oscillator wave functions are treated in Sec. 6 of this
Appendix. Of course, in Eq. (31) we need the pp-coupled
matrix elements. They are obtained from the ph-coupled
matrix elements by recoupling [76]

〈12|Ô|34〉λpp =
∑

J

(2J + 1)(−)j3+j4+λ

×
{
j1 j2 λ
j4 j3 J

}
〈12|Ô|34〉Jph. (A17)

In the end, we return to the uncoupled matrix elements by

〈12|Ô|34〉 =
∑
λ(M)

C(j1m1j2m2|λM)

×C(j3m3j4m4|λM)〈12|Ô|34〉λpp. (A18)

In detail we obtain the following ph-coupled matrix
elements (A13) for the different channels of Eq. (13). For the
sake of simplicity, in the following coupled matrix elements a
common factor 8R/[g2

A(2J + 1)], as well as a common phase
(−)j4−j2 , are left out.

1. Vector coupling term ÔVV

For VV we have in Eq. (13a) the vertex �V = γ 0γμ (ne-
glecting the isospin operator) and therefore, using Eq. (A14)
we obtain the ph-coupled TBME,

〈12|ÔVV|34〉Jph =
∫

g2
V (q2)q2dq

q(q + Ed )

×
[
AJ

13A
J
24 −

∑
L

(−)1+L+J B
L,J
13 B

L,J
24

]
,

(A19)

with the integrals

AJ
13 = 〈1||jJ (qr)YJ ||3〉

= (1|jJ |3)(1||YJ ||3) + (1̃|jJ |3̃)(1̃||YJ ||3̃), (A20)

B
L,J
13 = 〈1|jL(qr)γ5[�YL]J ||3〉

= i(1|jL|3̃)(1||[σYL]J ||3̃) − i(1̃|jL|3)(1̃||[σYL]J ||3),

(A21)

with the reduced matrix elements given in Eqs. (A15)
and (A16). Note that the phase (−)1+L+J appearing before
B

L,J
13 B

L,J
24 comes from the recoupling of the spherical operators

in Eq. (A8).

2. Axial-vector coupling term ÔAA

For AA coupling we have in Eq. (13b) the vertex �A =
γ 0γμγ5 and, therefore, using Eq. (A14) we obtain the ph-
coupled TBME

〈12|ÔAA|34〉Jph =
∫

g2
A(q2)q2dq

q(q + Ed )

×
[
CJ

13C
J
24 −

∑
L

(−)1+L+J D
L,J
13 D

L,J
24

]
,

(A22)

with the integrals

CJ
13 = 〈1||jJ (qr)γ5YJ ||3〉

= i(1|jJ |3̃)(1||YJ ||3̃) − i(1̃|jJ |3)(1̃||YJ ||3), (A23)

D
L,J
13 = 〈1||jJ (qr)[�YL]J ||3〉

= (1|jL|3)(1||[σYL]J ||3) + (1̃|jL|3̃)(1̃||[σYL]J ||3̃).

(A24)

3. Axial-vector and pseudoscalar coupling term ÔAP

For the TBME of the AP coupling term 〈12|ÔAP|34〉 we
have in the q integral the matrix elements [Eq. (13c)]:

〈1|γ 0γ γ5e
iqr |3〉 · 〈2|γ 0γ5qe−iqr |4〉. (A25)

Because qeiqr = −i∇eiqr , we obtain∑
J

−i〈1|(� · ∇)jJ (qr)YJ |3〉 · 〈2|γ 0γ5jJ (qr)YJ |4〉. (A26)

It can be proved that

� · ∇jJ (qr)YJM =
√

J + 1

2J + 1
qjJ+1(qr)[�YJ+1]JM

+
√

J

2J + 1
qjJ−1(qr)[�YJ−1]JM. (A27)

Therefore, in a spherical basis we find for the coupled matrix
element

〈12|ÔAP|34〉Jph

= 2
∫

gA(q2)gP (q2)q3dq

q(q + Ed )

×(−i)

(√
J + 1

2J + 1
D

J+1,J
13 +

√
J

2J + 1
D

J−1,J
13

)
EJ

24,

(A28)

with the integral D
L,J
13 in Eq. (A24) and the integral

EJ
13 = 〈1||jJ (qr)γ 0γ5YJ ||3〉

= i(1|jJ |3̃)(1||YJ ||3̃) + i(1̃|jJ |3)(1̃||YJ ||3). (A29)
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4. Pseudoscalar coupling term ÔPP

For PP coupling we have in Eq. (13d) the vertex
�P = qγ 0γ5 and, therefore, using Eq. (A14) we obtain the
ph-coupled TBME

〈12|ÔPP|34〉Jph =
∫

g2
P (q2)q4dq

q(q + Ed )
EJ

13E
J
24, (A30)

with the integral EJ
13 given in Eq. (A29).

5. Weak-magnetism coupling term ÔMM

For the TBME of the MM coupling term 〈12|ÔMM|34〉 we
have in the q-integral the matrix elements [Eq. (13e)]

〈1|γ 0σμiq
ieiqr |3〉〈2|γ 0σμjqj e

−iqr |k〉. (A31)

Using the definition of the Dirac matrix

σμν = i

2
[γμ,γν] or σ0i = iαi, σij = εijk�

k,

we have

σ0iq
i = iα · q, σkiq

i = − [� × q]k .

Making use of

(�(1) × q)(�(2) × q)

= (�(1) · �(2))q2 − (�(1) · q)(�(2) · q), (A32)

and replacing q by the gradient we find three terms:

(1) i (α · q) leads to the vertex γ 0γ5 (� · ∇);
(2) q2(�(1) · �(2)) is to be recoupled and leads to the vertex

qγ 0[�YL]J [for details, see Eq. (A8)];
(3) a term with the vertex γ 0(� · ∇).

Therefore, in a spherical basis we find for the coupled matrix
element

〈12|ÔMM|34〉Jph

= 1

4m2
p

∫
g2

M (q2)q4dq

q(q + Ed )

×
{

i2

(√
J + 1

2J + 1
F

J+1,J
13 +

√
J

2J + 1
F

J−1,J
13

)

×
(√

J + 1

2J + 1
F

J+1,J
24 +

√
J

2J + 1
F

J−1,J
24

)

−
∑

L

(−)(1+L+J )G
L,J
13 G

L,J
24

+
(√

J + 1

2J + 1
G

J+1,J
13 +

√
J

2J + 1
G

J−1,J
13

)

×
(√

J + 1

2J + 1
G

J+1,J
24 +

√
J

2J + 1
G

J−1,J
24

)}
, (A33)

with the integrals

F
L,J
13 = 〈1||jL(qr)γ 0γ5[�YL]J ||3〉

= i(1|jL|3̃)(1||[σYL]J ||3̃) + i(1̃|jL|3)(1̃||[σYL]J ||3),

(A34)

G
L,J
13 = 〈1||jL(qr)γ 0[�YL]J ||3〉

= (1|jL|3)(1|[σYL]J ||3) − (1̃|jL|3̃)(1̃||[σYL]J ||3̃).

(A35)

6. Slater integrals

From previous appendices, we have seen that the Slater
integrals in the TBMEs read

S
L1L2
1234 ≡

∫
dqD(q)〈1|jL1 (qr)|3〉〈2|jL2 (qr)|4〉. (A36)

Here |k〉 represent an arbitrary set radial wave functions (for the
large or small components). In the SHO basis these integrals
can be evaluated analytically (see Ref. [76]),

S
L1L2
n1l1n2l2n3l3n4l4

=
∫

dqD(q)〈n1l1|jL1 (qr)|n3l3〉〈n2l2|jL2 (qr)|n4l4〉

= π

8

NM1∑
N1=Nm1

NM2∑
N2=Nm2

A
N1L1
n1l1n3l3

A
N2L2
n2l2n4l4

×b3
∫

dqD(q)e−b2q2/4RN1L1

(
b2q

2

)
RN2L2

(
b2q

2

)
,

(A37)

where Nm1 = (l1 + l3 − L1)/2 and NM1 = n1 + n3 + Nm1.
Rnl(r/b) = 〈r|nl〉 represent spherical radial oscillator wave
functions, b is the oscillator length, D(q) indicates a function
of q, and the coefficients ANL

nln′l′ are given by

ANL
nln′l′ =

√
n!

(
n + l + 1

2

)
!

√
n′!

(
n′ + l′ + 1

2

)
!

×
√

N !

(
N + L + 1

2

)
!

n,n′∑
q,q ′=0

× δ0,q+q ′−N+Nm
(−)N−Nm

q!q ′!(n − q)!(n′ − q ′)!
(
q + l + 1

2

)
!
(
q ′ + l′ + 1

2

)
!
.

(A38)
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[41] T. Nikšić, D. Vretenar, and P. Ring, Phys. Rev. C 73, 034308
(2006).
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