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The structures of excited states in 34S are investigated using the antisymmetrized molecular dynamics and
generator coordinate method (GCM). The GCM basis wave functions are calculated via energy variation with a
constraint on the quadrupole deformation parameter β. By applying the GCM after parity and angular momentum
projections, the coexistence of two positive- and one negative-parity superdeformed (SD) bands are predicted,
and low-lying states and other deformed bands are obtained. The SD bands have structures of 16O + 16O + two
valence neutrons in molecular orbitals around the two 16O cores in a cluster picture. The configurations of the
two valence neutrons are δ2 and π 2 for the positive-parity SD bands and π 1δ1 for the negative-parity SD band.
The structural changes of the yrast states are also discussed.
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I. INTRODUCTION

Dynamic structural changes under excitation are significant
properties of nuclei. Superdeformation and clustering are
typical changes. With the development of techniques for γ
spectroscopy experiments, superdeformed (SD) bands or its
candidates have been observed in the A ∼ 30–40 region, for
example, in 28Si [1], 36,38,40Ar [2–5], 35Cl [6], 40,42Ca [7–10],
and 44Ti [11], and microscopic theoretical studies or analyses
have shown that these bands have multiparticle-multihole
(mp-mh) excited structures. Clustering is a typical structure in
the light mass region, for example, in 8Be, 12C, 16O, and 20Ne
[12,13]. In the A ∼ 30–40 region, cluster correlations in highly
deformed states have also been discussed [14,14–18], and
especially a candidate of the SD band in 28Si is in agreement
with the predictions by using the antisymmetrized molecular
dynamics (AMD) [18]. To clarify the dynamic structural
changes of nuclei, it is necessary to study the nuclear structure
in terms of both deformation and clustering. However, those
studies have been insufficient.

S isotopes (Z = 16) are suitable nuclei for studying
deformation and clustering caused by excitation. S isotopes are
expected to be favorable for the formation of SD bands because
Z = 16 is considered a magic number of superdeformation.
The existence of SD bands in S isotopes has been discussed
in the frameworks of the Hartree-Fock model [19], the 16O
+ 16O potential model [14], and the AMD [15,20]. In terms
of clustering, S isotopes are key nuclei in the sd shell. S
isotopes are analogs of Be isotopes because those isotopes
can form systems consisting of two doubly closed shell nuclei
(16O and α for S and Be isotopes, respectively) and valence
neutrons. In Be isotopes, structures consisting of α + α +
valence neutrons in molecular orbitals are thought to develop
in low-lying states, with the valence neutrons in molecular
orbitals around two α cores [21–29]. The SD states in 32S
are predicted to contain many 16O + 16O cluster structure
components [14,15]. They suggest the existence of SD states
that have 16O + 16O + valence neutrons in the molecular
orbital structure in S isotopes.

By a γ spectroscopy experiment, the structures in 34S are
investigated up to the Jπ = 10+ and (9−) states for positive-

and negative-parity states, respectively, mainly for the yrast
states [30]. The B(E2) value of the transition 8+

1 (10.65 MeV)
→ 6+

1 (8.50 MeV) is 27 ± 15BW.u.(E2) [30], which is large
enough that the Jπ = 6+ and 8+ states can be interpreted
as members of a rotational band, where BW.u.(E2) is the
Weisskopf unit. Analysis by the shell model using the sdfp and
SDPF-M interactions shows that the yrast states for Jπ � 6+
are 2�ω excited states, whereas those for Jπ � 4+ have 0�ω
configurations. For the negative-parity states, the shell model
shows that the yrast states have 1�ω configurations up to
Jπ = 9−. In contrast to the yrast states, the structures of the
nonyrast states with mp-mh configurations have never been
clarified.

34S is an analog of 10Be because both isotopes can form
a system consisting of two doubly closed shell nuclei and
two valence neutrons. In low-lying states in 10Be, structures
consisting of α + α + two valence neutrons in molecular
orbitals are thought to develop [21–23,25]. The molecular
orbitals around the α + α are formed by linear combination
of 0p3/2 orbits around the two α cores. The configurations
of the valence neutrons are considered to be π2, σ 2, and
π1σ 1 for the Jπ = 0+

1 , 0+
2 , and 1−

2 states, respectively [22].
In 34S, the candidate configurations of the molecular orbitals
around 16O + 16O are the δ, π , and σ orbitals, which are
formed by linear combinations of 0d5/3 orbits around the
two 16O cores. The structures of the low-lying states in
10Be suggest the coexistence of positive- and negative-parity
SD states in 34S with 16O + 16O + valence neutrons in
molecular orbitals. Superdeformation in S isotopes has been
discussed systematically using mean-field calculations [19],
but the detailed structures have never been discussed in 34S.
Superdeformation and clustering in 34S are open problems.

This paper aims to clarify the structures of SD states in
34S using AMD and the generator coordinate method (GCM).
The coexistence of positive- and negative-parity SD bands and
their structures are discussed, focusing on 16O + 16O + valence
neutrons in molecular orbitals around the two 16O cores. The
structural changes in the yrast states are also discussed.

This paper is organized as follows. In Sec. II, the framework
of this study is explained briefly. In Sec. III, the numerical
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results are presented. In Sec. IV, the structures of the SD and
yrast states are discussed. Finally, conclusions are given in
Sec. V.

II. FRAMEWORK

In this section, the framework of the study is explained
briefly. The details of the framework are provided in
Refs. [31–33].

A. Wave function

The wave functions in low-lying states are obtained using
parity projection and angular momentum projection (AMP)
and the GCM with deformed-basis AMD wave functions. A
deformed-basis AMD wave function |	〉 is a Slater determi-
nant of Gaussian wave packets that can deform triaxially such
that

|	〉 = Â |ϕ1,ϕ2, . . . ,ϕA〉 , (1)

|ϕi〉 = |φi〉 ⊗ |χi〉 ⊗ |τi〉 , (2)

〈r|φi〉 = π−3/4(det K)1/2 exp
[ − 1

2 (Kr − Zi)
2
]
, (3)

|χi〉 = χ
↑
i |↑〉 + χ

↓
i |↓〉 , (4)

|τi〉 = |π〉 or |ν〉 , (5)

where Â denotes the antisymmetrization operator, and |ϕi〉
denotes a single-particle wave function. Further, |φi〉, |χi〉,
and |τi〉 denote the spatial, spin, and isospin components,
respectively, of each single-particle wave function |ϕi〉. The
real 3 × 3 matrix K denotes the width of the Gaussian
single-particle wave functions that can deform triaxially and
is common to all nucleons. Zi = (Zix,Ziy,Ziz) are complex
parameters denoting the centroid of each single-particle wave
function in phase space. The complex parameters χ

↑
i and χ

↓
i

denote the spin directions. Axial symmetry is not assumed.

B. Energy variation

The basis wave functions of the GCM are obtained
by energy variation with a constraint potential Vcnst after
projection onto eigenstates of parity,

δ

( 〈	π |Ĥ |	π 〉
〈	π |	π 〉 + Vcnst

)
= 0, (6)

|	π 〉 = 1 + πP̂r

2
|	〉 , (7)

where Ĥ and P̂r denote the Hamiltonian and parity operator,
respectively. The variational parameters are K, Zi , and χ

↑,↓
i

(i = 1, . . . ,A). The isospin component of each single-particle
wave function is fixed as a proton (π ) or a neutron (ν). The
Gogny D1S force is used as the effective interaction. To obtain
the deformed wave functions, the constraint potential Vcnst for
the matter quadrupole deformation parameter β of the total
system is used.

C. Generator coordinate method

The optimized wave functions are superposed after parity
projection and AMP by employing the quadrupole deformation
parameter β,

∣∣	Jπ
M

〉 =
∑

i

fi P̂
Jπ
MKi

|	(βi)〉, (8)

where P̂ J π

MK is the parity and total angular momentum projec-
tion operator, and |	(βi)〉 are optimized wave functions with a
constraint for β = βi . The integrals over the three Euler angles
in the total angular momentum projection operator P̂ J

MK are
evaluated by numerical integration. The numbers of sampling
points in the numerical integration are 23, 27, and 23 for α, β,
and γ , respectively. Here the body-fixed x, y, and z axes are
chosen as 〈x2〉 � 〈y2〉 � 〈z2〉 for the γ < 30◦ wave functions
and 〈x2〉 � 〈y2〉 � 〈z2〉 for the γ > 30◦ ones. The coefficients
fi are determined by the Hill-Wheeler equation

δ
(〈
	Jπ

M

∣∣ Ĥ ∣∣	Jπ
M

〉 − ε
〈
	Jπ

M

∣∣ 	Jπ
M

〉) = 0. (9)

Then we obtain the energy spectra and the corresponding wave
functions, which are expressed by the superposition of the
optimum wave functions, {|	(βi)〉}.

III. RESULTS

A. Energy variation

1. Energy curves

Figures 1 and 2 show the energy surfaces as functions
of the quadrupole deformation parameter β for the positive-
and negative-parity states, respectively, obtained by energy
variation with a constraint on β after parity projection. The
energies projected onto the Jπ = 0+, 3−, and 4− states are
also shown.

In the positive-parity energy surface (Fig. 1), three excited
local minima or shoulders exist around β = 0.4, 0.6, and 0.8 as
well as the minimum at β = 0.25, which suggest the existence
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FIG. 1. Energy surfaces as functions of quadrupole deformation
parameter β for positive-parity states. Solid and dashed lines
show energies projected onto positive-parity and J π = 0+ states,
respectively.
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FIG. 2. Energy surfaces as functions of quadrupole deformation
parameter β for negative-parity states. Solid, dashed, and dot-dashed
lines show energies projected onto positive-parity, J π = 3−, and
J π = 4− states, respectively.

of three excited deformed bands in the positive-parity states.
After AMP onto the Jπ = 0+ states, more deformed states
gain more binding energy, and the β values of the local minima
become larger. In the negative-parity energy surface (Fig. 2),
three local minima exist around β = 0.2, 0.5, and 0.7. In the
slightly deformed region, β < 0.6, the Jπ = 3− components
have the lowest energies after AMP. Highly deformed wave
functions, β > 0.6, have few Jπ = 3− components, and the
Jπ = 4− components have the lowest energies.

2. Particle-hole configuration of deformed states

Figures 3 and 4 show the single-particle energies as
functions of the quadrupole deformation β for positive- and
negative-parity states, respectively. The quanta [Nnz�] in the
Nilsson picture are also shown for the two highest orbits
of neutrons in the highly deformed region. The particle-
hole configurations change dramatically depending on its
deformation.

In the positive-parity states (Fig. 3), two orbits are degen-
erate because of time-reversal symmetry. The particle-hole
configurations change at β = 0.36, 0.52, and 0.7. In the
slightly deformed region (β < 0.36), the wave functions have
the lowest allowed configurations. At β = 0.36, the neutron
orbits originating in the sd and pf shells cross, and two
neutrons move from orbits originating in the sd shell to orbits
originating in the pf shell, which indicates 2�ω excitation
in a spherical shell model picture. At β = 0.52 and 0.7, two
protons and neutrons move from orbits originating in the sd
shell to orbits originating in the pf shell. The particle-hole
configurations of all the positive-parity states are (nπ,nν) =
(0,0),(0,2),(2,2), and (2,4) for β < 0.36, 0.36 < β < 0.52,
0.52 < β < 0.7, and β > 0.7, respectively, where nπ and nν

are the numbers of protons and neutrons, respectively, in the
single-particle orbit originating from the pf shell.

Figures 5(a) and 5(b) show the density distributions of
the highest neutron orbits at β = 0.63 and 0.75, which are
called ψ

spo
0.63 and ψ

spo
0.75, respectively. The ψ

spo
0.63 and ψ

spo
0.75 orbits
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FIG. 3. Single-particle energies of (a) protons and (b) neutrons
as functions of quadrupole deformation parameter β for positive-
parity states. Solid and dashed lines show positive- and negative-
parity orbits, respectively. Numbers in brackets show the Nilsson
quanta for the two highest orbits of neutrons (see text).

have zero and two nodes in the z direction (horizontal axis),
respectively. A calculation of the number of lz components,〈

1

2π

∫ π

−π

dφ e−i(l̂z−lz)φ

〉
, (10)

reveals that the ψ
sop
0.63 and ψ

spo
0.75 orbits contain dominantly

|lz| = 2 and 1 components, respectively, where the z axis is
chosen to be the long axis of the entire system. The ψ

spo
0.63 and

ψ
spo
0.75 orbits have no node on the radial coordinate in cylindrical

coordinates and therefore have [202] and [321] configurations,
respectively, in the Nilsson picture. The Nilsson configurations
of the two highest neutron orbits are [202]2 and [321]2 for
0.52 < β < 0.7 and β > 0.7, respectively. The single-particle
energies of [202] and [321] are flat for the quadrupole
deformation parameter β, and they resemble each other.

In the negative-parity states (Fig. 4), the degeneracy is
resolved by breaking of the time-reversal symmetry. The
particle-hole configurations change at β = 0.4 and 0.6. At β <
0.4, the highest neutron orbit originates in the pf shell and is
a 1�ω excited configuration in a spherical shell model picture.
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FIG. 4. Same as Fig. 3 but for negative-parity states.

The sd-shell-oriented and pf -shell-oriented orbits cross at
β = 0.4 and 0.6 for protons and neutrons, respectively. The
particle-hole configurations of all the negative-parity states are
(nπ,nν) = (0,1),(1,2), and (2,3) for β < 0.4, 0.4 < β < 0.6,
and β > 0.6, respectively. The Nilsson configurations of the
two highest neutron orbits are [202]1 and [321]1 for β > 0.6.
The energies of the [202] and [321] orbits are flat for the
quadrupole deformation parameter β, and they are almost the
same.

The proton components of the nπ = 2 wave functions have
similar density distributions for both positive- (β > 0.5) and
negative-parity states (β > 0.6), and they have neck structures,

as shown in Fig. 5(c). The particle-hole configurations and
density distributions of the lower 16 neutrons are similar to
those of protons in the highly deformed region.

B. Level scheme

Figure 6 shows the level scheme of the positive- and
negative-parity states. Various rotational bands, called Kπ =
0+

ND, 0+
SD1, and 0+

SD2 for positive parity and Kπ = 2−
ND, 3−

ND,
and 4−

SD for negative parity, are obtained, as well as low-lying
0�ω and 1�ω states.

In the positive-parity states, the yrast states have the
(nπ,nν) = (0,0) configuration with little deformation up to
Jπ � 4+. The members of the Kπ = 0+

ND band, the dominant
components of which are (nπ,nν) = (0,2), become yrast
states for 6+ � Jπ � 10+. In high-spin states, Jπ � 12+, the
members of the Kπ = 0+

SD1 band are yrast states. The energies
of the Kπ = 0+

SD2 band are a few MeV higher than those of the
Kπ = 0+

SD1 band. The dominant components of the Kπ = 0+
SD1

and 0+
SD2 bands have (nπ,nν) = (2,2) and (2,4) configurations,

which are 4�ω and 6�ω excited configurations in a spherical
shell model picture, respectively.

The energies of the 0�ω states are consistent with exper-
imental data. The theoretical Jπ = 2+

1 , 2+
2 , and 4+

1 states
correspond to the experimental Jπ = 2+ (2.12 MeV), 2+
(3.30 MeV), and 4+ (4.68 MeV), respectively, which is
supported by agreement of theoretical and experimental B(E2)
values as shown in the following section. The theoretical
Jπ = 6+ and 8+ states in the Kπ = 0+

ND band correspond to the
yrast Jπ = 6+ (8.50 MeV) and 8+ (10.65 MeV), respectively.
It is supported by agreement of the B(E2) value between the
states as shown in the following section although energies of
those theoretical states are a few MeV overestimated. Particle-
hole configurations of those states are consistent with those
calculated by the shell model [30]. The states corresponded to
the theoretical Jπ = 0+–4+. There are some candidates such
as the Jπ = 0+

2 (3.92 MeV), 2+
4 (4.89 MeV), and 4+ (6.25

MeV) states, but B(E2) data are insufficient to assign the
Kπ = 0+

ND band. The Kπ = 2+
ND, 0+

SD1, and 0+
SD2 bands have

never been observed.
In the negative-parity states, the yrast states have (nπ,nν) =

(0,1) configurations for the Jπ � 8− states. For the Jπ � 9−
states, the members of a Kπ = 3− band, called the Kπ =
3−

ND band, are yrast states. Furthermore, Kπ = 2− and 4−
bands exist, which are called the Kπ = 2−

ND and 4−
SD bands,

respectively. The dominant components of the Kπ = 3−
ND and
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FIG. 5. Density distributions of the two highest single-particle orbits at (a) β = 0.63 and (b) 0.75 and that of (c) lower 16 protons and
16 neutrons at β = 0.75 in positive-parity states. The z and y axes are long and middle principal axes, respectively. Density distributions are
integrated for the direction of the short axis, and contour lines are drawn every 0.005 fm−2 for (a) and (b) and 0.08 fm−2 for (c).
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FIG. 6. Left and right parts show experimental and theoretical
level schemes, respectively, in 34S. The “yrast” and “+” in the
experimental part show yrast states and other positive-parity states,
respectively, and the “−” shows negative-parity states. In the
theoretical part, dominant components and labels of rotational bands
are shown (see text).

2−
ND bands have (nπ,nν) = (1,2) configurations, and those of

the Kπ = 4−
SD band have (nπ,nν) = (2,3) components. The

(nπ,nν) = (1,2) and (2,3) configurations are 3�ω and 5�ω
configurations, respectively, in a spherical shell model picture.

The energies of the theoretical 1�ω states are consistent
with those of negative-parity yrast states. Existence of the
Kπ = 2−

ND, 3−
ND, and 4−

SD bands are predicted, but they have
never been observed.

The members of the Kπ = 0+
SD1, 0+

SD2, and 4−
SD bands

have mp-mh configurations for both the proton and neutron
components, and the values of the quadrupole deformation
parameter β of those dominant components are greater than
0.6. Their energies are within a few MeV, although the particle-
hole configurations of the neutron components differ; they are
nν = 2, 3, and 4 for the Kπ = 0+

SD1, 4−
SD, and 0+

SD2 bands,
respectively. This shows the coexistence of two positive- and
one negative-parity SD bands. The energy of the Kπ = 4−

SD
band is intermediate between those of the Kπ = 0+

SD1 and
0+

SD2 bands.

C. E2 transition strengths

Tables I and II show the B(E2) values for the positive- and
negative-parity states, respectively. The experimental values
are also shown. The in-band B(E2) values of the Kπ = 0+

SD1,
0+

SD2, and 4−
SD bands are much larger than those of the other

transitions, and the B(E2) values are more than a hundred
BW.u.(E2), which indicates a large deformation of the Kπ =
0+

SD1, 0+
SD2, and 4−

SD bands.
It is supported by agreement of theoretical and experi-

mental B(E2) values that the Jπ = 6+ (8.50 MeV) and 8+
(10.65 MeV) states are members of the Kπ=0+

ND band. The
theoretical B(E2; 8+

ND→6+
ND) value is 31.06BW.u.(E2), which

is within the experimental value B(E2; 8+(10.65 MeV) →

TABLE I. Theoretical (left) and experimental (right) quadrupole
electric transition strengths B(E2) in Weisskopf units, BW.u.(E2) =
6.54 e2 fm4, for positive-parity states. J π

i and J π
f indicate spin-parity

of initial and final states, respectively. Ei and Ef are excitation
energies of initial and final states, respectively, in MeV. Experimental
data are taken from Refs. [30,34].

Theory
J π

i J π
f B(E2)

2+
1 0+

1 11.03
2+

2 0+
1 >0.1

2+
2 2+

1 5.90
3+

1 2+
1 0.16

3+
1 2+

2 5.99
4+

1 2+
1 8.39

4+
1 2+

2 0.20
4+

1 3+
1 3.30

2+
ND 0+

ND 18.39
4+

ND 2+
ND 16.09

6+
ND 4+

ND 19.75
8+

ND 6+
ND 31.06

2+
SD1 0+

SD1 110.63
4+

SD1 2+
SD1 156.24

6+
SD1 4+

SD1 168.96
2+

SD2 0+
SD2 152.02

4+
SD2 2+

SD2 217.08
6+

SD2 4+
SD2 238.99

Experiments
J π

i Ei J π
f Ef B(E2)

2+ 2.12 0+ 0.00 6.24 ± 0.16
2+ 3.30 0+ 0.00 0.75 ± 0.04
2+ 3.30 2+ 2.12 3.8 ± 1.0
2+ 4.11 0+ 0.00 0.57 ± 0.09
2+ 4.11 2+ 2.12 2.3 ± 0.6
4+ 4.68 2+ 2.12 8.2 ± 1.4
3+ 4.87 2+ 2.12 0.09 ± 0.06
3+ 4.87 2+ 3.30 0.8 ± 0.8
2+ 4.88 0+ 0.00 0.35 ± 0.13
8+ 10.65 6+ 8.50 27 ± 15
9+ 12.14 7+ 9.91 7.6 ± 2.0
10+ 13.34 8+ 11.37 7.1 ± 2.3

6+(8.50 MeV)) = 27 ± 15BW.u.(E2). To study band struc-
ture of the Kπ = 0+

ND band, observations of E2 transitions
from the Jπ = 6+ (8.50 MeV) to a Jπ = 4+ state except
for the Jπ = 4+

1 (4.69 MeV) state. No transition whose
B(E2) value is larger than a hundred BW.u.(E2) has been
observed, though it is predicted that in-band B(E2) values
of SD bands are more than a hundred BW.u.(E2). More
γ -spectroscopy experiments are required to observe ND and
SD bands in 34S. The theoretical and experimental B(E2)
values between low-lying states are consistent for positive-
and negative-parity states. The theoretical B(E2; 2+

1 →
0+

1 ) and B(E2; 2+
2 → 2+

1 ) values are the same orders
of magnitude of the experimental B(E2; 2+(2.12 MeV) →
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TABLE II. Same as Table I but for negative-parity states.

Theory
J π

i J π
f B(E2)

5−
1 3−

1 12.96
4−

1 3−
1 3.27

4−
1 5−

1 0.75
7−

1 5−
1 8.80

6−
1 5−

1 2.88
6−

1 4−
1 9.98

6−
1 7−

1 0.27
3−

ND2 2−
ND2 49.35

4−
ND2 2−

ND2 16.33
4−

ND2 3−
ND2 78.98

6−
ND2 4−

ND2 44.90
5−

ND3 3−
ND3 33.42

5−
ND3 4−

ND3 66.56
7−

ND3 5−
ND3 55.80

9−
ND3 7−

ND3 61.82
5−

SD 4−
SD 175.51

6−
SD 4−

SD 38.21
6−

SD 5−
SD 181.14

8−
SD 6−

SD 100.26

Experiments
J π

i Ei J π
f Ef B(E2)

5− 5.69 3− 4.62 0.76 ± 0.12
6− 7.79 5− 5.69 14 ± 4
6− 7.79 4− 6.25 16 ± 6
7− 8.37 5− 5.69 7.4 ± 1.6

0+(0.00 MeV)) and B(E2; 2+(3.30 MeV) → 2+(2.12 MeV))
values, respectively. The theoretical B(E2; 4+

1 → 2+
1 ) value

is consistent with the experimental B(E2; 4+(4.68 MeV) →
2+(2.12 MeV)) value.

IV. DISCUSSION

A. Similarity of molecular orbitals around 16O + 16O cores
and Nilsson orbits

Before discussing the structures of the SD states in 34S,
the quanta of molecular orbitals around the 16O + 16O cores
are discussed in the Nilsson picture. The lowest orbit around
an 16O core is a 0d5/2 orbit. By linear combination of 0d5/2

orbits around two 16O cores, molecular orbitals around the two
16O cores are formed. Figure 7 shows schematic illustrations
of the formation of molecular orbitals around two spherical
16O cores. Here, the two 16O cores are located on the z axis
(horizontal axis), and a cylindrical coordinate system is used in
this section because of the axial symmetry around the z axis.

The 0d5/2 orbits around the 16O cores form δ, π , and σ
orbitals, which are formed from two (l,|lz|) = (2,2), (2,1), and
(2,0) orbits, respectively, around the left and right 16O cores.
For the δ orbital, the (l,|lz|) = (2,2) orbits have no node in the
z direction, as shown in the left column of Fig. 7(a). Therefore,
the δ orbital also has no node in the z direction, as shown in the
right column of Fig. 7(a). Similarly, the numbers of nodes of
the π and σ orbitals are two and four in the direction of the z

FIG. 7. Schematic illustrations of molecular orbitals generated
from 0d orbits around two 16O cores for (a) δ, (b) π , and (c) σ

orbitals. Left and right columns show phases of 0d orbits around two
16O cores and molecular orbitals, respectively. Dotted circles show
two 16O cores located on the z axis. Inverse triangles show locations
of nodes in molecular orbitals in the z direction. Numbers in brackets
show Nilsson quanta (see text).

axis, as shown in Figs. 7(b) and 7(c), respectively. In the radial
direction, they have no node because a 0d orbit has no node
in the radial direction. This shows that the quanta of the δ, π ,
and σ orbitals are [202], [321], and [440], respectively, in the
Nilsson picture. When a system has a two-16O core structure,
the [202], [321], and [440] orbits correspond to the δ, π , and
σorbitals, respectively. The parities of the δ, π , and σ orbitals
are positive, negative, and positive, respectively.

B. Configurations of valence neutrons in the SD bands

The GCM calculation yielded three SD bands, called the
Kπ = 0+

SD1, 0+
SD2, and 4−

SD bands, the structures of which are
interpreted as 16O + 16O + two valence neutrons that have δ2,
π2, and δ1π1 configurations, respectively, in a cluster picture.
Their proton components have 2�ω excited configurations and
neck structures, and the neutrons, except for the two highest-
energy orbits, have the same configuration. This configuration
is the same as that of the SD band in 32S, which contains
many 16O + 16O cluster structure components [15]. Therefore,
the three SD bands have structures of 16O + 16O + valence
neutrons in a cluster picture.

The configurations of the valence neutrons of the Kπ =
0+

SD1, 0+
SD2, and 4−

SD bands are [202]2, [321]2, and [202]1[321]2,
respectively. As shown in the previous section, the [202]
and [321] orbits correspond to the δ and π molecular
orbitals, respectively, around the two 16O cores. Therefore, the
configurations of the valence neutrons of the Kπ = 0+

SD1, 0+
SD2,

and 4−
SD bands are interpreted as δ2, π2, and δ1π1, respectively.
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The degeneracy of the [202] and [321] Nilsson orbits of
neutrons in the highly deformed region (Figs. 3 and 4) and the
coexistence of two positive- and one negative-parity SD bands
(Fig. 6) are explained in the cluster picture. In this picture,
the [202] and [321] orbits correspond to the δ and π orbitals,
which are formed by linear combination of 0d orbits around
the two 16O cores. When the 16O + 16O clustering develops,
the δ and π orbitals have similar energies. The 16O + 16O
cluster components in the 32S (SD) component generate similar
energies for the [202] and [321] orbits in the highly deformed
states of 34S. Because of the coexistence of the [202] and [321]
orbits, the Kπ = 0+

SD1, 4−
SD, and 0+

SD2 bands coexist; they have
32S (SD) + [202]2

ν , [202]1
ν[321]1

ν , and [321]2
ν configurations,

respectively.

C. Structures of positive- and negative-parity yrast states

The structures of the yrast states vary dramatically. The
Kπ = 0+

ND and 0+
SD1 band members appear as positive-parity

yrast states, and the Kπ = 3−
ND band members appear as

negative-parity yrast states. By γ spectroscopy experiments on
high-spin states, it may be possible to observe the Kπ = 0+

ND,
0+

SD1, and 3−
ND bands.

In positive-parity states, the yrast states for Jπ � 4+ and
6 � Jπ � 10 have 0�ω and 2�ω configurations, respectively.
The 2�ω configuration of the yrast Jπ = 6+ and 8+ states are
consistent with the shell model calculation [30]. The present
calculation suggests that the yrast Jπ = 6+ (8.50 MeV) and 8+
(10.65 MeV) states are members of the Kπ = 0+

ND band. The
candidates for low-spin states in the Kπ = 0+

ND band are the
Jπ = 0+

2 (3.92 MeV) and 2+ (4.89 MeV) states. E2 transitions
between them have been observed [35], and the upper limit is 

20 BW.u.(E2), which is close to the theoretical B(E2; 2+

ND →
0+

ND) value. To observe the low-spin members of the Kπ = 0+
ND

band, in-band transitions from the Jπ = 6+
1 state are necessary.

In previous γ spectroscopy experiments, the final state of the

observed E2 transitions from the Jπ = 6+
1 state is only the

Jπ = 4+
1 state, which is a 0�ω state.

In high-spin states, Kπ = 0+
SD1 and Kπ = 3−

ND are yrast
states of the positive- and negative-parity states for the Jπ �
12+ and Jπ � 9− states, and the in-band B(E2) values are
large. This shows that it may be possible to observe those
bands by γ spectroscopy experiments on high-spin states. The
observed states of the assigned spins and parities are limited to
J � 8 states. γ spectroscopy experiments on the J > 12 states
are expected to reveal dramatic structural changes in 34S.

V. CONCLUSIONS

The structure of the SD states in 34S were investigated
using the AMD and GCM. By superposing the AMD wave
functions calculated via energy variation with a constraint on
the quadrupole deformation parameter β, the coexistence of
two positive- and one negative-parity SD bands is predicted.
The SD states have mp-mh configurations, and they are
interpreted as a structure consisting of 16O + 16O + valence
neutrons in molecular orbitals around 16O + 16O cores in
a cluster picture. The structures of the yrast states vary
dramatically. The Kπ = 0+

ND, 0+
SD1, and 3−

ND band members
appear as the yrast states of each parity. Highly efficient γ
spectroscopy experiments on high-spin states may reveal the
structures of those deformed states. Coexistence of deformed
bands and cluster correlations in them are discussed also for
28Si [18]. Both clustering and deformation are important to
understanding structures in A � 30 nuclei.
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Suzuki, and E. Uegaki, Prog. Theor. Phys. Suppl. 68, 29 (1980).

[14] S. Ohkubo and K. Yamashita, Phys. Rev. C 66, 021301 (2002).
[15] M. Kimura and H. Horiuchi, Phys. Rev. C 69, 051304 (2004).
[16] M. Kimura and H. Horiuchi, Nucl. Phys. A 767, 58 (2006).
[17] Y. Taniguchi, M. Kimura, Y. Kanada-En’yo, and H. Horiuchi,

Phys. Rev. C 76, 044317 (2007).
[18] Y. Taniguchi, Y. Kanada-En’yo, and M. Kimura, Phys. Rev. C

80, 044316 (2009).
[19] T. Inakura, S. Mizutori, M. Yamagami, and K. Matsuyanagi,

Nucl. Phys. A 728, 52 (2003).
[20] H. Horiuchi, in Clusters in Nuclei, Lecture Notes in Physics,

Vol. 818, edited by C. Beck (Springer, Berlin, 2010), pp. 57–108.
[21] M. Seya, M. Kohno, and S. Nagata, Prog. Theor. Phys. 65, 204

(1981).

[22] Y. Kanada-En’yo, H. Horiuchi, and A. Doté, Phys. Rev. C 60,
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