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Background: Extensions of single-reference (SR) energy-density functionals (EDFs) to multireference (MR)
applications involve using the generalized Wick theorem (GWT), which leads to singular energy kernels that
cannot be properly integrated to restore symmetries, unless the EDFs are generated by true interactions.
Purpose: We propose a new method to regularize the MR EDFs, which is based on using auxiliary quantities
obtained by multiplying the kernels with appropriate powers of overlaps.
Methods: Regularized matrix elements of two-body interactions are obtained by integrating the auxiliary
quantities and then solving simple linear equations.
Results: We implement the new regularization method within the self-consistent Skyrme-Hartree-Fock approach
and we perform a proof-of-principle angular-momentum projection (AMP) of states in odd-odd nucleus 26Al.
We show that for EDFs generated by true interactions, our regularization method gives results identical to
those obtained within the standard AMP procedure. We also show that for EDFs that do not correspond to true
interactions, it gives stable and converging results that are different from unstable and nonconverging standard
AMP values.
Conclusions: The new regularization method proposed in this work may provide us with a relatively inexpensive
and efficient tool to generalize SR EDFs to MR applications, thus allowing for symmetry restoration and
configuration mixing performed for typical nuclear EDFs, which most often do not correspond to true
interactions.
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I. INTRODUCTION

Density functional theory (DFT) is a universal approach
used in quantum chemistry, molecular physics, and condensed
matter physics to calculate properties of electronic systems.
Its extension to nuclear physics is by no means trivial,
encountering difficulties associated in part with the binary
composition of atomic nuclei, spin-dependent interactions,
superfluidity, and strong surface effects. Major difference
between the electronic and nuclear DFT is associated with the
lack of external binding potential, as atomic nuclei are self-
bound systems, and with the saturation of nuclear interactions
at a given value of density. This implies that the nuclear DFT
must necessarily be formulated in terms of intrinsic, and not
laboratory densities, which, in turn, leads to the spontaneous
breaking of fundamental symmetries.

In spite of these difficulties, the nuclear DFT is the
microscopic tool of choice to study in a systematic manner
medium-mass and heavy nuclei. In the symmetry-broken
mean-field variant, often referred to as single-reference (SR)
DFT, the method has proven to be extremely successful
in reproducing and predicting bulk nuclear properties like
masses, quadrupole moments, or nuclear radii. However, for a
precise description of numerous observables, the SR nuclear
DFT is inadequate. In particular, at the SR level, matrix
elements of electromagnetic transitions or beta decays can only
be treated within a quasiclassical approximation. Fully quantal
calculations of such observables are impossible without the
symmetry restoration, which requires extensions from the SR
to multireference (MR) DFT.

However, within the MR DFT, implementation of the
symmetry restoration is plagued with technical and conceptual
difficulties [1–3]. The reason is that the SR DFT, serving
as the starting point, is usually derived from an effective,
density-dependent pseudopotential, and is therefore not di-
rectly related to a Hamiltonian. The only reasonable, and to
a large extent unambiguous generalization of the SR energy
density functional (EDF) to the MR level is possible within the
generalized Wick’s theorem (GWT) [4] that establishes a one-
to-one correspondence between the SR and MR functionals.
In such an implementation, the MR EDF retains the form of
the underlying SR EDF, but is solely expressed in terms of
the so-called transition densities. Unfortunately, the resulting
MR EDFs are, in general, singular and require regularization.
In spite of preliminary attempts, concentrating mostly on a
direct removal of self-pairing effects [2,3], the problem of
regularization still lacks satisfactory and practical solution.
The aim of this work is to propose such a solution.

The paper is organized as follows. In Sec. II A, we recall
the standard formulation of the MR DFT scheme based on
the GWT, and we identify sources of potential pathologies.
Then, in Secs. II B and II C we present two variants of the
new regularization scheme, hereafter called linear (LR) and
quadratic regularization (QR), respectively. Our method is
illustrated by applications to the angular-momentum projec-
tion (AMP) problem, but can similarly be used to restore
other broken symmetries. In particular, the particle-number
restoration within the pairing-plus-quadrupole Hamiltonian is
currently studied in Ref. [5]. Summary and perspectives are
discussed in Sec. III.
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II. REGULARIZATION SCHEME

A. Standard MR DFT scheme

In this work, all implementations of projection methods
are based on the GWT, which allows for deriving compact
and numerically tractable expressions for off-diagonal matrix
elements between Slater determinants. For an arbitrary Slater
determinant |�〉, by |�̃〉 = R̂(�)|�〉 we denote the one
that is rotated in space, gauge space, or isospace, for the
angular-momentum, particle-number, or isospin restoration,
respectively. Hereafter, we focus our attention on the AMP,
but the presented ideas and methodology can be rather
straightforwardly generalized to the particle-number [5] or
isospin projections.

In order to bring forward the origin of singularities in
energy kernels [1–3], it is instructive to recall principal
properties of the standard GWT approach. Let us start with
a one-body density-independent operator F̂ = ∑

ij Fij a
†
i aj .

Its off-diagonal kernel (the matrix element divided by the
overlap), can be calculated with the aid of GWT, and reads
[4]

〈�|F̂ |�̃〉
〈�|�̃〉 =

∑
ij

Fij a+
i aj ≡

∑
ij

Fij ρ̃ji , (1)

where

ρ̃j i ≡ a+
i aj ≡ 〈�|a+

i aj |�̃〉
〈�|�̃〉 , (2)

denotes transition density matrix. Therefore, its matrix element
between the unprojected state |�〉 and AMP state |IMK〉 =
P̂ I

MK |�〉 can be calculated from

FIMK ≡ 〈�|F̂ P̂ I
MK |�〉

= 2I + 1

8π2

∫
d�DI �

MK (�)〈�|F̂ |�̃〉, (3)

where

P̂ I
MK = 2I + 1

8π2

∫
DI ∗

MK (�)R̂(�) d� (4)

is the AMP operator, DI
MK (�) is the Wigner function,

and R̂(�) = e−iαÎz e−iβÎy e−iγ Îz stands for the active rotation
operator in space, parametrized in terms of Euler angles
� = (α,β,γ ), and M and K denote the angular-momentum
components along the laboratory and intrinsic z axes, respec-
tively [6,7].

The immediate conclusion stemming from Eqs. (1)–(2) is
that the overlaps, which appear in the denominators of the
matrix element and transition density matrix, cancel out, and
the matrix element 〈�|F̂ |�̃〉 of an arbitrary one-body density-
independent operator F̂ is free from singularities and can be
safely integrated, as in Eq. (3).

Let us now turn our attention to two-body operators. The
most popular two-body effective interactions used in nuclear
structure calculations are the zero-range Skyrme [8,9] and
finite-range Gogny [10] effective forces. Because of their
explicit density dependence, they should be regarded, for
consistency reasons, as generators of the two-body part of the

nuclear EDF. The transition matrix element of the two-body
generator reads:

〈�|V̂2B|�̃〉 = 1

4

∑
ijkl

V̄ijkl[ρ̃] 〈�|a+
i a+

j alak|�̃〉, (5)

where V̄ijkl[ρ̃] denotes the antisymmetrized transition-density-
dependent matrix element. Gogny and Skyrme effective
interactions both contain local terms proportional to ρ η which,
in the MR DFT formulation, are usually replaced with the
transition (mixed) density ρ η → ρ̃ η [11]. Such a procedure,
although somewhat arbitrary, is very common, because it
fulfills a set of internal consistency criteria formulated in
Refs. [12,13]. These include hermiticity, independence of
scalar observables on the orientation of the intrinsic system,
and consistency with the underlying mean field. The alternative
way of proceeding is to substitute density-dependent terms
with projected density [14] or average density [15]. These
scenarios do not fulfill all the consistency criteria and will not
be discussed here.

Evaluating the transition matrix element, Eq. (5), with the
aid of GWT, one obtains

〈�|V̂2B|�̃〉
〈�|�̃〉 = 1

4

∑
ijkl

V̄ijkl [ρ̃] (a+
i a+

j alak

+ a+
i ak a+

j al − a+
i al a+

j ak ). (6)

Furthermore, for particle-number-conserving theory, contrac-

tions a+
i a+

j and alak vanish, whereas the remaining two
contractions give products of two transition density matrices,

〈�|V̂2B|�̃〉
〈�|�̃〉 = 1

4

∑
ijkl

V̄ijkl [ρ̃] (ρ̃ki ρ̃lj − ρ̃li ρ̃kj ) (7)

or

〈�|V̂2B|�̃〉
〈�|�̃〉 = 1

4

∑
ijkl

V̄ijkl [ρ̃]

( 〈�|a+
i ak|�̃〉 〈�|a+

j al|�̃〉
〈�|�̃〉2

− 〈�|a+
i al|�̃〉 〈�|a+

j ak|�̃〉
〈�|�̃〉2

)
, (8)

that is, the transition matrix element reads

〈�|V̂2B|�̃〉 = 1

2

∑
ijkl

V̄ijkl[ρ̃]
〈�|a+

i ak|�̃〉 〈�|a+
j xal |�̃〉

〈�|�̃〉 .

(9)

This defines the matrix element between the unprojected and
AMP states,

V 2B
IMK = 2I + 1

8π2

∫
d�DI �

MK (�)〈�|V̂2B|�̃〉. (10)

We note here that, because of the density dependence of the
two-body interaction, the analogue of the first member of
Eq. (3), that is, V 2B

IMK ≡ 〈�|V̂2BP̂ I
MK |�〉 is not valid. Nev-

ertheless, expression (10) constitutes a consistent definition of
the matrix element.
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At variance with the one-body case discussed above, the
integrand in Eq. (10) is inversely proportional to the overlap,
thus containing potentially dangerous (singular) terms. The
singularity disappears only if the sums in the numerator,
evaluated at angles � where the overlap 〈�|�̃〉 equals zero,
give a vanishing result; such a cancellation requires evaluating
the numerator without any approximations or omitted terms.
An additional singularity is created by the density dependence
of the interaction.

If some approximation of the numerator is involved, the
leading-order singularity goes as

〈�|V̂2B|�̃〉 ∼ 1

〈�|�̃〉1+η
, (11)

with the term 1/6 � η � 1 inherited from the direct density
dependence of the Gogny or Skyrme effective forces which are,
as already mentioned, commonly used to generate the modern
non-relativistic nuclear EDFs. This singularity precludes, in
general, determination of the integral in Eq. (10). Only in
special cases, e.g., for signature-symmetry conserving states
in even-even nuclei [16,17], the overlaps never vanish, and
thus problems related to singular kernels do not appear.

Thus, the GWT formulation of MR DFT is, in general,
singular. In fact, it is well defined only for V̂2B being a
true interaction. An example of such an EDF generator is
the density-independent Skyrme interaction SVT, which is
the SV interaction of Ref. [18] with all the EDF tensor
terms included (these were omitted in the original definition
of SV). Interaction SVT was recently used to calculate the
isospin-symmetry-breaking corrections to superallowed 0+ →
0+ β decay by means of the isospin- and angular-momentum
projected DFT formalism [19].

Progress in development of projection techniques and
difficulties in working out reliable regularization schemes
for density-dependent interactions [2] increased the demand
for density-independent effective interactions and stimulated
vivid activity in this field, resulting in development of density-
independent zero-range [20,21] as well as finite-range [22]
forces. The spectroscopic quality of these new forces is,
however, still far from satisfactory. In addition, the technology
of performing beyond-mean-field calculations with these novel
interactions is being developed only now [23,24].

The pathologies arising in the GWT description of the
two-body energy kernels come from uncompensated zeros of
the overlap matrix. The central idea of this work is to cure
the problem by replacing the calculation of projected matrix
elements with higher-order quantities, which are regularized
by multiplying the integrands with an appropriately chosen
power of the overlap:

〈�|V̂2B|�̃〉 → 〈�|V̂2B|�̃〉〈�|�̃〉n. (12)

The proposed regularization scheme amounts to replacing
the calculation of matrix elements V 2B

IMK , given in Eq. (10), by
the calculation of auxiliary quantity defined as

V
2B,n
IMK = 2I + 1

8π2

∫
d�DI �

MK (�)〈�|V̂2B|�̃〉〈�|�̃〉n. (13)

The central assumption behind such a regularization method is
that the two-body matrix element 〈�|V̂2B|�̃〉 is regularizable,

meaning that there exists a regularization procedure allowing
for removal of singularities and replacing the infected matrix
elements by regular ones,

〈�|V̂2B|�̃〉 −→ ˜〈�|V̂2B|�̃〉, (14)

for which the projected matrix elements can be calculated as
in Eq. (10),

Ṽ 2B
IMK = 2I + 1

8π2

∫
d�DI �

MK (�) ˜〈�|V̂2B|�̃〉, (15)

and which, in turn, can be expanded on a series of the Wigner
D functions:

˜〈�|V̂2B|�̃〉 =
∑

I ′M ′K ′
Ṽ 2B

I ′M ′K ′D
I ′
M ′K ′(�). (16)

Indeed, by inserting expansion (16) into Eq. (15), and
employing the orthonormality conditions of the Wigner D
functions [7], one straightforwardly obtains the desired result.

Finally, the regularized matrix elements ˜〈�|V̂2B|�̃〉 are
determined by requiring that the auxiliary quantities (13),
calculated before and after regularization be equal, that is,

V
2B,n
IMK ≡ Ṽ

2B,n
IMK. (17)

for

Ṽ
2B,n
IMK = 2I + 1

8π2

∫
d�DI �

MK (�) ˜〈�|V̂2B|�̃〉〈�|�̃〉n. (18)

Let us underline that our method does not require any
explicit a priori knowledge of the regularization scheme.
Also note that the expansion coefficients Ṽ 2B

IMK , appearing
in Eqs. (15) and (16), represent true regularized (two-body)
matrix elements.

Two variants of such a regularization scheme, dubbed
linear regularization (LR) and quadratic regularization (QR),
corresponding to, respectively, n = 1 and n = 2, are discussed
below in Sec. II B and II C.

B. Linear regularization scheme

The LR scheme applies, for example, to the density-
independent SV interaction in its original formulation [18],
that is, without the EDF tensor terms. It is also applicable to
the density-dependent SIII functional [18]. The reason is that
the density-dependence of this latter force does not lead, for a
given type of particles, to a higher power of density. The third
example, where the LR should be sufficient, is the Coulomb
exchange treated in the so-called Slater approximation [25],
because in this approximation the exchange Coulomb transi-
tion matrix element behaves as

ρ̃ 4/3 〈�|�̃〉 ∼ 〈�|�̃〉−1/3. (19)

In cases when the LR scheme is sufficient to cancel all poles
of the integrand, the set of auxiliary quantities V

2B,1
IMK (13)

can be calculated, in principle exactly, using suitably chosen
quadratures with a sufficient number of integration nodes.
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The overlap is always regular and, therefore, it can be
expanded in terms of the Wigner D functions as

N (�) ≡ 〈�|�̃〉 =
∑

I ′′M ′′K ′′
cNI ′′M ′′K ′′D

I ′′
M ′′K ′′ (�), (20)

where

cNIMK ≡ 〈�|P̂ I
MK |�〉 = 2I + 1

8π2

∫
d�DI �

MK (�)〈�|�̃〉.
(21)

Substitution of expansions (16) and (20) into Eq. (18), taken
at n = 1, leads to

Ṽ
2B,1
IMK = 2I + 1

8π2

∑
I ′M ′K ′

Ṽ 2B
I ′M ′K ′

∑
I ′′M ′′K ′′

cNI ′′M ′′K ′′

×
∫

d�DI �

MK (�) DI ′
M ′K ′ (�) DI ′′

M ′′K ′′(�). (22)

In the case of I + I ′ + I ′′ being half-integer, the integration
over the single volume must be replaced by integration over
the double volume [7]. The integral in Eq. (22) is equal [7] to

2I + 1

8π2

∫
d�DI �

MK (�) DI ′
M ′K ′(�) DI ′′

M ′′K ′′ (�)

= CIM
I ′′M ′′I ′M ′CIK

I ′′K ′′I ′K ′ , (23)

where symbols C stand for the Clebsch-Gordan coefficients.
The integral has the same form both for integer and half-integer
angular momenta.

Inserting (23) to (22), and requiring that Eq. (17) hold at
n = 1, gives rise to a set of linear equations for regularized
matrix elements Ṽ 2B

I ′M ′K ′ :

V
2B,1
IMK =

∑
I ′M ′K ′

AIMK
I ′M ′K ′ Ṽ

2B
I ′M ′K ′ , (24)

where

AIMK
I ′M ′K ′ =

∑
I ′′M ′′K ′′

cNI ′′M ′′K ′′CIM
I ′′M ′′I ′M ′CIK

I ′′K ′′I ′K ′ . (25)

Matrix AIMK
I ′M ′K ′ is quadratic for even-even and odd-odd nuclei

and rectangular for odd-A nuclei. The problem of finding the
regularized matrix elements within the LR scheme is thus
reduced to calculating auxiliary quantities (13) for n = 1 and
then solving a set of linear equations (24). In the HFODD solver,
the latter is handled by using the singular-value-decomposition
(SVD) technique.

We note here that the regularization procedure can be
applied separately to all terms of the EDF; that is, terms that
correspond to interactions can be treated within the standard
AMP method, and only those which do not should be treated
within the regularization scheme.

The expansion of Slater determinant |�〉 in terms of the
AMP states reads [6]

|�〉 =
∑
IK

|IKK〉 =
∑
IK

P̂ I
KK |�〉. (26)

In turn, the sum rule, which connects mean-field averages and
projected matrix elements, has the form

〈�|V̂2B|�〉 =
∑
IK

〈�|V̂2BP̂ I
KK |�〉 =

∑
IK

V 2B
IKK. (27)

The sum rule expresses the HF mean-field average value in
terms of the projected matrix elements, and thus constitutes a
stringent test of the performed AMP. On the one hand, when
V̂2B is a true interaction, the sum rule must be strictly obeyed.
On the other hand, for singular energy kernels, its violation
gives a numerical estimate of problems related to not using true
interactions. Similarly, the sum rule calculated for regularized
matrix elements,

〈�|V̂2B|�〉 =
∑
IK

Ṽ 2B
IKK, (28)

tests the quality of the regularization procedure. Note that sum
rules must be obeyed separately for all terms in the interaction,
which allows for studying singularities of energy kernels of
separate terms. In what follows, we show results obtained for
the sum-rule residuals, that is, for differences between right-
and left-hand sides of Eqs. (27) and (28). Apart from those, we
also assess precision of the AMP by considering energy EI=0

of the lowest I = 0 state.
More precisely, we focus our attention on investigating sta-

bility of these two quantities in function of the highest angular
momentum Imax included in the calculations, and we present
them versus Imax. The same value of Imax is consistently used to
define both summation ranges in Eqs. (24) and (25). Note that
in Eq. (25), the range of summation should be higher than the
natural cutoff dictated by the highest meaningful AMP compo-
nents in the mean-field wave function, which are given by the
values of amplitudes cNIMK . With increasing values of Imax, the
residuals of sum rules (27) and (28), should converge to zero.

All calculations were performed using the unrestricted-
symmetry solver HFODD [26,27]. We employed the Gauss-
Chebyshev quadratures to integrate over the α and γ Euler
angles and the Gauss-Legendre quadrature to integrate over
the β Euler angle. To achieve a sufficient accuracy, for each
Euler angle we used a large number of mesh points equal
Nα = Nβ = Nγ ≡ N = 50.

The examples presented below pertain to odd-odd nucleus
26Al, and to the so called anti-aligned mean-field configuration,
which is relevant in the context of the superallowed Fermi β
decay [19]. The most demanding task was to calculate the
auxiliary integrals V

2B,1
IMK , Eq. (13). Since we were interested

in comparing the standard and regularized calculations, we de-
cided to use a relatively small configuration space, consisting
of only Nshell = 6 spherical harmonic-oscillator shells. Such a
small space suppresses high angular-momentum components
in the reference Slater determinant. Unless explicitly stated,
in all calculations, in both direct and exchange channels the
Coulomb interaction was treated exactly.

It is instructive to begin the discussion by showing results
for EI=0 and Skyrme-energy sum-rule residuals obtained for
the SVT Skyrme force. Such a calculation tests the numerical
implementation of the method, and can be regarded as a proof
of principle of the LR scheme. The reason is, as already
mentioned, that the SVT is a true interaction and, therefore,
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FIG. 1. (Color online) Convergence of the lowest I = 0 energy
(top) and Skyrme-energy sum-rule residuals (bottom) in function
of the highest angular momentum Imax included in the calculations.
Open and full circles represent results obtained using the standard
AMP method and our LR method, respectively. Calculations were
performed for the true Skyrme interaction SVT (that is, with the
tensor EDF terms included).

both standard AMP method and LR method should give
exactly the same values of both indicators. As can be seen
in Fig. 1, this is indeed the case. It turns out that for Imax � 10,
the standard AMP values of EI=0 are perfectly stable (up to
a fraction of eV). However, the sum rule, which also tests
the convergence of higher angular momenta, reaches a similar
level of precision only above Imax = 20. The LR values of
EI=0 converge only above Imax = 20, which illustrates the fact
that in Eq. (24), higher intermediate angular momenta must be
taken into account. Note, however, that the sum rules calculated
using both methods converge in a similar smooth way.

The density-independent Skyrme parametrization SV in its
original formulation [18], that is, without the tensor EDF terms,
no longer corresponds to an interaction. Figure 2 clearly shows
that even such a seemingly insignificant departure from the true
Hamiltonian is immediately detectable through the indicators
tested in our study. In the standard AMP, energy EI=0 is again
perfectly stable over the entire range of studied values of Imax.
However, such stability can be misleading, because the LR
value, which converges only at Imax = 20, differs by as much
as 2 keV.

Note that the singularity of energy kernels leaves its
fingerprint in the values of the standard-AMP sum-rule
residuals. After an apparent convergence (at the level of a
few keV), which is visible below Imax = 16, at the level of a
few eV, this indicator, in fact, does not converge to zero. On
the other hand, the LR sum-rule residuals smoothly converge
to zero with high precision. An important conclusion obtained
here is that the stability of the ground-state energy does not
necessarily warrant that its value be free from spurious effects.
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FIG. 2. (Color online) Same as in Fig. 1 but for the original
Skyrme functional SV, that is, with the tensor EDF terms neglected.

For the density-dependent SIII functional [18], problems
encountered within the standard AMP are further magnified.
In this example, we performed calculations using the Slater
approximation [25] of the Coulomb exchange energy. There-
fore, here we applied our LR method both to the Skyrme and
Coulomb parts of the functional. The results are depicted in
Fig. 3, showing the energy EI=0 (upper panel), Skyrme-energy
sum-rule residuals (middle panel), and Coulomb-energy
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FIG. 3. (Color online) Same as in Fig. 1 but for the original
SIII Skyrme functional. Panels (b) and (c) show sum-rule residuals
of the Skyrme and Coulomb energies, respectively. The Slater
approximation of the Coulomb exchange energy was used.
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FIG. 4. (Color online) Energies EI=0 calculated using the stan-
dard AMP (open circles) and LR (full circles) methods, as functions
of the number of mesh points N . Calculations were performed for the
original SIII Skyrme functional. The maximum angular momentum
of Imax = 20 was used.

sum-rule residuals (lower panel). Similarly as in Fig. 2, the
standard AMP leads to misleadingly stable values of EI=0;
however, now the corresponding sum rules turn out to be
completely unstable. For the Skyrme and Coulomb energies,
they stagger around zero at the level of 50 keV and 50 eV,
respectively. In contrast, the LR method perfectly stabilizes the
sum rules, which smoothly converge to zero, and leads to stable
values of EI=0. However, the LR EI=0 energy is now shifted
down by almost 50 keV, as compared to the standard AMP
solution.

Finally, let us point out yet another shortcoming of the
standard AMP approach. Fig. 4 shows results of the test of
stability of EI=0 with respect to the number of mesh points N
used in numerical integrations over the Euler angles. In this
example, calculations were performed for the SIII functional
[18] and exact Coulomb exchange energy. It is clearly visible
that the standard-AMP values of EI=0 vary strongly and quite
erratically with N . This is owing to the fact that the results
do depend on relative positions of mesh points with respect to
singularities of the energy kernel. In contrast, the LR results
are perfectly stable.

C. Quadratic regularization scheme

In the QR scheme, matrix element V 2B
IMK (10) is replaced

by the auxiliary quantity V
2B,2
IMK defined in Eq. (13) for

n = 2. Again we assume that matrix element 〈�|V̂2B|�̃〉 is
regularizable. Inserting expansions (16) and (20) into (13)
gives

V
2B,2
IMK =

∑
I1M1K1

Ṽ 2B
I1M1K1

∑
I2M2K2

cNI2M2K2

∑
I3M3K3

cNI3M3K3

2I + 1

8π2

×
∫

d�DI �

MK (�) D
I1
M1K1

(�) D
I2
M2K2

(�) D
I3
M3K3

(�).

(29)

The integral can be calculated with the aid of the following
Clebsch-Gordan series [7]:

D
J1
M1K1

(�)DJ2
M2K2

(�)

=
J1+J2∑

J3=|J1−J2|

∑
M3K3

CJ3M3
J1M1J2M2

D
J3
M3K3

(�)CJ3K3
J1K1J2K2

. (30)

This gives

V
2B,2
IMK =

∑
I1M1K1

Ṽ 2B
I1M1K1

∑
I2M2K2

cNI2M2K2

∑
I3M3K3

cNI3M3K3

×
I2+I3∑

I ′′=|I2−I3|

∑
M ′′K ′′

CI ′′M ′′
I2M2I3M3

CI ′′K ′′
I2K2I3K3

× 2I + 1

8π2

∫
d�DI �

MK (�) D
I1
M1K1

(�) DI ′′
M ′′K ′′ (�).

(31)

Eventually, after using expression (23), we obtain

V
2B,2
IMK =

∑
I1M1K1

{ ∑
I2M2K2

cNI2M2K2

∑
I3M3K3

cNI3M3K3

∑
I ′′M ′′K ′′

× CI ′′M ′′
I2M2I3M3

CI ′′K ′′
I2K2I3K3

CIM
I1M1I ′′M ′′CIK

I1K1I ′′K ′′

}
Ṽ 2B

I1M1K1

≡
∑

I1M1K1

AIMK
I1M1K1

Ṽ 2B
I1M1K1

, (32)

with the following selection rules on intermediate summations:

|I2 − I3| � I ′′ � I2 + I3,

M2 + M3 = M ′′, M2 + M3 = M ′′, (33)

M1 + M ′′ = M, K1 + K ′′ = K.

From the practical point of view, it is important to notice that
the intermediate summations over I ′′,M ′′,K ′′ can be extended
as

I2+I3∑
I ′′=|I2−I3|

−→
2J∑

I ′′=0

, (34)

with the added terms being zero owing to properties of
the Clebsch-Gordan coefficients. This allows us to change
in Eq. (32) the order of summations, and to split the
multidimensional summations into two independent sets of
sums, that is,

AIMK
I1M1K1

=
∑

I ′′M ′′K ′′
XI ′′

M ′′K ′′CIM
I1M1I ′′M ′′CIK

I1K1I ′′K ′′ , (35)

where

XI ′′
M ′′K ′′ =

∑
I2M2K2

cNI2M2K2

∑
I3M3K3

cNI3M3K3

×CI ′′M ′′
I2M2I3M3

CI ′′K ′′
I2K2I3K3

. (36)

The trick used above facilitates numerical calculations. It
should also be noted that the Clebsch-Gordan coefficients
impose selection rules that introduce further simplifications.
For example, in Eq. (35), one has M ′′ = M − M1 and
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K ′′ = K − K1, meaning that corresponding summations are
effectively one-dimensional.

The QR scheme proposed above is not the simplest one.
An alternative formulation of the scheme, which, in fact, can
be generalized to higher orders, can be obtained as follows.
By performing a direct decomposition of the nth power of the
overlap, which is always regular and, therefore, expandable in
terms of the Wigner D-functions, we obtain

N n(�) ≡ 〈�|�̃〉n =
∑

I ′′M ′′K ′′
c
N ,n
I ′′M ′′K ′′D

I ′′
M ′′K ′′ (�). (37)

It is straightforward to show that with the aid of Eq. (37), the
QR scheme reduces formally to the LR scheme, that is, the
algebraic equations (24) and (25) are valid in the QR theory
provided that the coefficients cNIMK are replaced with c

N ,2
IMK .

Furthermore, the direct decomposition of N n(�) seems to be
the most natural and numerically most efficient generalization
of the proposed regularization scheme to higher values of n.

In this work we used the QR scheme as defined through
Eqs. (35) and (36). In the applications we used a strategy
similar to the one used for the LR scheme, that is, energies
EI=0 and sum-rule residuals were investigated as a functions
of Imax, which is the maximum value of angular momentum
admitted in the summations in Eqs. (35) and (36).

First, we applied the QR method to the SIII case, already
analyzed in Sec. II B in the context of the LR method; see
Fig. 3. In this case, both regularization schemes are fully
equivalent and give identical results. This result was, in fact,
expected. Indeed, let us observe that regularizability of the
theory at certain order n guarantees, see Eq. (17), that the
expression

(〈�|V̂2B|�̃〉 − ˜〈�|V̂2B|�̃〉)〈�|�̃〉m, (38)

differs from zero at most over a set of measure zero for
any m � n. This, in turn, implies an equivalence of all
regularization schemes for m � n. This fact speaks in favor of
our regularization scheme and the result quoted above serves
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FIG. 5. (Color online) Same as in Fig. 1 but for the SLy4 Skyrme
functional. Full squares represent results obtained using our QR
method.

as an independent test of the numerical implementation of the
method.

Next, we applied both regularization schemes to the case
of the SLy4 functional [28], which features a fractional-power
density dependence with η = 1/6. The results are presented
in Fig. 5. In this case, the regularization is insufficient to
stabilize the energy of the lowest I = 0 state. By removing
contributions coming from uncompensated poles in energy
kernels, the QR scheme lowers the energy of the I = 0 state
as compared to the LR scheme, but is unable to fully stabilize
the solution. The reason is that, apart from singularities, the
fractional power of the density introduces nonanalyticities
related to branch cuts, which are not removable by our
regularization scheme, irrespective of its order n.

III. SUMMARY AND PERSPECTIVES

In this work, we proposed a method to regularize the two-
body off-diagonal MR DFT kernels and we presented the first
application thereof to a representative case of the angular-
momentum projection. The method is based on two general
assumptions:

(1) First, it assumes that the MR EDF is regularizable,
meaning in practice that there exist a regularization
scheme replacing the kernel by its smooth counterpart
that can be expanded in a set of Wigner D func-
tions (16). No explicit knowledge of the regularization
scheme is required.

(2) Second, it assumes that the singularities, which appear
in the denominator of the two-body kernel, originate
from vanishing overlap, which is a result of using the
GWT. This allows us to identify terms proportional to
〈�|�̃〉−(1+η), where η comes from the direct density
dependence of the generator of two-body kernel, as
potentially the most dangerous ones.

The essential advantage of the method is in avoiding
the necessity to explicitly remove the self-interactions [2,3].
Instead, the proposed method relies on computing a set
of auxiliary integrals of nonsingular kernels obtained by
multiplying the original ones with an appropriately chosen
power of the overlap. Provided that the GWT is the only
source of singularities, the auxiliary integrals turn out to be
linear functions of the true regularized matrix elements, and the
entire problem can be reduced to an algebraic task of solving
a set of linear equation. The method also has a certain internal
flexibility; namely, it can be applied to selected parts of the
EDF only. This feature is important in cases when troublesome
parts of the EDF can be isolated. The example is the Coulomb
exchange interaction treated within the Slater approximation.

A certain disadvantage of the method is the fact that, to
achieve a desired accuracy, the auxiliary integrals require
more quadrature nodes. In addition, one has to invert or
perform the SVD decomposition of the auxiliary matrices A,
see Eqs. (25) and (35), which can be a potential source of
numerical inaccuracies. Both problems become more acute
with increasing power of the overlap multiplying the kernel.
Nevertheless, in this exploratory study we have demonstrated
that both the LR and QR schemes can be realized. Problems
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encountered for the calculations involving the SLy4 func-
tional reflect the inadequacy of the scheme in applications
to fractional-power density-dependent terms, which lead to
nonanalytic dependence of kernels on the Euler angles.

An interesting feature of our calculations is that they reveal
the fact of how much the effects of using EDFs that are
not derived from true interactions can be inconspicuous. Our
calculations show that even the slightest departure from the
true interaction is immediately detectable through the sum
rules, but it can be completely invisible when looking at
energies of low-lying states, which are often perfectly stable.

Finally, in principle the proposed regularization scheme
can also be generalized to the generator coordinate method
(GCM). For that, it would be enough that the GCM overlaps
and matrix elements can be expanded on a set of appropriate
orthogonal polynomials, whereupon coefficients analogous to
those given in Eqs. (25) and (35) can be easily determined.

In the case discussed in the present paper, or, for that mat-
ter, for any symmetry-restoration problem, such orthogonal
polynomials are provided by the properties of the underlying
integration over the symmetry group. However, depending
on the particular case, more general implementations of our
regularization scheme, within the full GCM approach, should
also be possible.
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Jyväskylä within the FIDIPRO programme.

[1] J. Dobaczewski, M. V. Stoitsov, W. Nazarewicz, and P.-G.
Reinhard, Phys. Rev. C 76, 054315 (2007).

[2] D. Lacroix, T. Duguet, and M. Bender, Phys. Rev. C 79, 044318
(2009).

[3] M. Bender, T. Duguet, and D. Lacroix, Phys. Rev. C 79, 044319
(2009).

[4] J. Blaizot and G. Ripka, Quantum Theory of Finite Systems
(MIT Press, Cambridge, 1986).

[5] M. Rafalski et al. (unpublished).
[6] P. Ring and P. Schuck, The Nuclear Many-Body Problem

(Springer, Berlin, 1980).
[7] D. Varshalovich, A. Moskalev, and V. Khersonskii, Quantum

Theory of Angular Momentum (World Scientific, Singapore,
1988).

[8] T. Skyrme, Phil. Mag. 1, 1043 (1956).
[9] T. Skyrme, Nucl. Phys. 9, 615 (1959).

[10] D. Gogny, Nucl. Phys. A 237, 399 (1975).
[11] P. Bonche, J. Dobaczewski, H. Flocard, P.-H. Heenen, and

J. Meyer, Nucl. Phys. A 510, 466 (1990).
[12] L. M. Robledo, Int. J. Mod. Phys. E 16, 337 (2007).
[13] L. M. Robledo, J. Phys. G 37, 064020 (2010).
[14] K. Schmid, Prog. Part. Nucl. Phys. 52, 565 (2004).
[15] T. Duguet, and P. Bonche, Phys. Rev. C 67, 054308

(2003).
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