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Relativistic three-body bound state in a 3D formulation
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Background: The relativistic three-body problem has a long tradition in few-nucleon physics. Calculations of
the triton binding energy based on the solution of the relativistic Faddeev equation, in general, lead to a weaker
binding than the corresponding nonrelativistic calculation.
Purpose: In this work we solve for the three-body binding energy as well as the wave function and its momentum
distribution. The effect of the different relativistic ingredients is studied in detail.
Method: Relativistic invariance is incorporated within the framework of Poincaré invariant quantum mechanics.
The relativistic momentum-space Faddeev equation is formulated and directly solved in terms of momentum
vectors without employing a partial-wave decomposition.
Results: The relativistic calculation gives a three-body binding energy which is about 3% smaller than its
nonrelativistic counterpart. In the wave function, relativistic effects are manifested in the Fermi motion of the
spectator particle.
Conclusions: Our calculations show that though the overall relativistic effects in the three-body bound state are
small, individual effects by themselves are not necessarily small and must be taken into account consistently.
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I. INTRODUCTION

We solve the relativistic three-nucleon bound-state problem
and compare the resulting wave functions to the correspond-
ing nonrelativistic bound-state wave functions. While the
wave functions themselves are not observable, the difference
between the relativistic and nonrelativistic wave functions
provides useful information about which observables might be
sensitive to the difference. Before going into detail we need to
define what we consider the relativistic three-nucleon problem,
define what we mean by relativistic effects, and summarize
what has been learned from previous work on this problem.

In discussing the three-nucleon problem we limit our
considerations to an idealized system modeled on a three-
nucleon Hilbert space. This limitation allows us to make
meaningful comparisons with the nonrelativistic problem. The
difference between a relativistic and a nonrelativistic model is
the underlying symmetry group of the theory. For relativistic
models the symmetry group is the Poincaré group and for
nonrelativistic models it is the Galilean group. Symmetries
of a quantum theory preserve observables, i.e., probabilities,
expectation values, and ensemble averages. This ensures
the invariance of these observables in all inertial reference
frames. In the relativistic case the inertial frames are related
by Poincaré transformations, while in the nonrelativistic
case inertial frames are related by Galilean transformations.
Symmetries in a quantum theory are implemented by unitary
or antiunitary transformations. In the relativistic case the
dynamics is implemented by a unitary projective represen-
tation of the Poincaré group [1]. In the nonrelativistic case
the dynamics is given by unitary projective representation of
the central extension [2] of the Galilean group. Neither of
these symmetries impose strong constraints on the dynamics.

Normally, the dynamics is formulated in a particular frame,
e.g., the laboratory frame, the center-of-momentum (c.m.)
frame, etc. The symmetry only ensures that the results are
consistent in frames related to this particular frame by the
symmetry transformations.

A second related constraint is cluster separability. In the
three-body system, cluster separability means that isolated
one- and two-body subsystems should exhibit the same
symmetries as the system itself. This is needed to ensure that
either special or Galilean relativity can be tested on isolated
subsystems. To understand the role of this condition, assume,
for example, that the two- and three-body dynamics are
formulated in the two- and three-body rest frames, respectively.
The two-body subsystems in the three-body rest frame are
not generally in the two-body rest frame. However, if the
model satisfies cluster properties, then the two-body symmetry
transformation determines how to transform the two-body
subsystem from its rest frame to the three-nucleon rest frame.
This embedding is different for the Galilean and Poincaré
symmetry groups and is the source of the relativistic effects
that are studied in this work.

One feature of realistic nucleon-nucleon (NN ) interactions
is that while they are formally motivated by, e.g., meson-
exchange models, when cast in a nonrelativistic two-nucleon
Hamiltonian, the model is adjusted so that the predicted NN
observables agree with experiment with a χ2 per degree of
freedom close to 1 [3,4]. The experimental data are consistent
with special relativity, while the nonrelativistic calculation is
consistent with a Galilean symmetry. There is an immediate
question about what is being compared to the data to obtain
the quoted χ2. The answer depends on how the analysis
is performed. Normally, laboratory frame data are correctly
transformed to the c.m. frame using a Lorentz transformation.
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The correctly transformed scattering data are then compared
to the nonrelativistic c.m. scattering solutions. Parameters of
the interaction are fine tuned to achieve agreement with the
data. In this case, phase shifts are identified as functions of the
relativistic and nonrelativistic relative momenta. This means
that in any other frame the experimental and computed cross
sections will no longer be identical functions of the laboratory
energy.

The important consequence of this is that in the preferred
c.m. frame the nonrelativistic two-body calculation gives the
experimental result. It is also possible to introduce relativistic
NN interactions that are consistent with the same scattering
data. If one were to take the nonrelativistic limit of the
relativistic model, the scattering observables would change as a
result of the approximation and would not agree with the results
of a nonrelativistic model that is fit to the same experimental
data. This aspect of realistic NN interactions must be taken
into account when interpreting relativistic corrections in the
three-body problem.

In this work we construct the relativistic NN interaction so
that the rest-frame relativistic and nonrelativistic NN wave
functions and phase shifts are identical. Cluster properties
determine how these two-body models should be embedded
in the three-nucleon Hilbert space. Relativistic effects are
attributable entirely to the different ways that these two-body
interactions appear in the three-nucleon problem to satisfy
cluster properties.

The resulting formulation of the relativistic three-nucleon
problem has the property that in the limit that the momenta
are all small compared to the nucleon masses, the relativistic
Faddeev equation reduces to the nonrelativistic one, which
justifies our interpretation of the difference being attributed to
“relativistic effects.” It is appropriate to think of the relativistic
effects being attributable to the difference between relativistic
and nonrelativistic treatments of Fermi motion, which involve
Galilean or Poincaré boosts of the subsystems.

In this initial work the nonrelativistic NN potential is
a Malfliet-Tjon V (MT-V) [5] type interaction. The formal
definition of the phase and wave-function equivalent rela-
tivistic NN interactions that we use was given by Coester,
Pieper, and Serduke [6]. The construction of the corresponding
relativistic NN transition operators was given in Ref. [7]
and successfully implemented in Refs. [8–10]. The two-body
unitary representation of the Poincaré group is formulated
using a construction given by Bakamjian and Thomas [11].
The corresponding three-body unitary representation of the
Poincaré group that satisfies S-matrix cluster properties was
introduced by Coester [12]. Note that while it is possible
to realize cluster properties of the unitary representation of
the Poincaré group [13–15], for the three-body problem it is
sufficient and far simpler to formulate a model where the S
matrix clusters properly. The difference is that cluster proper-
ties of the unitary representation of the Poincaré group requires
three-body forces that are generated by the two-body forces. In
the formulation where only the S matrix clusters, the required
three body-forces are replaced by two-body interactions that
depend on the spectator momentum. The important relation is
that both formulations of the relativistic three-body problem
give identical three-body scattering observables. They are

related by an S-matrix preserving unitary transformation that
becomes the identity in the three-body rest frame [14].

While many of the methods mentioned in the previous
paragraph are formulated using one of Dirac’s forms of
dynamics [16], in our calculations the form of dynamics is
only relevant if we choose to transform our results from the
three-body rest frame to an arbitrary frame. This can be done
consistently in any form of dynamics [17].

In this work we solve the relativistic Faddeev equation using
direct integration [18–20]. This method gives the three-body
wave function directly, so it does not have to be reconstructed
using partial-wave methods. Part of our motivation for using
direct integration in the bound-state problem is to provide test
problems that can be compared to previous relativistic partial-
wave calculations. Ultimately, these calculations need to be
extended to treat spin-dependent interactions and scattering
at relativistic energies, where direct-integration methods are
essential.

The first relativistic three-body calculations using the
formalism that we use in this paper were performed by
Glöckle, Coester, and Lee [21]. Their calculations used
the same MT-V interaction. However, they approximated
the relativistic interaction so the phase equivalence with the
nonrelativistic interaction was only approximate and they used
a partial-wave expansion that was truncated to s waves. They
found a small decrease in the binding energy due to relativistic
effects. Relativistic bound-state calculations with a realistic
interaction were performed by Kamada et al. [22]. These
were fully converged partial-wave calculations. The resulting
binding energy corrections were comparable to the corrections
obtained by Glöckle, Coester, and Lee. Three-body scattering
calculations using a realistic interaction and including a
three-nucleon force were also performed using partial-wave
methods for energies up to 250 MeV [23]. These calculations
exhibited relativistic effects in the breakup observables and
large-angle elastic scattering showed evidence of missing
degrees of freedom. Direct-integration scattering calculations
were successfully performed using the MT-V interaction
for energies up to 2 GeV [8–10]. These also exhibited
strong relativistic effects in certain breakup observables and
demonstrated the value of direct-integration methods at higher
energies. Our long-term goal is to perform few-GeV-scale
scattering calculations with realistic interactions. This requires
using direct integration with realistic interactions. Because
there are no such calculations, the first step is to establish
that the method works for the bound-state problem, where
the results can be compared to partial-wave calculations. This
work is a precursor to including a relativistic treatment with
realistic interactions using direct-integration methods.

This work addresses two omissions of the body of work
discussed above. First there are no relativistic bound-state
calculations that have utilized direct-integration methods.
Second, while the three-body binding energy has been com-
puted, there is no published work comparing the relativistic
and nonrelativistic bound-state wave functions. While wave
functions are not directly observable, observables are sensitive
to the structure of the wave functions and differences in
the relativistic and nonrelativistic wave functions are respon-
sible for relativistic effects in three-body observables.
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II. THE POINCARÉ INVARIANT FADDEEV EQUATION

A. Kinematic variables

In both the relativistic and nonrelativistic three-body
problems, Poincaré or Galilean symmetry relates the state of
the system in its rest frame to its state in a general frame.
The dynamics is usually formulated in the rest frame of the
system. Thus, it is useful to formulate the three-body problem
using variables that describe the momenta of particles in the
three-body rest frame. The two-body subsystem, however, uses
variables that describe the momenta of particles in the rest
frame of the subsystem. The relevant variables are defined by
boosting the single-particle momenta to the three-body rest
frame and then boosting two-body subsystem momenta to the
rest frame of the subsystem. Using Galilean boosts results in
the Jacobi momenta that are used in nonrelativistic three-body
calculations [24]. Replacing the Galilean boosts by Lorentz
boosts leads to relativistic Jacobi momenta. In both cases
these are changes of variables from single-particle momenta to
variables that are more convenient in three-body applications.

In what follows we assume that all nucleons have the same
mass, m. We denote the single-particle four-momenta by p

μ
i .

We define the total four-momentum of the noninteracting
three-body system P μ := ∑3

i=1 p
μ
i and its invariant mass

M2
0 = −P μPμ. Relativistic Jacobi momenta are constructed

by first boosting the p
μ
i to the three-body rest frame with a

rotationless boost �−1(P/M0)μν ,

k
μ
i := �−1(P/M0)μνp

ν
i . (1)

The vector components of k
μ
i are

ki = pi + P
M0

⎡
⎣ P · pi

M0 +
√

M2
0 + P2

− ωm(pi)

⎤
⎦ , (2)

where P is the three-vector part of P μ and ωm(pi) = p0
i =√

m2 + p2
i is the energy of the ith particle.

The vectors ki are not independent and satisfy

3∑
i=1

ki = 0, M0 :=
3∑

i=1

ωm(ki). (3)

The other relativistic Jacobi momentum variables are obtained
by boosting k

μ
j to the rest frame of the pair (jk). Following

Eq. (2) we denote the four-momentum of the pair (jk) in
the three-body rest frame by k

μ
jk = k

μ
j + k

μ
k and the two-body

invariant mass of the subsystem (jk) by m2
0jk = −k

μ
jkkμjk . The

other relativistic Jacobi momenta are defined by

p
μ
jk := �−1(kjk/m0jk)μνk

ν
j . (4)

The vector components of p
μ
jk are

pjk = kj + kjk

m0jk

⎧⎨
⎩ kjk · kj

m0jk +
√

m0jk + k2
jk

− ωm(kj )

⎫⎬
⎭ . (5)

The inverse of Eq. (5) is given as

kj = pjk + kjk

m0jk

⎧⎨
⎩ kjk · pjk

m0jk +
√

m0jk + k2
jk

+ ωm(pjk)

⎫⎬
⎭ . (6)

The pairs (pjk,ki) are the relativistic analogs of the usual
Jacobi momenta. If the Lorentz boosts �−1(·)μν are replaced
by Galilean boosts these become the nonrelativistic Jacobi
momenta [24].

The different choices of independent momentum variables
are the single-particle momenta {p1,p2,p3}, the total momen-
tum plus the momenta of any two particles in the three-body
rest frame, {P,kj ,kk}, and the relativistic Jacobi momenta
for the pair (jk), {P,pjk,ki}. The Jacobian of the variable
change {p1,p2,p3} ↔ {P,kj ,kk} is one when P = 0, while the
Jacobian of the variable change {P,kj ,kk} ↔ {P,pjk,ki} is
given by

N 2(kj ,kk) :=
∣∣∣∣ ∂(kj ,kk)

∂(pjk,kjk)

∣∣∣∣
= ωm(pjk) + ωm(pjk)

ωm(kj ) + ωm(kk)

ωm(kj )ωm(kk)

ωm(pjk)ωm(pjk)
. (7)

In the limit that the momenta are much smaller than the
masses the relativistic Jacobi momenta become identical
to the nonrelativistic Jacobi momenta and the Jacobian
becomes 1.

B. Two-body interactions embedded in the three-body space

Realistic two-body interactions may be, e.g., motivated by
meson exchange or other effective field theories, but the param-
eters of the interaction must be fine tuned to be consistent with
experimental two-body scattering observables. This means
that the nonrelativistic interactions are already consistent with
data and at the two-body level should not be considered as
approximations to a relativistic two-body model. Instead, a
realistic relativistic two-body model should be consistent with
the same data. Once the two-body model is defined, cluster
properties dictate how the two-body interactions appear in the
three-body problem. This is different in the relativistic and
nonrelativistic formalisms.

Given a nonrelativistic two-body model fit to scattering
data, we define a relativistic interaction fit to the same data
by requiring that the relativistic wave functions as a function
of pjk are identical to the nonrelativistic wave functions
as a function of the corresponding nonrelativistic Jacobi
momentum. Because the phase shifts can be extracted from
asymptotic properties of the wave functions, this ensures that
both interactions give the same phase shifts as a function of the
pjk . This can be proved using the invariance principle [15,25].

We begin by defining the interacting two-body invariant
mass operator (relativistic rest-frame Hamiltonian) for the pair
(jk) in terms of the nonrelativistic two-body interaction by

m2
jk = 4m

(
p2

jk

m
+ vnr

jk + m

)
, (8)

where vnr
jk is the nonrelativistic NN interaction between parti-

cles j and k. Because m2
jk is a function of the nonrelativistic

054002-3



M. R. HADIZADEH, CH. ELSTER, AND W. N. POLYZOU PHYSICAL REVIEW C 90, 054002 (2014)

rest-frame Hamiltonian,
p2

jk

m
+ vnr

jk , it has the same eigen-
functions. The phase-equivalent relativistic interaction, vr

jk ,
is defined in terms of mjk by

vr
jk = mjk − m0jk. (9)

While it is possible to formally solve the nonlinear relation
needed to express vr

jk in terms of vnr
jk [26], this is not needed

to formulate the relativistic Faddeev equation.
The input to the Faddeev equation is the two-body transition

operators properly embedded in the three-body Hilbert space.
As in the two-body case we define interactions as the difference
between the three-body mass operator with and without
the two-body interaction. This will satisfy S-matrix cluster
properties if this 2 + 1-body mass operator leads to the same
two-body scattering operator as the two-body mass operator
m2

jk . This will be true if we can write the three-body interacting
mass operator with pair (jk) interacting as a function of mjk .
This can be achieved by defining

Mjk =
√

k2
i + m2

jk + ωm(ki)

=
√

k2
i + 4m2 + 4p2

jk + 4mvnr
jk + ωm(ki). (10)

The two-body interactions embedded in the three-body Hilbert
space are

Vjk = Mjk − M0 (11)

=
√

k2
i + 4m2 + 4p2

jk + 4mvnr
jk −

√
k2
i + 4m2 + 4p2

jk.

(12)

The three-body bound states are eigenstates of the three-body
mass operator

Mt = M0 + V12 + V23 + V31. (13)

The Faddeev kernel involves the two-body transition operators
Tjk(z) that act in the three-particle Hilbert space. They are

defined by

Tjk(z) := Vjk + Vjk(z − Mjk)−1Vjk. (14)

This is a function of the nonrelativistic two-body interaction
between particles j and k. Because of this relation, matrix
elements of Tjk(z) can be obtained directly from the nonrela-
tivistic two-body transition matrix elements using a two-step
process. This method is exact and avoids the problem of
computing the relativistic two-body interaction.

The first step is to use the general relation between the
interaction, scattering wave functions and half-shell transition
operators

Vjk|(pjk,ki)
+〉 = Tjk(z0)|pjk,ki〉, (15)

where z0 =
√

m2
0jk(pjk) + k2

i + i0+ is the on-shell energy.

Using the relativistic and nonrelativistic versions of this
relation leads to the identity

Tjk

(
pjk,p′

jk;
√

m2
0jk(p′

jk) + k2
i + i0+)

= F (pjk,p
′
jk,ki) tnr

(
pjk,p′

jk;
p′2

jk

m
+ i0+

)
, (16)

where the ratio of the half-shell transition matrix elements is

F (pjk,p
′
jk,ki) = 4m√

m2
0jk(pjk) + k2

i +
√

m2
0jk(p′

jk) + k2
i

,

(17)

with m0jk(pjk) = 2ωm(pjk) and

〈pjk,ki |Tjk(z)|p′
jk,k

′
i〉= δ(ki − k′

i)Tjk(pjk,p′
jk,z − ωm(ki)).

(18)

Equation (16) can be used to express Tjk(pjk,p′
jk;√

m2
0jk(p′

jk) + k2
i + i0+) in terms of tnr(pjk,p′

jk;
p′2

jk

m
+ i0+).

However, this relation is only valid for half on-shell transition
matrices. In the Faddeev equation Tjk(pjk,p′

jk; z) is needed
for off-shell values of z. Those can be obtained by solving
an integral equation for Tjk(pjk,p′

jk; z) that uses Eq. (16) as
input,

Tjk(pjk,p′
jk; z − ωm(ki)) = Tjk

(
pjk,p′

jk;
√

m2
0jk(p′

jk) + k2
i + i0+)

+
∫

dp′′
jk

⎡
⎣ 1

z −
√

m2
0jk(p′′

jk) + k2
i

− 1√
m2

0jk(p′
jk) + k2

i −
√

m2
0jk(p′′

jk) + k2
i + i0+

⎤
⎦

×Tjk(pjk,p′′
jk; z − ωm(ki))Tjk

(
p′′

jk,p
′
jk;

√
m2

0jk(p′
jk) + k2

i + i0+)
. (19)

This relation, which follows from first resolvent equa-
tions, is derived in the Appendix. To compute the rela-
tivistic Faddeev kernel, one only needs to solve the inte-
gral equation, Eq. (19), for Tjk(pjk,p′

jk; z − ωm(ki)), which
uses the relativistic half-shell transition matrix elements as
input.

C. Faddeev equations

The relativistic three-body bound state is a discrete eigen-
state of the relativistic three-body mass operator M defined
in Eq. (13). The eigenvalue problem can be reformulated
as a system of coupled integral equations for the Faddeev
components of the wave functions. For identical particles
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this reduces to a single equation for one of the Faddeev
components,

|ψi〉 = (Mt − M0)−1 Tjk(Mt ) P |ψi〉, (20)

where Mt = Et + 3m is three-body mass eigenvalue, and
P = P12P23 + P13P23 is the permutation operator for three
identical particles. This equation has nonzero solutions when

Mt is an eigenvalue of Eq. (20). The bound-state wave function
constructed from the solution of (20) is

|	〉 = |ψi〉 + P |ψi〉. (21)

For the explicit calculation we use the basis |pjk,ki〉, where i
is fixed. In this basis Eq. (20) becomes

〈pjk,ki |ψi〉 =
∫

dp′
jk dk′

i dp′′
jk dk′′

i

δ(ki − k′
i) Tjk(pjk,p′

jk; Mt − ωm(ki))

Mt − M0(pjk,ki)
〈p′

jk,k
′
i |P |p′′

jk,k
′′
i 〉〈p′′

jk,k
′′
i |ψi〉

= 1

Mt − M0(pjk,ki)

∫
dp′

jk dk′
i dp′′

jk dk′′
i δ(ki − k′

i) Tjk(pjk,p′
jk; Mt − ωm(ki))

×(〈p′
jk,k

′
i |p′′

ki ,k
′′
j 〉 + 〈p′

jk,k
′
i |p′′

ij ,k
′′
k〉) 〈p′′

jk,k
′′
i |ψi〉. (22)

Here the permutation operators contain two delta functions which eliminate two of the integrals. We use them to eliminate the
integrals over p′

jk and p′′
jk . The matrix elements of the permutation operators have the form

〈p′
jk,k

′
i |P |p′′

jk,k
′′
i 〉 = 〈p′

jk,k
′
i |p′′

ki ,k
′′
j 〉 + 〈p′

jk,k
′
i |p′′

ij ,k
′′
k〉

= δ3(p′
jk − pjk(k′′

i , − k′
i − k′′

i )) δ3(p′′
jk − pjk(−k′

i − k′′
i ,k

′
i))

N (k′′
i , − k′

i − k′′
i )N (−k′

i − k′′
i ,k

′
i)

+δ3(p′
jk − pjk(−k′

i − k′′
i ,k

′′
i )) δ3(p′′

jk − pjk(k′
i , − k′

i − k′′
i ))

N (−k′
i − k′′

i ,k
′′
i )N (k′

i , − k′
i − k′′

i )
, (23)

where N (ki ,kj ) is the square root of the Jacobian of the variable change defined in Eq. (7).
Using the symmetry property N (kj ,kk) = N (kk,kj ) of the Jacobian, the matrix elements of the permutation operator P ,

Eq. (23), can be written as

〈p′
jk,k

′
i |P |p′′

jk,k
′′
i 〉 = N (k′

i ,k
′′
i ){δ3(p′

jk − pjk(k′′
i , − k′

i − k′′
i )) δ3(p′′

jk − pjk(−k′
i − k′′

i ,k
′
i))

+ δ3(p′
jk − pjk(−k′

i − k′′
i ,k

′′
i )) δ3(p′′

jk − pjk(k′
i , − k′

i − k′′
i ))}, (24)

where

N (k′
i ,k

′′
i ) = N−1(−k′

i − k′′
i ,k

′′
i )N−1(−k′

i − k′′
i ,k

′
i). (25)

Inserting Eq. (24) into Eq. (22) and integrating over the δ functions leads to the relativistic Faddeev integral equation

〈pjk ,ki |ψi〉 = 1

Mt − M0(pjk,ki)

∫
dk′

i N (ki ,k′
i) T

sym
jk (pjk,π̃ ; Mt − ωm(ki)) 〈π ,k′

i |ψi〉, (26)

where T
sym
jk is the symmetrized boosted two-body T matrix, defined by

T
sym
jk (pjk,p′

jk; ε) = Tjk(pjk,p′
jk; ε) + Tjk(−pjk,p′

jk; ε) (27)

and

π̃ = pjk(k′
i , − ki − k′

i) = k′
i + 1

2C(ki ,k′
i) ki ,

π = pjk(ki + k′
i , − k′

i) = ki + 1
2C(k′

i ,ki) k′
i . (28)

The coefficient C(ki ,k′
i) is defined as [8]

C(ki ,k′
i) ≡ 1 + ωm(k′

i) − ωm(|ki + k′
i |)

ωm(k′
i) + ωm(|ki + k′

i |) +
√

[ωm(k′
i) + ωm(|ki + k′

i |)]2 − k2
i

. (29)

In deriving Eq. (26) we used the property

〈pjk,ki |ψi〉 = 〈−pjk,ki |ψi,〉. (30)

The relativistic momenta π̃ and π defined in Eq. (28) become the corresponding nonrelativistic ones if the coefficient C(ki ,k′
i)

is set equal to 1, which is the case if the momenta are small with respect to the masses.
To solve the integral equation Eq. (26), we follow Ref. [18] and choose a coordinate system where ki is parallel to the z axis

and pjk is in the x−z plane. Then the variables in the Faddeev integral equation are the magnitudes of the vectors and the angle
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between them,

x ≡ xpjk
= k̂i · p̂jk,

x ′ ≡ xk′
i
= k̂i · k̂′

i ,

y ≡ xpjkk
′
i
= p̂jk · k̂′

i = xx ′ +
√

1 − x2
√

1 − x ′2 cos(φk′
i
),

π̃ =
√

1

4
C2(ki,k

′
i ,xq ′ )k2

i + k′2
i + C(ki,k

′
i ,xk′

i
)kik

′
ixk′

i
, (31)

π =
√

k2
i + 1

4
C2(k′

i ,ki,xq ′ )k′2
i + C(k′

i ,ki,xk′
i
)kik

′
ixk′

i
,

xpjkπ̃ =
1
2C(ki,k

′
i ,xk′

i
)kixpjk

+ k′
iy

π̃
,

xπk′
i
= kixk′

i
+ 1

2C(k′
i ,ki,xk′

i
)k′

i

π
.

Using these variables, Eq. (26) takes the explicit form

〈pjk,ki,xpjk
|ψi〉 = 1

Mt − ωm(ki) −
√

m2
0jk(pjk) + k2

i

∫ ∞

0
dk′

ik
′2
i

∫ +1

−1
dxk′

i

∫ 2π

0
dφk′

i

×N (ki,k
′
i ,xk′

i
) T

sym
jk (pjk,π̃ ,xpjkπ̃ ; Mt − ωm(ki))〈π,k′

i ,xπk′
i
|ψi〉. (32)

To solve Eq. (32), which has the form |ψi〉 = K(Mt )|ψi〉,
we treat it as an eigenvalue problem of the form λ|ψi〉 =
K(Mt )|ψi〉 and vary Mt until λ is 1 to a given precision.

D. Three-body wave function

Once the Faddeev component 〈pjk,ki |ψi〉 is calculated, the
three-body wave function can be obtained from Eq. (21) as

〈pjk,ki |	〉 = 〈pjk,ki |ψi〉

+
∣∣∣∣∂(pki ,kj )

∂(pjk,ki)

∣∣∣∣
1/2

〈pki ,kj |ψi〉

+
∣∣∣∣ ∂(pij ,kk)

∂(pjk,ki)

∣∣∣∣
1/2

〈pij ,kk|ψi〉, (33)

where the Jacobi momenta in systems (ki,j ) and (ij,k) are
connected to the ones in system (jk,i), i.e., pjk,ki , by

kj = pjk + ki

m0jk

⎡
⎣ ki · pjk

m0jk +
√

m2
0jk + k2

i

− ωm(pjk)

⎤
⎦ ,

kk = −ki − kj

= −ki − pjk − ki

m0jk

⎡
⎣ ki · pjk

m0jk +
√

m2
0jk + k2

i

−ωm(pjk)

⎤
⎦,

pij = ki + kk

m0ij

⎡
⎣ kk · ki

m0ij +
√

m2
0ij + k2

k

+ ωm(ki)

⎤
⎦ ,

pki = kk + kj

m0ki

⎡
⎣ kj · kk

m0ki +
√

m2
0ki + k2

j

+ ωm(kk)

⎤
⎦ , (34)

with

m0ij =
√

[ωm(ki) + ωm(kj )]2 − k2
k ,

m0ki =
√

[ωm(kk) + ωm(ki)]2 − k2
j . (35)

The Jacobians for changing the basis states from system (jk,i)
to (ki,j ) and (ij,k) are∣∣∣∣∂(pjk,ki)

∂(pki ,kj )

∣∣∣∣ =
∣∣∣∣∂(pjk,ki)

∂(kj ,kk)

∣∣∣∣
∣∣∣∣∂(kj ,kk)

∂(ki ,kk)

∣∣∣∣
∣∣∣∣ ∂(ki ,kk)

∂(pki ,kj )

∣∣∣∣
= N 2(ki ,kk)

N 2(kj ,kk)
,

∣∣∣∣∂(pjk,ki)

∂(pij ,kk)

∣∣∣∣ =
∣∣∣∣∂(pjk,ki)

∂(kj ,kk)

∣∣∣∣
∣∣∣∣∂(kj ,kk)

∂(ki ,kj )

∣∣∣∣
∣∣∣∣ ∂(ki ,kj )

∂(pij ,kk)

∣∣∣∣
= N 2(ki ,kj )

N 2(kj ,kk)
. (36)

The Jacobi momenta in Eq. (34) can be explicitly given as a
function of the Jacobi momenta of system (jk,i),

kj = pjk + αki ,

kk = −pjk − βki ,

pij = γppjk + γkki ,

pki = ξppjk + ξkki , (37)

where

α = 1

m0jk

⎛
⎝ pjkkixpjk

m0jk +
√

m2
0jk + k2

i

− 1

2
m0jk

⎞
⎠ ,

β = 1 + α,
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γp = 1

m0ij

⎛
⎝ pjkkixpjk

+ βk2
i

m0ij +
√

m2
0ij + k2

k

+ m0i

⎞
⎠ ,

γk = 1 + γpβ,

ξp = −1 − 1

m0ki

⎡
⎣p2

jk + αβk2
i + (α + β)pjkkixpjk

m0ki +
√

m2
0ki + k2

j

− m0k

⎤
⎦ ,

ξk = α(ξp + 1) − β. (38)

In the coordinate system defined by Eq. (31), the relativistic
three-body wave function of Eq. (33) has the form

〈pjk,ki,xpjk
|	〉 = 〈pjk,ki,xpjk

|ψi〉

+ N (kj ,kk)

N (ki ,kk)
〈pki,kj ,xpkikj

|ψi〉

+ N (kj ,kk)

N (ki ,kj )
〈pij ,kk,xpij kk

|ψi〉, (39)

with

pki = |pki | = |ξppjk + ξkki |
=

√
ξ 2
p p2

jk + ξ 2
k k2

i + 2 ξp ξk pjk ki xpjk
,

kj = |kj | = |pjk + αki |
=

√
p2

jk + α2k2
i + 2 α pjk ki xpjk,

xpkikj
≡ p̂ki · k̂j = ξp p2

jk + α ξk k2
i + (α ξp + ξk)pjk ki xpij

pki kj

,

pij = |pki | = |γppjk + γkki |
=

√
γ 2

p p2
jk + γ 2

k k2
i + 2 γp γk pjk ki xpjk

,

kk = |kk| = | − pjk − βki |
=

√
p2

jk + β2k2
i + 2 β pjk ki xpjk,

xpij kk
≡ p̂ki · k̂j

= −γp p2
jk + β γk k2

i + (β γp + γk)pjk ki xpjk

pij kk

. (40)

III. RESULTS AND DISCUSSION

A. Binding energy

To evaluate the relativistic effects in the three-body binding
energy, we use the MT-V [5] potential,

〈pjk|vnr|p′
jk〉

= 1

2π2

[
VR

(pjk − p′
jk)2 + μ2

R

− VA

(pjk − p′
jk)2 + μ2

A

]
, (41)

with parameters, VR, VA, μR , and μA given in Ref. [18]. In
addition, we use �

2/m = 41.470 MeV fm2 and �c = 197.3286
MeV fm. To numerically solve Eq. (32), the integrals over the
continuous momenta and angle variables are replaced with
sums over discrete quadrature points. To reach five significant
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5
f
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−
1
)

FIG. 1. (Color online) The analytical term F (pjk,p
′
jk,ki) con-

necting the relativistic and the nonrelativistic right-half-shell T

matrices, Eq. (17), as function of the momenta pjk and p′
jk in the two-

body subsystem, for a fixed third-particle momentum ki = 5 fm−1.

digit convergence in the binding energy we use 100 Gaussian
quadrature points for the Jacobi momentum pjk in the interval
[0, 60 fm−1], 60 quadrature points for the Jacobi momentum
ki in the interval [0, 20 fm−1], and 40 quadrature points for
the angle variables. The Faddeev integral equation, Eq. (32),
is solved by iteration using a Lanczos algorithm [27]. The
iteration of this integral equation requires a large number of
two-dimensional interpolations on the Faddeev component
and the symmetrized two-body t matrix. We perform the
interpolation using the cubic-Hermite splines of Ref. [28].
Seven iterations are, in general, sufficient to obtain a mass
eigenvalue with a relative error of 10−6.

The off-shell T matrix needed as input for the Faddeev
integral equation, is computed by solving Eq. (A10). The input
is the right-half-shell T matrix embedded in the three-body
Hilbert space, and is obtained from the nonrelativistic t matrix
by Eq. (16). In Fig. 1 we plot the ratio F (pjk,p

′
jk,ki) defined

in Eq. (17) as a function of momenta pjk and p′
jk for a third

particle momentum ki = 5 fm−1. The slope of this function
decreases as the value of ki increases.

As a numerical test of the solution of first resolvent
integral equation for negative energies, we reproduce the
nonrelativistic three-body binding energy obtained from the
direct solution of the Lippmann-Schwinger (LS) equation
for the off-shell t matrix within four significant figures. The
imaginary part of the transition matrix calculated from the first
resolvent equation is of the order of 10−11 MeV−2, which is
104 times smaller than the real part, which gives an additional
measure of the accuracy of the calculation.

To visualize the Jacobian function N (ki,k
′
i ,xk′

i
), which

appears in the kernel of Faddeev integral equation, we
parametrize it as N (k cos(θ ),k sin(θ ),x ≡ xk′

i
) and plot it

in Fig. 2 as a function of θ and x for k = 1, 5, 10, and
20 fm−1. We use the same representation for the ma-
trix elements of permutation coefficient C(k cos(θ ),k sin(θ ),
x ≡ xk′

i
) displayed in Fig. 3.
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FIG. 2. (Color online) The matrix elements of Jacobian function
N (k cos(θ ),k sin(θ ),x), Eq. (25), as function of the angles x and θ

calculated for different values of the momentum k.

The solution of the relativistic Faddeev equation leads to
the three-body binding energy, Er

t = −7.4825 MeV, which
is slightly less than the nonrelativistic binding energy of
Enr

t = −7.7382 MeV. Thus, the relativistic effect is small,
about 3.3%. This is consistent with a reduction of 2.7% for the
s-wave calculation of Glöckle et al. [21].

The difference between the relativistic and nonrelativistic
calculations arise from (1) the Jacobian function N , (2)
the permutation coefficient C, (3) the relation between the
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FIG. 3. (Color online) The matrix elements of the permutation
coefficient C(k cos(θ ),k sin(θ ),x), Eq. (29), as function of the angles
x and θ calculated for different values of the momentum k.

TABLE I. The relativistic (r) and nonrelativistic (nr) [18] three-
body binding energies calculated with the MT-V potential [5].
Eapprox indicates the relativistic three-body binding energies calcu-
lated for Jacobian function N (ki,k

′
i ,xk′

i
) = 1, permutation coefficient

C(k′
i ,ki ,xk′

i
) = 1, and the analytical term F (pjk,p

′
jk,ki) = 1 and using

the nonrelativistic free propagator, as well as different combinations
thereof.

Enr (MeV) Er (MeV) Er−Enr
Enr

(%)

−7.7382 −7.4825 −3.30

Er (MeV) Eapprox (MeV) Eapprox−Er

Er
(%)

N = 1 −7.4825 −7.5412 +0.78
C = 1 −7.4825 −7.4361 −0.62
N = C = 1 −7.4825 −7.4934 +0.15
F = 1 −7.4825 −7.6606 +2.38
Gnr

0 −7.4825 −7.3446 −1.84
F = 1, Gnr

0 −7.4825 −7.4993 +0.22

relativistic and nonrelativistic transition matrices Tij (z), and
(4) the relations between the relativistic and nonrelativistic
free Green’s functions. If we keep leading nonzero terms in
the limit that the masses are larger than the momenta, all four
of these factors reduce to the corresponding nonrelativistic
quantities. For the off-shell transition matrix, the kernel of the
first resolvent equation reduces to the nonrelativistic kernel
in the same limit, which implies that both the half-shell and
off-shell two-body transition matrix elements approach their
nonrelativistic counterparts. The fact that all four corrections
become small in that limit suggests that momentum/mass
expansions are valid approximations. However, the corrections
that relate the relativistic and nonrelativistic Faddeev equation
are only attributable to relativistic effects associated with a
relativistic treatment of the Fermi motion with respect to
the spectator particle. It would be incorrect to apply these
expansions to the two-body dynamics, which is fit to the same
data in both the relativistic and the nonrelativistic cases.

While our calculations suggest that relativistic effects are
small, it is important to remember that only the combination
of all four ingredients leads to a small correction, while
individually the corrections do not have to be small. In
Table I the contributions of the Jacobian function N and the
permutation coefficient C to the relativistic three-body binding
energy are shown. Both of these functions become 1 in the
nonrelativistic limit. By setting the Jacobian function N to 1 in
our relativistic calculations, the binding energy increases about
0.8%. Setting the permutation coefficient C to 1 leads to a small
decrease, about 0.6% of the binding energy. Finally, by setting
both, the Jacobian function N and the permutation coefficient
C to 1, the three-body binding energy has a small increase of
about 0.15%. This means that ignoring the Jacobian function N
and the permutation coefficient C in the relativistic formalism,
leads to less than 0.2% change. The combined effect of the
Jacobian and permutation operators is a factor of 4–5 smaller
than the effect of each one individually. The main contribution
of relativistic effects in the three-body binding energy comes
from the relativistic transition operator and free propagator.
To evaluate the contribution of relativistic T matrix to the
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three-body binding energy, we replace the relativistic T matrix
with a nonrelativistic one in the kernel of relativistic Faddeev
integral equation. This substitution results in an increase of
about 2.4% in the energy. When replacing the relativistic
free propagator with the nonrelativistic one, a decrease of
1.8% in relativistic 3B binding energy can be observed. These
numerical results imply that the main contribution of the
relativistic effects in the three-body binding energy results
from the relativistic T matrix. The remaining contribution
stems from the free propagator, the Jacobian function, and
the permutation coefficient.

B. Three-body wave function and momentum distribution

Using the Faddeev component from Eq. (32) the total wave
function 	(pjk,ki,xpjk

) can be obtained by three-dimensional
interpolations on momentum and angle variables, as shown in
Eq. (39). The wave function is normalized as

〈	|	〉 = 8π2
∫ ∞

0
dpjk p2

jk

∫ ∞

0
dki k2

i

×
∫ +1

−1
dxpjk

	2(pjk,ki,xpjk
) = 1. (42)

The left panel of Fig. 4 shows contour plots of the logarithm
of the absolute value of the relativistic total wave functions for
fixed angles xpjk

= 0 (top left) and xpjk
= +1 (bottom left).

The right panel shows the absolute value of the difference
between the relativistic and corresponding nonrelativistic wave
function. These figures indicate that the largest relativistic
effect appears at large values of the momentum of the
third particle ki . This is not surprising because the primary
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FIG. 4. (Color online) The magnitude of the relativistic three-
body bound-state wave function 	(pjk,ki ,xpjk

) as a function of the
pair momentum pjk and the spectator momentum ki for fixed values
xpjk

= 0 (a) and xpjk
= +1 (b) obtained with the MT-V potential

[5,18]. The differences between the relativistic and nonrelativistic
wave functions are shown for fixed values xpjk

= 0 in panel (c) and
xpjk

= +1 in (d).
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mentum distribution functions n(ki) (solid line and solid squares)
and n(pjk) (dashed line and solid circles) obtained from the MT-V
potential [5,18]. The function n(pjk) is scaled with a factor 0.1.

relativistic effects are expected to be attributable to the Fermi
motion of the spectator nucleon.

To provide further insight into the structure of the wave
function, we calculate the momentum distribution functions
n(ki), the probability to find a particle with momentum ki in
the nucleus, and n(pjk), the probability to find a pair with
momentum pjk in the nucleus, which are defined as

n(ki) = 8π2k2
i

∫ ∞

0
dpjkp

2
jk

∫ +1

−1
dxpjk

	2(pjk,ki,xpjk
),

n(pjk) = 8π2p2
jk

∫ ∞

0
dkik

2
i

∫ +1

−1
dxpjk

	2(pjk,ki,xpjk
).

(43)

Electron scattering is sensitive to the quantity n(ki). By
considering the normalization of total wave function, given
in Eq. (42), both momentum distribution functions are also
normalized to 1; i.e.,

∫ ∞
0 n(pjk)dpjk = 1 and

∫ ∞
0 n(ki)dki =

1. The momentum distribution functions n(pjk) and n(ki)
calculated from relativistic and nonrelativistic wave functions
are presented in Fig. 5. The difference between the rela-
tivistic and nonrelativistic momentum distribution functions
is relatively small and is shown in Fig. 6. Both differences
peak at pjk ∼ 0.2 fm−1 and ki ∼ 0.2 fm−1 and have a dip at
pjk ∼ 0.7 fm−1 and ki ∼ 0.7 fm−1. Setting the permutation
coefficient C = 1 increases the difference, while setting the
Jacobian function N = 1 decrease it and setting both of them
C = N = 1 leads to a small decrease in the difference.

IV. SUMMARY AND OUTLOOK

In this work we solved the relativistic momentum-space
Faddeev equation for three nucleons interacting with a spinless
Malfliet-Tjon type potential without partial-wave decom-
position for the three-body binding energy and calculated
the corresponding bound-state wave function. To identify
relativistic effects, the relativistic two-body interaction was
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line shows the difference for the case when C = 1 in the relativistic
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represent a calculation in which both C = N = 1.

defined so that it gives in the two-body rest frame the
same phase shifts and wave functions as the nonrelativistic
interaction. Relativistic effects arise because the interacting
two-body subsystems are not at rest in the three-body rest
frame. Lorentz boosts associated with each subsystem are used
to transform the two-body interactions from the two-body rest
frames to the three-body rest frame. This transformation is
determined by both the relativistic symmetry and the cluster
properties.

The requirement that the relativistic and nonrelativistic
two-body interactions be phase equivalent is attributable to the
fact that realistic nonrelativistic NN interactions are already
designed to be consistent with experiment and thus are consis-
tent with special relativity. This means that all of the observable
effects of special relativity are related to the different ways
that the relativistic and nonrelativistic problems treat the
Fermi motion. The relativistic Faddeev equation is simply a
reformulation of the eigenvalue problem for the relativistic
mass operator. However, it has the important advantage that
in the limit that the mass scales are large compared to the
momentum scales, both the variables and the kernel of the
integral equation approach the corresponding quantities that
appear in the nonrelativistic Faddeev equation. This relation
is not as transparent when one compares the relativistic mass
operator and the nonrelativistic rest Hamiltonian. This also
suggests that as long as the Fermi momentum scales are
small compared to the mass scales relativistic corrections are
expected to be small. Of course, this naive picture is impacted
by exchange symmetry.

A comparison of the relativistic and nonrelativistic equa-
tions show four essential differences. Two are related to the
Jacobi momenta, which leads to different treatments of the
permutation operator in the relativistic and nonrelativistic
Faddeev kernels. While these are choices of variables, the rel-
ativistic mass operator (13) that has an S matrix that clusters is
naturally expressed in terms of the relativistic Jacobi momenta.
The difference between these variables and the corresponding
nonrelativistic Jacobi momenta appear in the coefficients C
defined in Eq. (29) and the nontrivial Jacobians [factors N of
Eq. (25)] in the relativistic case. For C → 1 and N → 1 these
become the nonrelativistic Jacobi momenta. The combination
of these two factors is associated with the kinematics of cluster
properties. An important observation is that in our calculations
these two quantities have opposite effects on the value of the
binding energy and that the combination of those two quantities
is essential to have a net effect, which is about a factor of 4–5
smaller than each effect separately.

The other two areas where relativity plays a role is in the
part of the Faddeev kernel involving the two-body transition
operator and the free three-body Green’s functions. The
difference between the relativistic and nonrelativistic half-shell
t matrix is contained in the ratio factor F , Eq. (17), which
becomes 1 in the limit that the masses are much larger than the
momentum scales. This half-shell T appears in the kernel of the
first resolvent equation, so setting F = 1 in the kernel of first
resolvent equation and replacing the relativistic free Green’s
function with the nonrelativistic free Green’s function leads
to the nonrelativistic fully off-shell T (z). The combination
T (z)g0(z) is dimensionless, in both the relativistic and the
nonrelativistic cases. Again, setting F to 1 without making a
corresponding change in the free Green’s function results in a
significant increase in the binding energy. Replacing the rela-
tivistic free Green’s function with the nonrelativistic one and
keeping the function F leads to a decrease in binding energy
by roughly the same amount. The combination of those two
effects leads to a relatively small increase in the binding energy.

We calculated the relativistic three-body wave function
and compared it to its nonrelativistic counterpart. The largest
difference can be seen in the dependence on the spectator mo-
mentum ki . This is not surprising because the ki dependence is
dictated by the different ways that the relativistic and
nonrelativistic calculations treat the Fermi motion. Finally,
we calculate that relativistic effects decrease the binding
energy by about 3.3%. This is consistent with the findings in
Refs. [21,22].

This work demonstrates that direct-integration techniques
can be used to achieve the same results that can be obtained us-
ing partial-wave methods. Because our long-term interest is to
first replace the Malfliet-Tjon interaction by a realistic interac-
tion that has a more complicated spin-isospin dependence, and
then to extend the calculations to treat scattering at the few GeV
scale, it is important to test these methods in successive steps.

ACKNOWLEDGMENTS

This work was performed under the auspices of the National
Science Foundation under Contract No. NSF-PHY-1005587
with Ohio University and Contract No. NSF-PHY-1005501

054002-10



RELATIVISTIC THREE-BODY BOUND STATE IN A 3D . . . PHYSICAL REVIEW C 90, 054002 (2014)

with the University of Iowa. Partial support was also provided
by the U. S. Department of Energy, Office of Science, Office
of Nuclear Physics, under Contract No. DE-FG02-93ER40756
with Ohio University, and Contract No. DE-FG02-86ER40286
with the University of Iowa. We thank the Ohio Supercomputer
Center (OSC) for the use of their facilities under Grant No.
PHS0206.

APPENDIX: THE BOOSTED OFF-SHELL T MATRIX
OBTAINED VIA RESOLVENT EQUATIONS

1. Resolvent equations

Starting from the resolvent of M , g(zi) = (zi − M)−1,
where zi = Ei + iε one obtains the first resolvent equation
that relates the resolvent at two different values of zi as

g(zj ) = g(zi) + [g(zj ) − g(zi)]

= g(zi) + g(zj )[g−1(zi) − g−1(zj )]g(zi). (A1)

Multiplying Eq. (A1) from the left and right by an interaction
operator V and adding V to both sides of the equation leads to

V + Vg(zj )V = V + Vg(zi)V + V [g(zj ) − g(zi)]V (A2)

or

T (zj ) = T (zi) + Vg(zj )[zi − zj ]g(zi)V

= T (zi) + T (zj )g0(zj )[zi − zj ]g0(zi)T (zi)

= T (zi) + T (zj )[g0(zj ) − g0(zi)]T (zi), (A3)

where we used the identity 1
A

− 1
B

= 1
A

(B − A) 1
B

, the defini-
tion of the transition operator T (zi) = V + Vg(zi)V , as well as
the identity g(zi)V ≡ g0(zi)T (zi), with g0(zi) = (zi − M0)−1

being the resolvent of M0. We now obtain an integral relation,
which connects the transition operator at a given energy
argument zi with the transition operator at a different energy
zj .

Next we take matrix elements, 〈p|T (zi)|p′〉 ≡ T (p,p′; zi).
Because the relativistic T matrix is only known for half-shell
momentum variables, i.e., T (p,pi; zi), we need to take matrix
elements of Eq. (A3) leading to the inhomogeneous integral
equation

〈p|T (zj )|pi〉 = 〈p|T (zi)|pi〉 +
∫

d3p′′〈p|T (zj )|p′′〉

× [g0(zj ) − g0(zi)]〈p′′|T (zi)|pi〉. (A4)

Here the inhomogeneous term is given by the half-shell T -
matrix elements 〈p|T (zi)|pi〉 = T (p,pi; zi), and we solve for
the off-shell matrix elements 〈p|T (zj )|pi〉 = T (p,pi; zj ).

2. Numerical realization

Writing Eq. (A4) explicitly using zi ≡ E(pi) leads to

T (p,pi; E(pj ))

= T (p,pi; E(pi)) +
∫

d3p′′T (p,p′′,E(pj ))

×
[

1

E(pj ) − E(p′′) + iε
− 1

E(pi) − E(p′′) + iε

]

× T (p′′,pi; E(pi)). (A5)

Choosing the vector p parallel to the z axis and the vector pi
in the x-z plane leads to the following angle variables

p̂ · p̂i ≡ xi,

p̂′′ · p̂i ≡ x̂i = xix
′′ −

√
1 − x2

i

√
1 − x ′′2 cos φp′′pi

≡ x̂i(xi,x
′′, cos φp′′pi

),

p̂ · p̂′′ ≡ x ′′. (A6)

Inserting the above variables into Eq. (A6) gives

T (p,pi,xi ; E(pj ))

= T (p,pi,xi ; E(pi)) +
∫ ∞

0
dp p′′

∫ +1

−1
dx ′′

×
[

1

E(pj ) − E(p′′) + iε
− 1

E(pi) − E(p′′) + iε

]

×T (p,p′′,x ′′; ; E(pj ))
∫ 2π

0
dφ′′T

× (p′′,pi,x̂i(xi,x
′′, cos φp′′pi

); E(pi)). (A7)

Here we note that the φ′′ integration only affects one term in
the integral equation and we can carry it out separately. For
convenience, let us define

T (p′′,pi,xi,x
′′; E(pi))

≡
∫ 2π

0
dφ′′T (p′′,pi,x̂i(xi,x

′′, cos φp′′pi
); E(pi)). (A8)

The structure of Eq. (A7) is identical to the two-body LS
equation [29] and can be solved in a similar fashion. However,
one needs to carefully look at its singularities. For the
calculation of the relativistic three-body bound-state equation,
we need the off-shell T matrix at negative energies E(pj ).
Thus, the first propagator in Eq. (A7) is nonsingular, and
its numerical value is always negative. However, the second
propagator exhibits a singularity at E(pi) = E(p′′) for each
fixed momentum pi . This singular point on the momentum
grid can be numerically treated with a subtraction technique.
In the actual calculation, we work on a momentum grid for pi ,
and we use the same momentum grid for the integration over
p′′. In this case, when setting up the matrix equation to solve
Eq. (A7), the singular point is located on the diagonal of this
matrix, and all terms resulting from the analytic treatment of
the singularity must be located on the diagonal.

To calculate the off-shell boosted T matrix
Tjk(pjk,p

′
jk,xp′

jk
; Mt − m0i(ki)), which appears in the

kernel of the Faddeev integral equation of the right-half-shell

boosted T matrix, Tjk(pjk,p
′
jk,xp′

jk
;
√

m2
0jk(pjk′) + k2

i ),
we solve Eq. (A7) for E(pj ) = Mt − m0i(ki) and

E(pi) =
√

m2
0jk(p′

jk) + k2
i .
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After calculating the singularity of the second integral of Eq. (A7) via subtraction, the explicit form of the first resolvent
integral equation is

Tjk(pjk,p
′
jk,xp′

jk
; Mt − m0i(ki))

= Tjk

(
pjk,p

′
jk,xp′

jk
;
√

m2
0jk(p′

jk) + k2
i

) +
∫ ∞

0
dp′′

jk p′′2
jk

∫ +1

−1
dxp′′

jk

1

Mt − m0i(ki) −
√

m2
0jk(p′′

jk) + k2
i

×Tjk

(
p′′

jk,p
′
jk,xp′

jk
,xp′′

jk
;
√

m2
0jk(p′

jk) + k2
i

)
Tjk(pjk,p

′′
jk,xp′′

jk
; Mt − m0i(ki))

−
⎧⎨
⎩1

4

∫ ∞

0
dp′′

jk p′′2
jk

∫ +1

−1
dxp′′

jk

√
m2

0jk(p′
jk) + k2

i −
√

m2
0jk(p′′

jk) + k2
i

p′2
jk − p′′2

jk

Tjk

(
p′′

jk,p
′
jk,xp′

jk
,xp′′

jk
;

√
m2

0jk(p′
jk) + k2

i

)
Tjk(pjk,p

′′
jk,xp′′

jk
; Mt − m0i(ki)) − 1

2

∫ ∞

0
dp′′

jk

∫ +1

−1
dxp′′

jk

p′2
jk

√
m2

0jk(p′
jk) + k2

i

p′2
jk − p′′2

jk

×Tjk

(
p′

jk,p
′
jk,xp′

jk
,xp′′

jk
;
√

m2
0jk(p′

jk) + k2
i

)
Tjk(pjk,p

′
jk,xp′′

jk
; Mt − m0i(ki))

−1

4

∫ +1

−1
dxp′′

jk
p′

jk

√
m2

0jk(p′
jk) + k2

i

[
iπ + ln

(
p′′max

jk + p′
jk

p′′max
jk − p′

jk

)]
Tjk

(
p′

jk,p
′
jk,xp′

jk
,xp′′

jk
;

√
m2

0jk(p′
jk) + k2

i

)
Tjk(pjk,p

′
jk,xp′′

jk
; Mt − m0i(ki))

⎫⎬
⎭ . (A9)

This integral equation is solved for a given value of momentum ki , equal to the boosted momentum kjk , and for all values of the
left momentum pjk .
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