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Two-photon-exchange (TPE) contributions to elastic electron-proton scattering in the forward regime in leading
logarithmic ∼t ln |t | approximation in the momentum transfer t are considered. The imaginary part of the TPE
amplitude in the forward kinematics is related to the total photoabsorption cross section. The real part of the TPE
amplitude is obtained from an unsubtracted fixed-t dispersion relation. This allows a clean prediction of the real
part of the TPE amplitude at forward angles with the leading term ∼t ln |t |. Numerical estimates are comparable
with or exceed the experimental precision in extracting the charge radius from the experimental data.
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Nucleon structure has been studied with elastic electron
scattering since the 1950’s. By means of the Rosenbluth
separation the measurement of the unpolarized cross section
allows us to extract the electromagnetic form factors of the
nucleon. The interest in measuring the elastic cross section
at low (negative) t is, e.g., the extraction of the slope of the
electric Sachs form factor GE that is related to the charge
radius RE as

GE(t → 0) = 1 + R2
Et/6 + O(t2). (1)

A recent measurement at Mainz [1] led to the most precise
(�1%) determination of the proton charge radius with electron
scattering experiments to date,

R
p
E = 0.879 ± 0.008 fm, (2)

where the uncertainty quoted above represents combined
statistical, systematic, model-dependent, and group-dependent
uncertainties defined in Ref. [1]. Proton charge radius is
extracted from hydrogen spectroscopy data with even higher
precision [2]

R
p
E = 0.8775 ± 0.0051 fm, (3)

the two methods delivering results that are in a very nice
agreement. The recent Lamb shift measurements in muonic
hydrogen [3,4] led to an extraction of the proton charge radius
that is ten times more precise,

R
p
E = 0.84087 ± 0.00039 fm, (4)

and differs by seven standard deviations from the value
obtained with electronic hydrogen and in scattering experi-
ments. In the context of the “proton radius puzzle,” as this
discrepancy was coined in the literature, nucleon structure-
dependent corrections to the Lamb shift, most notably the
two-photon exchange (TPE) correction, underwent a renewed
scrutiny with two methods that provide a controlled estimate
of the systematic uncertainty of such a calculation: the
dispersion relations [5–7] and within effective theories [8–11];
however, the discrepancy is still present. For electron scat-
tering, dispersion relations have the potential to provide
model-independent calculations of the TPE effect [12–14],
although these references only account for the ground-state

contribution to TPE. I refer the reader to a recent review of the
TPE effects in electron scattering [15].

In this work, I reexamine the two-photon-exchange cor-
rection to elastic electron scattering at low momentum trans-
fer. I consider the elastic electron-proton scattering process
e(k) + p(p) → e(k′) + p(p′) for which I define P = (p +
p′)/2, K = (k + k′)/2, and � = k − k′ = p′ − p and choose
the invariants t = �2 = −Q2 < 0 and ν = (PK)/M as the
independent variables, where M denotes the nucleon mass,
and the electron mass me is neglected. They are related to
the Mandelstam variables s = (p + k)2 and u = (p − k′)2

through s − u = 4Mν and s + u + t = 2M2. The usual po-
larization parameter ε is related to the invariants ν and t as

ε = ν2 − M2τ (1 + τ )

ν2 + M2τ (1 + τ )
, (5)

with τ = −t/(4M2). Elastic scattering of a massless electron
off a spin-1/2 target in the Born (one-photon exchange, OPE)
approximation is described by the familiar Dirac and Pauli
form factors F1 and F2, respectively,

TB = e2

−t
ū(k′)γμu(k) ū(p′)

[
F1γ

μ + F2
iσμα�α

2M

]
u(p). (6)

The unpolarized cross section is

dσ

d	lab
= 4α2 cos2 


2

t2

E′3

E
σR, (7)

with 
 the electron laboratory scattering angle and E(E′) the
incoming (outgoing) electron laboratory energy. The reduced
cross section σR is expressed in terms of electric and magnetic
Sachs form factors GE = F1 − τF2 and GM = F1 + F2,
respectively, as

σR =
[
G2

E + τ

ε
G2

M

]/
(1 + τ ). (8)

Before going on to discuss the two-photon exchange I wish
to determine the level of accuracy that modern experiments
set for this calculation. To this end, the reduced cross section
taken in the Born approximation can be expanded in a Taylor
series in powers of negative t . Keeping the linear terms in this
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expansion, I write

σB
R = 1 + 1

3
R2

Et − tμ2
p

4M2ε
+ t

4M2
+ O(t2), (9)

with μp = G
p
M (0) ≈ 2.793 the proton magnetic moment in

units of the nuclear magneton. Correspondingly, the 1%
relative uncertainty in the charge radius is translated into the
uncertainty in the reduced cross section

δσB
R = 1

3
R2

E

2δRE

RE

|t | ≈ 0.120
|t |

GeV2 . (10)

For the smallest values of |t | accessed in the A1 experiment,
|t |min = 4 × 10−3 GeV2, the relative uncertainty of σR is of
order 5 × 10−4, similar to the natural size of the order αem

correction, ∼αem/(4π ). Most order αem corrections can be
calculated quite reliably, the exception being the two-photon
exchange. The latter is included approximating the TPE graph
by only the ground-state contribution that is furthermore
approximated according to Mo and Tsai [16] or Maximon and
Tjon [17], as well as the so-called Feshbach correction [18],
leading to a generic result δσ OPE+R.C.

R = (1 + δ)σB
R with the

correction δ ∼ αem. We discuss the two corrections in more
detail later. An inclusion of the general nucleon structure
in the TPE is complicated and is only possible in forward
kinematics as, e.g., in the calculation of the polarizability
correction to the Lamb shift. It is possible to show that such
inelastic contributions should vanish for t = 0, but can lead to
the behavior t ln |t |. This behavior was obtained in Ref. [19],
which concentrated on the high-energy regime. Terms ∼t ln |t |
introduce a substantial nonlinearity of the reduced cross
section as a function of t at low t , the opposite to the OPE
contribution in Eq. (9) that becomes more linear at lower t .
The present work is dedicated to assessing this correction in the
kinematics of the relevant experiments, from a few hundred
MeV to a few GeV beam energy and |t | � 0.1 GeV2. The
same approach is expected to be relevant for the measurement
of the deuteron charge radius in elastic eD scattering, and the
respective estimates will also be presented.

In the presence of the TPE effects, and in the approximation
of small electron mass, the elastic ep-scattering amplitude is
given by three scalar amplitudes F̃i(ν,t),

T = e2

−t
ū(k′)γμu(k)

× ū(p′)
[
F̃1γ

μ + F̃2
iσμα�α

2M
+ F̃3

K/P μ

M2

]
u(p), (11)

In the OPE approximation, the known Dirac and Pauli form
factors are recovered, F̃ OPE

1,2 (ν,t) = F1,2(t); while the third
structure is absent, F̃ OPE

3 = 0. I separate the TPE effects
explicitly,

F̃1,2 = F1,2 + δF̃1,2,
(12)

G̃E,M = GE,M + δG̃E,M,

where the generalization of the Sachs form factors was intro-
duced, G̃E = F̃1 − τ F̃2 and G̃M = F̃1 + F̃2. In the presence

FIG. 1. Imaginary part of the 2γ -exchange diagram.

of TPE effects, reduced cross section σR reads

σR = G2
E + τG2

M/ε

1 + τ
+ 2GE

1 + τ
Re

(
δG̃E + ν

M
F̃3

)

+ 2
τ

ε(1 + τ )
GMRe

(
δG̃M + ε

ν

M
F̃3

)

= G2
E + τG2

M/ε

1 + τ
+ 2GE

1 + τ
Re

(
δG̃E + ν

M
F̃3

)
+ O(αt2).

(13)

It is straightforward to see that the TPE effect on the
unpolarized cross section at low t depends on the same com-
bination of the amplitudes as the elastic amplitude averaged
over nucleon spins,

T̄2γ = e2

−t
ū(k′)γμu(k)

× Tr(p/′ + M)
[
δF̃1γ

μ + δF̃2
iσμα�α

2M
+ F̃3

K/ P μ

M2

]
(p/ + M)

8M

= e2

−t
ū(k′)P/ u(k)

[
δG̃E + ν

M
F̃3

]
≡ e2

−t
ū(k′)P/ u(k)(ν,t).

(14)

The imaginary part of the TPE diagram in Fig. 1 is given
by the phase-space integral

2ImT2γ = e4
∫

d3�k1

(2π )32E1

�μν · ImWμν(
q2

1 + iε
)(

q2
2 + iε

) , (15)

where the leptonic tensor is given by

�μν = ū(k′)γν(k/1 + me)γμu(k) ≈ ū(k′)γνk/1γμu(k), (16)

and the on-shell condition for the intermediate electron leads
to E1 = (�k2

1 + m2
e)1/2 ≈ |�k1|. The hadronic tensor can be split

into elastic and inelastic contributions, Wμν = W
μν
el + W

μν
inel.

This separation is possible because the former has a pole,
ImWel ∼ δ((p + q1)2 − M2), whereas the latter has a unitarity
cut starting at the pion production threshold (p + q1)2 =
(M + mπ )2.

The imaginary part of the elastic part is due to the on-shell
nucleon in the intermediate state,

ImW
μν
el = 2πδ((P + K − k1)2 − M2)

× ū(p′)�∗ν(q2)(P/ +K/ − k/1+M)�μ(q1)u(p), (17)

with �μ(�) = F1(�2)γ μ + F2(�2)iσμα�α/(2M) the on-
shell nucleon electromagnetic vertex. It contains the infrared
(IR) divergent part that is logarithmic in the fictitious photon
mass, ∼ ln λ2; the coefficient in front of it is model independent
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and has been calculated in Refs. [16,17] using the soft
photon approximation in the loop. Reference [16] used the
approximation q1 ≈ 0, q2 ≈ � and vice versa both in the
numerator and the denominator of the integral, the result
simply factorizing the one-photon exchange (Born) amplitude
as

Im(a) = −αE2
c.m.

π
GE(t)

∫
d	1

q2
1

= α ln

(
4E2

c.m.

λ2

)
GE(t),

(18)

with c.m. energy of the electron Ec.m. ≈ (s − M2)/2
√

s,
neglecting the electron mass. On the other hand, Ref. [17]
applied the soft photon approximation in the numerator only,
leading to

Im(b) = −αtE2
c.m.

2π
GE(t)

∫
d	1

q2
1q2

2

= α ln
−t

λ2
GE(t). (19)

The real part is obtained from a dispersion relation at fixed t ,

Re(ν,t) = 2ν

π
P

∫ ∞

νel
0

dν ′

ν ′2 − ν2
Im(ν ′,t), (20)

with νel
0 = t/(4M) � 0 the threshold for the s-channel uni-

tarity cut. The evaluation of the dispersion integral with the
imaginary part of Eq. (19) yields

Re(b) = α

π
ln

(−t

λ2

)
GE(t) ln

(
4Mν + t

4Mν − t

)
. (21)

While the imaginary part of (b) behaves as ln(−t/λ2), its real
part is suppressed by an extra power of t coming from the
second logarithm.

The result of Eq. (21) was used in the analysis of the low-t
data from Mainz [1] (without the low-t approximation), and I
use the IR part of the TPE amplitude in this form to define the
IR finite part of the elastic box as

el
F ≡ el − (b), (22)

which should be added to the full set of radiative corrections
included in the experimental analysis. A straightforward
calculation using the hadronic tensor of Eq. (17), the leptonic
tensor of Eq. (16), and the definition of the amplitude  in
Eq. (14), obtains

Imel
F (ν,t)

= −αtE2
c.m.

2π

∫
d	1

q2
1q2

2

×
{
F11F12 − F1 + q2

1F12F21 + q2
2F11F22 − tF2

4M2

+ t − q2
1 − q2

2

8M2

[
μ2

p − 1 − 4sM2

(s − M2)2 + st

]}
, (23)

where terms that cannot lead to t ln t-behavior were dropped.
For compactness, the shorthand notation Fij = Fi(q2

j ) and

Fi = Fi(t) was introduced. The above integral is IR finite
because it depends on one master integral over the solid angle
of the intermediate electron,

∫
d	1

t − q2
1 − q2

2

q2
1q2

2

= 2π

E2
c.m.

ln

(
4E2

c.m.

−t

)
. (24)

Expanding the form factors under the integral as Fi(q2) =
Fi(0) + q2F ′

i (0) + · · · produces

Imel
F = αt

2
ln

(
4E2

c.m.

−t

)[
1

4E2
c.m. + t

+ R2
E

3
− μ2

p − 1

4M2

]
,

(25)

where I used the relation F ′
1(0) = R2

E/6 − F2(0)/(4M2). The
real part is obtained according to Eq. (20),

Reel
F (ν,t) ≈ απ

2

[ √−t

2ν + √−t
+ t

(
R2

E

3
− μ2

p − 1

4M2

)]
.

(26)

The first term in the square bracket is the well-known
Feshbach correction [18]. I see this calculation as a useful
cross-check for the method of isolating the leading-t behavior
(the Feshbach term was also found in a similar manner
in Refs. [12,15]). The second term was recently found in
Ref. [20] which, however, missed the third term. The missed
term amounts to −0.075 fm2 which is not small if compared
to R2

E/3 ≈ 0.255 fm2. Moreover, due to the approximations
made, the term ∼t is not model independent: other terms
without the logarithmic behavior were omitted, but they would
contribute at the same order. Therefore, while I support the
statement of Ref. [20] that the Feshbach correction alone is not
enough to warrant the precision of the charge-radius extraction
in Bernauer et al., inclusion of the correction ∼απr2

E is also
not sufficient. The main message to take home from this
exercise is that the method allows one to obtain the leading-t
behavior. In what follows I show that the term ∼t ln t that
arises from the inelastic states in the box can be calculated
model independently, as well.

Now I turn to the inelastic contribution and study first the
two representative integrals over the solid angle,

I1 =
∫

d	1

q2
1q2

2

= 2π

−t(E1 c.m.)2
ln

(
(E1 c.m.)2

(Ec.m. − E1 c.m.)2

−t

m2
e

)
,

(27)

I2 = −
∫

d	1

[
1

q2
1

+ 1

q2
2

]
= 2π

Ec.m.E1 c.m.

ln

(
4E2

1 c.m.

m2
e

)
,

where the c.m. energy of the intermediate electron is distinct
from the external electron energy, E1 c.m. = (s − W 2)/2

√
s,

and the invariant mass squared of the intermediate hadronic
system, W 2 = (p + q1)2, lies above the pion production
threshold, W 2 � W 2

π = (M + mπ )2. Due to this threshold, the
IR divergence is absent. However, the collinear divergence
(emission of an energetic real photon collinear to the electron
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line) would be possible if the electron were massless. Keeping
the finite mass of the electron makes the individual integrals
finite, but a potential chiral divergence is introduced. It
cannot appear in the final result, and one should expect this
logarithmic dependence on the electron mass to vanish. I will
be looking for the leading-t behavior that is expected to be
∼t ln t , and that behavior can only come from the integral I1.
I will keep the integral I2 to cancel the ln m2

e dependence but
neglect terms ∼t .

The spin-averaged part of the hadronic tensor with real
photons in general (non-forward) kinematics is expressed in
terms of two scalar amplitudes f1,2(P · q1,t) [21]

Wμν = f1
[
(q1q2)gμν − qν

1 q
μ
2

] + f2
[
(Pq1)2gμν

+ (q1q2)P μP ν − (Pq1)
(
P μqν

1 + P νq
μ
2

)]
. (28)

Making use of the relation

ū(k′)k/1u(k) =
t (Pk1)

(PK) − q2
1 − q2

2

4(PK)
ū(k′)P/ u(k), (29)

performing tensor contraction and consistently neglecting
terms ∼tq2

1,2 and ∼q2
1q2

2 in the numerator, the imaginary part
of the TPE amplitude can be cast in the form

ImT2γ = e4ū(k′)P/ u(k)
∫

d3�k1

(2π )32E1

1

q2
1q2

2

× (PK)2 + (Pk1)2

2(PK)

[
t
(Pk1)

(PK)
− q2

1 − q2
2

]
Imf2, (30)

while the amplitude f1 does not contribute at the leading
logarithm accuracy. According to the power counting used
throughout this calculation, Im f2(P · q1,t,q

2
1 ,q2

2 ) should be
taken at t = q2

1 = q2
2 = 0. In these kinematics, the optical

theorem relates this imaginary part to the total real photoab-
sorption cross section σT as

Imf2(P · q1,0,0,0) = −2σT /[(Pq1)e2]. (31)

Using the definition of Eq. (14) and identifying the solid
angle integrals in Eq. (30) with the previously introduced I1,2

in Eq. (27), one can express the leading logarithm contribution
to the imaginary part of the elastic ep-scattering amplitude
near the forward direction as

Im = −t

4π2

∫ E

Eπ

dω

ω
σT (ω) ln

(
4ω2

c.m.

−t

)[
1 − ω

E
+ ω2

2E2

]
,

(32)

with ω = (W 2 − M2)/2M the laboratory real photon energy,
and ωc.m. = Mω/

√
s the c.m. photon energy. The dispersion

integral starts from the pion threshold,

Re(E,t) = 2E

π
P

∫ ∞

Eπ

dE′

E′2 − E2
Im(E′,t). (33)

0 0.01 0.02 0.03 0.04
|t| (GeV )

0.06

0.08

0.1

0.12

0.14

0.16

(E
,t)

/|t
| (

G
eV

)

E = 180 MeV
E = 315 MeV
E = 450 MeV
Expt. Sensitivity

FIG. 2. (Color online) Results for the TPE effect on the reduced
cross section δσR(E,t)/|t | for the proton, as a function of |t | in
GeV2 for three values of the laboratory beam energies: 180, 315, and
450 MeV. The experimental sensitivity is also shown.

The principal value integral can be done analytically by
changing the order of integration, and I obtain

Re(E,t) = −t

4π3

∫ ∞

Eπ

dω

ω
σT (ω) ln

(
4ω2

c.m.

−t

)

×
[(

1 + ω2

2E2

)
ln

∣∣∣∣E + ω

E − ω

∣∣∣∣+ ω

E
ln

∣∣∣∣1 − E2

ω2

∣∣∣∣− ω

E

]
. (34)

This is the master formula that is a more general result than
that of Ref. [19] where the high-energy approximation for the
cross section was made.

The integral of Eq. (34) can be evaluated numerically
using the phenomenological fit [22] of the world data on
real photoabsorption on the proton target [23]. In Figs. 2–4, I
present results for the quantity

δσ TPE
R /|t | = 2 Re(E,t)/|t |, (35)

which features the logarithmic behavior at low |t |, at three
values of the electron beam energy relevant for the Mainz A1
experiment with the proton [1] and the deuteron [24] target,
the latter being currently under analysis. It is compared with
the experimental sensitivity of the Mainz experiments, which

0 0.01 0.02 0.03 0.04
|t| (GeV )

0.1

0.15

0.2

0.25

0.3

(E
,t)

/|t
| (

G
eV

)

E = 180 MeV
E = 315 MeV
E = 450 MeV
Expt. Sensitivity

FIG. 3. (Color online) Same as in Fig. 2 for the deuteron.
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0 0.01 0.02 0.03 0.04
|t| (GeV )

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
(E

,t)
/|t

| (
G

eV
)

E = 1.1 GeV
E = 2.2 GeV
Expt. Sensitivity

FIG. 4. (Color online) Same as in Fig. 2 for the proton and for
two values of the laboratory beam energies: 1.1 and 2.2 GeV corre-
sponding to the kinematics of the proposed JLab experiment [26].

is obtained as

δσ
RE,expt
R /|t | = −R2

E/3 (1 ± δRE/RE) . (36)

For the proton, the experimental result of RE = 0.879(8) fm
translates into

δσ
RE,expt
R /|t | = −6.61(12) GeV−2. (37)

This experimental sensitivity is compared in Fig. 2 with
the numerical evaluation of Eq. (34) in the kinematics
of the Mainz A1 experiment [1]. The energy dependence
(difference between the solid, dashed, and dash-dotted lines)
reflects the energy dependence of the photoabsorption cross
section around the �(1232) region. For the deuteron the
projected precision of 0.25% [24] together with the recent
global extraction of the deuteron radius from scattering and
spectroscopy data Rd

E = 2.1424(21) fm [2] leads to

δσ
RE,expt
R /|t | = −39.278(196) GeV−2, (38)

the uncertainty corresponding to a 0.25% projected precision
of the scattering experiment. A somewhat smaller value of
2.130(3) fm was extracted from the electron scattering data
alone in Ref. [25]; however, the difference is of no numerical
importance for the analysis presented here. A comparison of
this sensitivity to the TPE correction in the kinematics of
the Mainz A1 experiment is displayed in Fig. 3. The result
for a higher energy relevant for the proposed Jefferson Lab
experiment [26] at higher energies is shown in Fig. 4. As
already mentioned, the TPE results in the leading logarithm
approximation are model-independent modulo a constant × t
offset that translates into a constant in Figs. 2–4. Therefore,
what really matters is not the absolute value of the TPE
correction but rather the difference between the lowest and
highest values of t (i.e., nonlinearity). This nonlinearity is close
to the experimental precision for the proton and the deuteron
at moderate energies, as in the Mainz A1 kinematics, but is
seen to be roughly three times the experimental sensitivity
for the energy in the range of a few GeV and |t | between
10−4 and 5 × 10−2 GeV2 as in the proposed measurement at
JLab. This suggests that the leading logarithm TPE correction
has to be included in the experimental analyses that aim at
extracting the charge radius from electron scattering with an

accuracy below 1%. It is seen that the inclusion of the TPE
correction leads to a stronger t dependence at low momentum
transfer. Upon subtracting the positive-definite |t | ln(4E2/|t |)
correction from the experimental data, the extracted value of
the charge radius will necessarily decrease. The subleading
corrections O(αt), not included in this calculation, can also
affect the extracted value of the charge radius. The second
term in Eq. (26) contributes ∼1% to the radius [20]. However,
further corrections O(αt) may reduce this number as, e.g., the
third term in Eq. (26) does.

The TPE effect for the deuteron is somewhat larger than
for the proton in comparison with the respective experimental
sensitivity. This can be understood by recalling that the total
photoabsorption cross section for the deuteron is roughly twice
that for the proton in the hadronic range. On the other hand,
the quantity R2

E(δRE/RE) is only about 1.5 times larger for the
deuteron giving a larger relative effect. Nuclear effects were
neglected in this estimate. Moreover, the deuteron quasielastic
breakup was not included: the derivation is based on treating
t as small compared to all other scales, an approximation
that would not be valid if t were to be compared to the
characteristic scale MBd ≈ 2 × 10−3 GeV2, with the deuteron
binding energy Bd ≈ 2.224 MeV. An exact calculation would
be needed to account for the nuclear part of the photoexcitation
of the deuteron.

In summary, I have considered elastic electron-proton
(deuteron) scattering at low momentum transfer t and in the
presence of the two-photon exchange (TPE). I calculated the
TPE effect on the unpolarized cross section in the limit of
low t . For the TPE effect with just the nucleon degrees of
freedom inside the loop (elastic contribution), the leading
behavior ∼√−t is given by the model-independent Feshbach
correction. For the TPE effect with inelastic states, the leading
low-t behavior is t ln t , and the coefficient in front of this term
is model independent and given by a weighted integral over
the total photoabsorption cross section. This integral was eval-
uated numerically using the recent parametrization of world
total photoabsorption data on the proton and the deuteron, and
the result was compared with the experimental accuracy in
extracting the charge radius from electron scattering data at
low t in the kinematics of recent and upcoming experiments.
I found that while at the beam energy of a few hundred MeV,
as in Mainz A1, the nonlinearity introduced by the t ln t TPE
correction is comparable to the experimental precision. At
higher energies of 1–2 GeV corresponding to the experiment
planned at Jefferson Lab, this effect becomes about three times
larger than the experimental precision for extracting the proton
charge radius and must be included.
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