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Emergent soft monopole modes in weakly bound deformed nuclei
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Based on the Hartree-Fock-Bogoliubov solutions in large deformed coordinate spaces, the finite amplitude
method for the quasiparticle random-phase approximation (FAM-QRPA) has been implemented, providing a
suitable approach to probing collective excitations of weakly bound nuclei embedded in the continuum. The
monopole excitation modes in magnesium isotopes up to the neutron drip line have been studied with the
FAM-QRPA framework on both the coordinate-space and harmonic oscillator basis methods. Enhanced soft
monopole strengths and collectivity as a result of weak-binding effects have been unambiguously demonstrated.
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Nuclei close to the particle drip lines are weakly bound
superfluid quantum systems and can exhibit exotic threshold
phenomena [1], sharing interdisciplinary interests with weakly
bound systems such as multiquark states, Rydberg atoms, and
quantum droplets [1–3]. Since the discovery of nuclear halos
with radioactive beams [4], there have been numerous theo-
retical developments aiming at weakly bound nuclei and their
dilute surfaces [5]. Extensive Hartree-Fock-Bogoliubov (HFB)
studies have provided successful descriptions of continuum
couplings and halo features in ground states of weakly bound
nuclei [6–12]. On the other hand, excitations in weakly bound
nuclei opened vast possibilities to probing novel collective
modes, as well as continuum effects and components of
the effective interaction that are suppressed in ground states
[13–15]. To address these issues, along with the operation of
forthcoming facilities such as the Facility for Rare Isotope
Beams (FRIB) at Michigan State University, an accurate and
self-consistent treatment of continuum together with pairing
correlations, deformations, and large spatial extensions is
essential.

Among the excited states in weakly bound nuclei, the
emergent soft excitation modes (or pygmy resonances)
which correspond to the collective motion between neutron
halo/skins and cores are particularly intriguing. These modes
can impact astrophysical neutron capture rates and r-process
nucleosynthesis. However, the collectivity of observed pygmy
resonances, as a crucial verification of coherence, is still under
debate [13,14,16]. This Rapid Communication is devoted to
the low-energy monopole excitations in weakly bound nuclei
caused by the soft incompressibility of halos, as the dilute
nuclear matter has a decreased incompressibility compared
to saturated densities [17]. The low-energy monopole modes
indeed have been predicted, e.g., in the neutron-rich nickel
isotopes (observed very recently in 68Ni [18]), as a rather non-
collective excitation [19]; however, it may hardly be expected
in another random-phase approximation (RPA) calculation
with a proper treatment of continuum [20]. Besides, the
collectivity could be enhanced due to weak-binding effects
[15]. Therefore, the emergence of collective soft monopole
modes, as well as the role of continuum contributions with
the fully self-consistent continuum quasiparticle random-

phase approximation (QRPA) approach, is still an open
question.

The standard method to solve the QRPA equation as a
matrix form involves tremendous computational costs in de-
formed cases, and even more when continuum configurations
are included [21]. Recently, the developments of the finite
amplitude method (FAM) by Nakatsukasa et al. provided
an alternative way to solving the QRPA problem iteratively
[22,23] rather than by a direct matrix diagonalization. The
FAM-QRPA method provides an efficient way to study
collective excitations and it has been implemented on several
HFB approaches, such as the spherical coordinate-space HFB
[23], deformed harmonic oscillator (HO) and transformed HO
basis HFB [25], and deformed relativistic Hartree-Bogoliubov
method [24]. Recently, the FAM-QRPA method has been also
applied to the discrete modes [26] and β decays [27].

In this Rapid Communication, we have developed a FAM-
QRPA approach based on HFB solutions in large, axially
symmetric coordinate spaces to describe excitations in weakly
bound deformed nuclei, which was a great computational
challenge. In deformed weakly bound nuclei, the subtle
interplay among surface deformations, surface diffuseness,
and continuum couplings can result in exotic structures, such
as deformed halos. Therefore theoretical studies of ground
state properties and excitations need precise HFB solutions
to account for these phenomena. The conventional HFB
approach, based on the HO basis, may not be sufficient to
describe the surface properties of weakly bound systems.
On the other hand, the exact treatment of the continuum
in deformed cases, with scattering boundary conditions, is
rarely employed [10]. In this context, the HFB approach in
large deformed coordinate spaces can provide very precise
descriptions of ground states in deformed weakly bound nu-
clei, including quasiparticle resonances and dense continuum
spectra, and this has been accomplished recently with a hybrid
parallel calculation scheme [12]. Therefore, the next natural
step is to combine the FAM-QRPA method with the deformed
large coordinate-space HFB approach to realize the deformed
continuum QRPA calculations.

The HFB equation is solved by HFB-AX [28,29] within a
large two-dimensional coordinate space based on B-spline
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techniques for axially symmetric deformed nuclei [30]. The
maximum mesh spacing is 0.6 m and the order of the B-splines
is 12. For calculations employing large box sizes and small
lattice spacings, the discretized continuum spectra would be
very dense, providing good resolutions. To describe systems
in large coordinate spaces, a hybrid MPI + OpenMP parallel
programming scheme was implemented to get converged
results within a reasonable time. We note that the HFB-AX code
has been improved to describe large systems [12] since its
initial version [29]. For the particle-hole interaction channel,
the often used Skyrme parametrizations SLy4 [31] and SkM*
[32] are adopted. For the particle-particle channel, the density-
dependent surface pairing interaction is used [33]. With a
pairing window of 60 MeV, the pairing strengths are taken
as V0 = 500 MeV fm3 for SLy4 and V0 = 450 MeV fm3 for
SkM*, so that pairing gaps in stable nuclei can be reasonably
reproduced.

Once the HFB solutions are obtained, the quasiparticle
wave functions and energies are recorded. The wave functions
are represented in a two-dimensional Gauss-Legendre lattice
for integral calculations. Our goal is to solve iteratively the
nonlinear FAM-QRPA equations [23]

(Eμ + Eν − ω)Xμν(ω) + δH 20
μν(ω) = −F 20

μν,

(Eμ + Eν + ω)Yμν(ω) + δH 02
μν(ω) = −F 02

μν, (1)

where Xμν(ω) and Yμν(ω) are the FAM-QRPA amplitudes;
δH 20

μν and δH 02
μν are the induced fields; F is the external

time-dependent field to polarize the system. Transition strength
can be calculated from the Xμν(ω) and Yμν(ω) amplitudes.
The expressions for H 20 and H 02 in the HFB approach can
be found in Refs. [23,24]. We note that time-odd terms of the
energy density are very important and have been included. An
imaginary part of the frequency ω is taken to be 0.5 MeV
for smoothing resonances. In the coordinate-space approach,
the evaluation of δH 20 and δH 02 in terms of a integral
of wave functions takes the majority of computing time.
The total memory of wave functions and their derivatives
takes about 10–20 Gb. For each frequency point ω, the
calculation employs the OpenMP shared-memory parallel
scheme. For different frequencies, the MPI distributed parallel
scheme is adopted. Consequently, the FAM-QRPA approach
can be efficiently implemented by using this hybrid parallel
scheme. The calculations take about 40 ∼ 80 iterations to
converge, by utilizing the Broyden iteration method (with 30
previous iterations included) [34], depending on the size of
the configuration space, i.e., the box size and the quasiparticle
energy cutoff.

Although deformed coordinate-space FAM-QRPA is com-
putationally more expensive than the HO basis approach [25],
it is much less intensive than the coordinate-space matrix
QRPA approach [15,21]. At the moment, deformed coordinate-
space QRPA approaches typically use smaller box sizes which
can cause false peaks in the strength function. Compared to
a typical QRPA matrix of 160 000 by 160 000 with a box of
20 fm [21], the present FAM-QRPA handles a typical matrix
size of 24 000 by 24 000 with a box size of 27 fm, implying
that computational costs can be significantly reduced. Thus
this method offers a unique advantage to studying excitations

FIG. 1. (Color online) Isoscalar monopole strength in 100Zr cal-
culated with the FAM-QRPA method based on HFB-AX and HFBTHO

codes, respectively, with (a) the volume pairing and (b) the surface
pairing.

in weakly bound deformed nuclei that require large coordinate
spaces.

To verify our implementation of FAM-QRPA, we have
calculated the isoscalar (IS) monopole excitation strength
function for 100Zr, with the SLy4 interaction, which is a
well-deformed nucleus and has been studied in several earlier
works [25,35]. In Fig. 1, the calculated transition strengths with
different pairing interactions based on HFB-AX agree well with
HFBTHO results [25]. The coordinate-space box size is taken
to be 24 fm since this nucleus is not very weakly bound. The
cutoff on the quasiparticle energies is taken to be 80 MeV. In the
HFBTHO FAM-QRPA approach, 20 HO shells are used, with no
truncations on the FAM-QRPA configuration space. Generally,
two giant peaks, caused by the deformation, are obtained
in both approaches. At the region of high excitation energy,
some discrepancy between the two methods can be expected.
Close to the zero energy, a spurious component appears and
this is more obvious in calculations with the surface pairing
[Fig. 1(b)] than with the volume pairing [Fig. 1(a)]. This
reminds us that one should be cautious when using the surface
peaked pairing interaction in QRPA calculations, especially
for weakly bound nuclei having large surface diffuseness.

In addition to 100Zr, the reliability of our approach for
weakly bound deformed nuclei has been evaluated in detail
for 40Mg, by using the SLy4 interaction and surface pairing. In
Fig. 2(a), the IS monopole strength of 40Mg has been calculated
with different cutoffs at quasiparticle energies. We see that at
the low energy part the convergence is slow and only with a
cutoff of 95 MeV reasonable convergence is reached. Indeed,
it is important to keep the completeness of the basis to remove
the spurious contribution. The Thomas-Fermi approximation
of high energy continuum could provide a solution [28].
Fortunately, this problem is serious only for the strength at
ω � 2 MeV with the surface pairing. In Fig. 2(b), 40Mg is
calculated with box sizes of 18 and 27 fm and also with
HFBTHO by using 20 shells. As shown, all three approaches
give roughly similar distributions of the transition strength.
With the 18 fm box size, the strength is rather jagged due to less
accurate continuum discretization, leading to false resonance
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FIG. 2. (Color online) Isoscalar monopole strength in 40Mg cal-
culated with the FAM-QRPA method based on HFB-AX and HFBTHO,
respectively. The calculations were done with SLy4 interaction and
surface pairing. (a) Calculations in a coordinate space of 27 fm with
various cutoffs on the quasiparticle energies. (b) Calculations in a
coordinate space of 27 and 18 fm, and on the HO basis with 20 shells.

peaks. This stresses the importance of large coordinate-space
calculations close to the neutron drip line. By comparing
the coordinate-space approach and the HFBTHO approach,
considerable shifts in resonance peak energies can be seen,
although the agreement is good for 100Zr. This demonstrates
the necessity of the precise treatment of weak-binding effects
in our approach.

In Fig. 3, the calculated IS monopole strengths in Mg
isotopes toward the neutron drip line are shown. The last
discovered Mg isotope is 40Mg [36], and the drip line
could be extended up to 46Mg [37]. The predicted drip line
position is rather model and functional dependent, as shown
in calculations with Skyrme functionals [37] and covariant
density functionals [38]. The ground state properties and
evolution of deformed halo features of 40,42Mg were studied
in our previous work [12]. Figure 3 shows that low energy
peaks around 4 MeV gradually increase toward the drip line
in both SLy4 and SkM* calculations with the surface pairing
interaction. Such kind of low energy modes were also obtained
in an earlier work which used SkM* interaction and mixed
pairing [15]. However, the peak strengths with surface pairing
are significantly larger than those which adopted the mixed
pairing, especially in calculations with SkM*. Therefore, the
emergence of remarkable soft monopole resonances toward
the neutron drip line is mainly related to increasing surface
pairing correlations and near-threshold continuum couplings.
The two giant monopole resonances around 15 and 23 MeV,
due to the splitting caused by deformation, are obtained in
various approaches. The peak around 23 MeV is very weak

FIG. 3. (Color online) Isoscalar monopole strength in Mg iso-
topes calculated with the FAM-QRPA method based on HFB-AX,
using the (a) SLy4 and (b) SkM* interactions.

in our calculation and it is washed out toward the neutron
drip line. 42Mg is very weakly bound in the SLy4 calculation,
with a Fermi energy of λn = −0.22 MeV. In Fig. 3(a), a
clear resonance peak around 9 MeV appears in 42Mg and
its partner in 40Mg also shows up weakly. This monopole
resonance mode is novel since it is not likely related to the
deformation splitting according to the systematics. However,
this novel resonance of 42Mg is absent in SkM* calculations,
since the predicted stronger binding with a Fermi energy of
λn = −1.19 MeV. In Fig. 3(b), 44Mg (with λn = −0.57 MeV)
has a considerable transition strength between 6 and 12 MeV,
but no clear resonance peaks appear, probably due to the large
strength around 4 MeV.

At the last but not the least, we have investigated the collec-
tivity and mechanism of the low energy monopole resonances
in weakly bound Mg isotopes with SLy4. In Figs. 4(a) and 4(b),
the transition strengths contributed from quasiparticle states
with different values of � (angular momentum projection
along the z axis) and parity π are shown. As illustrated,
�π = 1/2− states contribute the majority of the strength,
especially for 40,42Mg at ω = 4 MeV. This analysis leads to the
conclusion that resonances around the 4 MeV region in Mg
isotopes are not very collective, while the resonance in 42Mg
around 9 MeV is collective as shown in Fig. 4(b).

In Figs. 4(c) and 4(d), we plot a part of the matrix map of
log10(||Xμν |2 − |Yμν |2|) to show the contributions originating
from different quasiparticle states. Note that the full dimension
of 1/2− subspace is about 550. The discretized quasiparticle
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FIG. 4. (Color online) Monopole strengths from different �π

quasiparticle states in (a) and (b). The matrix contributions of the
�π = 1/2− states corresponding to the ω = 4 MeV peaks are shown
for (c) 40Mg and (d) 42Mg. In (c) and (d), the quasiparticle energy
spectra are also displayed. See details in the text.

energy spectra corresponding to the index μ are also displayed.
In Fig. 4(c), it can be seen that the 4 MeV resonance in 40Mg is
mainly contributed by the near-threshold quasiparticle states
below 2 MeV. Similarly, in Fig. 4(d), collectivity in 42Mg
is enhanced which is consistent with Fig. 4(a). Based on
the stabilization analysis of quasiparticle spectra in 40,42Mg
[12], these near-threshold 1/2− states have a nonresonant
continuum nature and are mainly responsible for deformed
halos in weakly bound Ne and Mg isotopes [12]. In contrast,
the quasiparticle resonances 1/2−[321] (around 3 MeV) and
1/2−[330] (around 6 MeV) have no significant contributions
to deformed halos [12] and to the matrix map in the case of
ω = 4 MeV. The important role of nonresonant continuum
in weakly bound nuclei has already been stressed (e.g.,
see the review paper [5]). The remarkable soft monopole
resonances, which are generated by nonresonant continuum,
can be ascribed more likely to vibrations of the neutron pairing
halo than to vibrations of the neutron matter halo. In fact, by
adopting the surface pairing, the pairing density distribution
has more pronounced deformed halo features than the neutron
matter density distributions in 40,42Mg [12]. This mechanism
is found to be similar to soft dipole resonances in spherical

nuclei [39]. Another surprise is the second mode around
9 MeV, related to several quasiparticle resonances, which
seems to be rather collective and has no direct relation to the
nonresonant continuum by matrix analysis. This resonance can
be understood as a novel pygmy monopole mode due to the soft
incompressibility of loosely bound neutron skin or halo, while
the incompressibility of low density nuclear matter has not
been well understood. The experimental study of low-energy
monopole modes in unstable nuclei is feasible with specially
arranged detectors around zero degrees [40,41].

In summary, the monopole excitations of weakly bound
deformed Mg isotopes have been studied with the FAM-
QRPA framework in large deformed coordinate spaces, to
incorporate the weak-binding effects. The reliability of our
new implementation has been carefully evaluated, to stress that
the large coordinate-space HFB calculations are essential close
to the neutron drip line. The systematic calculations of Mg
isotopes clearly demonstrate the emergence of collective low
energy monopole modes due to two different mechanisms. The
soft monopole resonances around 4 MeV are less collective
and mainly generated by the pairing halos, corresponding
to near-threshold �π = 1/2− nonresonant continuum states.
In addition, the strength and collectivity of such modes
are enhanced toward the neutron drip line. The emergent
second resonance around 9 MeV is rather collective and
most likely linked to the expected pygmy monopole mode.
We conclude that our approach provides a suitable tool for
probing novel excitation modes in weakly bound deformed
nuclei, in which pairing correlations and incompressibility
in low-density nuclear matter are not well understood yet.
Further developments of continuum FAM-QRPA for multipole
excitations in the fully three-dimensional case will provide a
broader context for the quest of exotic excitation modes as
well as their implications for astrophysical nucleosynthesis.
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