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Triton binding energy with realistic statistical uncertainties
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We compute the binding energy of triton with realistic statistical errors stemming from NN scattering data
uncertainties and the deuteron and obtain Et = −7.638(15) MeV. Setting the numerical precision as �Enum

t �
1 keV we obtain the statistical error �Estat

t = 15(1) keV which is mainly determined by the channels involving
relative S waves. This figure reflects the uncertainty of the input NN data, more than two orders of magnitude
larger than the experimental precision �E

exp
t = 0.1 keV, and sets a limit on the realistic precision that can be

reached. This suggests an important reduction in the numerical precision and hence in the computational effort.

DOI: 10.1103/PhysRevC.90.047001 PACS number(s): 21.10.Dr, 13.75.Cs, 21.30.Fe, 21.45.−v

One of the main challenging goals in theoretical nuclear
physics is the ab initio determination of binding energies of
atomic nuclei. The accepted protocol consists of undertaking
a quantum multinucleon calculation from the knowledge of
few-body forces. The simplest case were such a program has
been most often investigated is the binding energy of the triton,
a stable system consisting of two neutrons and a proton with
an experimental mass defect given currently by Mt − 2mn −
mp = E

exp
t = −B

exp
t = −8.4820(1) MeV. Already in the mid-

1930s quantum mechanical theoretical studies of triton binding
allowed researchers to establish essential properties of the
nuclear force: its finite range as well as the existence of
neutron-neutron interactions (see, e.g., Refs. [1,2] for early
reviews). The increasing precision in our knowledge of the
two-body interaction has strongly motivated the developments
in solving the computationally expensive 3N problem (see,
e.g., [3–6]). While this was partly aimed at establishing the
need for 3N forces, high numerical precision in conjunction
with realistic and precise nucleon-nucleon interactions has
become a major issue by itself in few-body computational
methods. In Refs. [7–9] benchmarking precisions of �Enum

t =
10, 0.1, 0.01 keV, respectively, have been achieved within
different schemes.

However, nucleon-nucleon potentials determined from data
inherit statistical fluctuations that propagate to the triton
theoretical energy into a genuine statistical error �Estat

t .
A pioneering and forgotten attempt already looked at the
consequences for triton binding based on an analysis of the
inverse scattering in the 1S0 channel [10]. In the present paper
we quantify for the first time the uncertainty of triton energy
�Estat

t stemming from a complete statistical analysis of 6713
selected nucleon-nucleon scattering data. In our analysis we
consider a particular NN potential and disregard the role of 3N
forces. While the particular representation of the NN potential
may induce changes in the triton binding energy of at most

*rnavarrop@ugr.es
†e.garrido@csic.es
‡amaro@ugr.es
§earriola@ugr.es

5%, we do not expect significantly larger fluctuations for the
statistical error estimated here. Our findings below confirm
this naive expectation.

The main and most reliable sources of information for the
NN interaction are the deuteron energy and the more than
8000 np and pp scattering data below pion production thresh-
old published during the last 65 years. These will be denoted
as O

exp
i ± �Oi , with i = 1, . . . ,N and will be regarded

as normally distributed variables. In the classical statistical
approaches one proposes a given NN interaction VNN (p)
depending on a set of parameters p = (p1, . . . ,pP ) which,
by solving the two-body Schrödinger equation, generates a
set of scattering observables Oi(p) with i = 1, . . . ,N . The
parameters are determined by a least-squares χ2 fit,

min
p

χ2(p) = min
p

N∑
i=1

(
O

exp
i − Oi(p)

�O
exp
i

)2

≡ χ2(p0). (1)

A high quality potential is one verifying χ2/ν ∼ 1, with ν =
N − P . Since the Nijmegen group analysis in 1993 [11] a set of
high quality potentials have emerged fitting their contemporary
databases [12–21]. However, the self-consistency of the χ2

approach requires the residuals to be normally distributed,

Ri = O
exp
i − Oi(p0)

�O
exp
i

∼ N (0,1), (2)

a condition which, even if elementary, has only recently been
addressed [21] and checked in the previous analyses [18–20].
The total number of np and pp data was N = 6713. This is
almost twice as in the 1993 Nijmegen analysis [11] that lacked
a normality test. The normality property of the residuals has
been exploited to extract the effective interaction parameters
and corresponding counterterms [22] and to replicate via
Monte Carlo bootstrap simulation as a means to gather more
robust information on the uncertainty characteristics of fitting
parameters [23]. As shown in Ref. [21] we stress that the
verification of normality, Eq. (2), is essential for a meaningful
propagation of the statistical error, since the uncertainty
inherited from the fitted scattering data �O

exp
i corresponds

to a genuine statistical fluctuation. This allows us to determine
the 1σ error of the parameters p = p0 ± �pstat and hence the
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error in the potential

VNN = VNN (p0) ± �V stat
NN, (3)

which generates in turn the error in the NN phase shifs δ =
δ(p0) ± �δstat and mixing angles. Once the NN potential is
determined the three-body problem can be solved for the triton
binding energy,⎡

⎣∑
i

Ti +
∑
i<j

VNN (ij )

⎤
⎦� = Et�, (4)

where

Et = Et (p0) ± �Estat
t . (5)

Direct methods to determine �pstat, �V stat
NN , and �Estat

t

proceed either by the standard error matrix or Monte Carlo
methods (see, e.g., [24]). In Ref. [23] we have shown that the
latter method is more convenient for large number of fitting
parameters (typically P = 40–60), and consists of generating
a sufficiently large sample drawn from a multivariate normal
probability distribution

P (p1,p2, . . . ,pP ) = 1√
(2π )P det E

e− 1
2 (p−p0)T E−1(p−p0), (6)

where Eij = (∂2χ/∂pi∂pj )−1 is the error matrix. We generate
M samples pα ∈ P with α = 1, . . . ,M , and compute VNN (pα)
from which the corresponding scattering phase shifts δ(pα) and
triton binding energies Et (pα) can be determined.

In our calculations we take M = 205 samples for the
smooth potential described in [21] (rc = 3 fm),

V (�r) = Vshort(r)θ (rc − r) + Vlong(r)θ (r − rc). (7)

The long-range piece Vlong(�r) contains a charge-dependent
(CD) one-pion exchange (OPE) with fixed f 2 = 0.075 [25]
and electromagnetic (EM) corrections which are kept fixed
throughout the fitting process. The short-range component is

Vshort(�r) =
21∑

n=1

Ôn

[
N∑

i=1

Vi,ne
−r2/(2a2

i )

]
, (8)

where Ôn are the set of operators in the extended AV18
basis [13,26–28], Vi,n are fitting parameters, and ai =
a/(i + 1) with a = 2.3035 ± 0.0133 fm. Note that some of
the Ôn operators depend on the angular momentum, and hence
contain some nonlocalities. We choose this form because
the selection of the database required multiple fits, and the
operator form allows a very efficient analysis and enables us
to apply three-body techniques specific to this form of potential
in coordinate space. For this potential χ2/ν = 1.06 and
normality of residuals is verified. The potential uncertainties
�V stat

NN have been depicted in [21]. We have checked that
statistical uncertainties in the phases and mixing angles �δstat

determined by the covariance matrix method (which would
correspond to the limit M → ∞) are fairly well reproduced by
our M = 205 samples when the variance of the population is
used as an estimator of the error. Likewise, the uncertainties of
the potential Eq. (8) obtained by the multivariate distribution,
Eq. (6), are in fair agreement with our original partial wave

analysis to the 3σ self-consistent database in terms of a
delta-shell potential with OPE (DS–OPE) [19] and also with
the corresponding bootstrap simulation [23].

The results for Bt for each one ot the M = 205 Monte Carlo
samples of the potential have been obtained by means of the
hyperspherical adiabatic expansion method described in [29].
The angular part of the Faddeev equations is first solved for
fixed values of the hyperradius ρ. The corresponding angular
eigenfunctions {
n(ρ,�)} form a complete set, and it is used
as a basis in order to expand the total three-body wave function
� as

� = 1

ρ5/2

∑
n

fn(ρ)
n(ρ,�), (9)

where � collects the usual five hyperangles, and where the
radial wave functions fn(ρ) are obtained in a second step by
solving a coupled set of differential radial equations where
the eigenvalues of the angular part enter as effective potentials
(see Ref. [29] for details).

When solving the angular part, the eigenfunctions 
n(ρ,�)
are expanded in terms of the hyperspherical harmonics (HH),
which contain the dependence on the quantum numbers
{�x,�y,L,sx,sy,S} of the different components included in the
calculation. Obviously, �x and sx are the relative orbital angular
momentum and spin of one of the two-body subsystems in the
triton, �y is the relative orbital angular momentum between the
third particle and the center of mass of the two-body system,
and sy is the spin of the third particle. The angular momenta
�x and �y couple to L, and sx and sy couple to the total spin S.
Finally, L and S couple to the total angular momentum 1/2 of
the triton ground state. Together with these quantum numbers
the HH depend of the hypermomentum K = 2ν + �x + �y

(ν = 0,1,2, . . . ).
Therefore, the convergence of the three-body wave function

� has to be achieved at three different levels: first, in terms of
the adiabatic channels included in the expansion explicitly
written in Eq. (9); second, in terms of the components
(with quantum numbers {�x,�y,L,sx,sy,S}) included in the
expansion of the angular functions {
n}; and third, in terms
of the maximum value of the hypermomentum, Kmax, used
for each of the components. In the calculations presented here
we have included up to 12 adiabatic terms in the expansion
in Eq. (9) (typically, four or five terms are enough to get a
good convergence for bound states). All the partial waves with
�x,�y � 5 have been included (when increasing the number of
components to �x,�y � 8 no substantial difference has been
observed). Finally, three different sets of Kmax values have
been considered. We shall refer to them as sets (i), (ii), and (iii).
In set (i), about 500 HH are used in total, and Kmax = 50 for
the most relevant component in the three-body wave function
(which corresponds to �x = 0 and sx = 1 between the proton
and one of the neutrons, and �y = 0). In set (ii) we multiply
all the Kmax-values by 2 (which means about 1000 HH in the
three-body wave function and Kmax = 100 for the dominating
component). Finally, in set (iii) we again multiply all the Kmax

values by 2 (therefore, about 2000 HH in the three-body wave
function and Kmax = 200 for the dominating component). An
appropriate choice of the Kmax values is crucial in order to
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FIG. 1. (Color online) Normalized histograms representing the
triton binding energy (in MeV) for a sample of 205 gaussian
potential parameters. From left to right the normal density probability
distribution functions N (μ,σ ) correspond to higher accuracy Et =
−7.638 ± 0.0147, intermediate accuracy Et = −7.596 ± 0.0178,
and lower accuracy Et = −7.575 ± 0.014 (see main text).

optimize the computing time. An increase of the total number
of HH in the calculation by a certain factor implies an increase
of the computing time of basically the same factor squared. As
an example, while a single three-body calculation with set (i)
lasts for about 30 minutes, the same calculation with set (iii)
requires no less than 8 hours.

The results of Bt for the 205 Monte Carlo potential samples
are summarized in the histogram of Fig. 1 for the three cases
(i), (ii), and (iii) outlined above. As we see, the propagated
histograms are roughly Gaussians, with quite similar widths
but shifted. Thus, increasing the accuracy does not affect the
error estimate substantially. For the most accurate case we
get Et = −7.638(15) MeV. Taking into account the slight
asymmetry in the distribution, a ±1σ (= 68%) confidence
interval can be obtained by excluding the 16% upper and
lower tails. This gives the 68% range min Et � Et � max Et

which corresponds to �Estat
t ≡ (max Et − min Et )/2. There is

an uncertainty in �Estat
t coming from the fact that for M = 205

we may exclude 32 or 33 values from above or below, inducing
an uncertainty of �2Et ≡ �(�Et ) = 1 KeV on the error, so
that

�Estat
t = 15(1) keV. (10)

This is our main result, which sets a realistic precision for
triton binding energy calculations and is more than two orders
of magnitude larger than the experimental precision �E

exp
t =

0.1 keV. The early estimate �Eth
t > 40 keV [10] was based

on the 1S0 inverse scattering analysis using the 1980 Paris
potential which has a large χ2/ν ∼ 2.

It is worth noting that the numerical error in the present
calculation is �Bnum

t = 1 keV which is one order of mag-
nitude smaller than �Bstat

t = 15 keV. Given that the error
is dominated by the uncertainty of the input potential, we
investigated if the numerical precision can be relaxed, thus
reducing the computing time. Obviously, the meaning of
numerical precision may depend on the method and different

TABLE I. Triton binding energy convergence in the number of
channels, Nc, classified according to the orbital angular momentum
of the pair LPair and the spectator lspectator in the triton as the number
of total accumulated channels, NTotal, is increased. The potential used
was Monte Carlo generated. A gap indicates when the change in Et

is smaller than the statistical uncertainty �Bt = 15(1) keV.

Nc LPair lSpectator NTotal Energy (MeV)

3 Ss 3 Unbound
+2 Sd+Ds 5 −7.0117
+10 Pp 15 −6.4377
+8 Dd 23 −7.4109
+4 Pf+Fp 27 −7.4956
+10 Ff 37 −7.5654
+2 Dg+Gd 39 −7.6178
+8 Gg 47 −7.6502
+4 Fh+Hf 51 −7.6508
+10 Hh 61 −7.6510

approaches to the three-body problem should be tried out.
The convergence of the binding energy calculation in terms
of partial waves (see, e.g., Ref. [5] for explicit notations) is
presented in Table I for one potential taken at random and
whose total energy is given by Et = −7.6510 MeV. There,
an increasing number of channels is added depending on
the relative orbital angular momenta (L,l) of a NN pair or
the third spectator nucleon respectively (denoted as (lx,ly)
in the HH expansion above). As one can see one needs the
Ss,Sd,Ds channels to get a bound triton Et = −7.0117 MeV.
Within this reduced Hilbert space we get

�Bstat
t (Ss + Sd + Ds) = 20 keV. (11)

When the Pp channel is added, we obtain �Bstat
t (Ss +

Sd + Ds + Pp) = 19 keV. So, about 75% of the statistical
uncertainty comes from the lowest Ss + Sd + Ds channels.

One interesting aspect from the present analysis concerns
the statistical correlation analysis of the NN gaussian potential
parameters, as this helps to pin down what does fix the current
precision. We find that correlations are never larger than 0.4,
but since the Gaussian potential parameters themselves are
strongly correlated, there is still the possibility that more global
parameters such as volume integrals or low energy scattering
parameters would show a clearer pattern.

The precision has been a recurrent topic within the present
context, and much of the effort was originally directed with
the purpose of establishing the need of 3N forces within
the numerical precision of the calculations. For instance, one
needs 34 channels up to angular momentum Jpair � 4 to obtain
�Enum

t = 10 keV [7]. Within this numerical precision the
triton binding energy obtained by Faddeev calculations has
been found to be 8.00,7.62,7.63,7.62,7.72 MeV for the CD
Bonn [30], Nijm-II, Reid93, Nijm-I, and AV18 [31] potentials
respectively. The covariant spectator model has produced the
closest binding energy 8.50 MeV to experiment precisely
when the NN χ2 becomes smallest. The spread of values
in Bt , allowed by the theorem of Glöckle and Polyzou [32],
is coming from off-shell ambiguities. The theorem, however,
does not predict quantitatively the dispersion, which yields
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Bt = 7.85(34) MeV [experimentally Bt = 8.4820(1) MeV].
The similarity of the databases but the different potential forms
suggests calling this a systematic error, i.e., �B

syst
3 = 340 keV.

In previous estimates a value of Bt = 7.62(1) was obtained
using the NijmII, AV18, and Reid93 local potentials fitted
to the same database [31]. This was extrapolated to be Bt =
7.6(1) [33] from an inverse scattering analysis of Nijmegen
phases up to TLAB = 300 MeV based on a local potential, the
error stemming from the high energy extrapolation. We note
that these are essentially systematic error estimates.

It is worth addressing what would be the uncertainties in the
statistical error estimate due to a different choice of the NN
potential. Actually, we expect this to be of the order of relative
�B

syst
t /Bt ∼ 340 keV/8482 keV ∼ 0.04 which turns out to be

about a half than our relative uncertainty on the error estimate,
Eq. (10), namely �2Bt/�Bt = 1 keV/15 keV ∼ 0.07. Thus,
the uncertainty due to the particular form of the NN potential,
be it local or nonlocal, is not expected to modify our main
result.

A high precision calculation with the AV18 potential
using the HH expansion method was carried out by
the Pisa group [9] leading to the sequence of values
Bt = 7.59267, 7.61227, 7.61786, 7.61809, 7.61812 MeV for
Nc = 8, 14, 18, 22, 26 channels respectively. According to
our error estimate of �Bt = 0.02 MeV one could stop already
at Nc = 8 for a realistic precision. Similar remarks apply
to [8] where �Bnum

t = 0.1 keV. Based on general arguments,
attempts have also been made to quantify the systematic
uncertainties in nuclear bindings stemming from NN
scattering [16,26,27]) yielding �Esys/A = 100–500 keV,
in rough agreement with the more sophisticated three-body
estimate of 340 KeV above. This suggests using the present
calculation as a benchmark in approximate error estimates,
sidestepping the full-fledged calculation.

From a more general perspective, there is an ongoing
effort to quantify the uncertainties in nuclear physics [34,35]
as a means to establish the real predictive power of the
theory. While this topic is presently in its infancy, from a
theoretical point of view and the inferred predictive power,
errors in ab initio calculations can be grouped into three main
categories: (i) the input information (in our case the NN
scattering experimental data), (ii) the method of solution and its
numerical precision, and (iii) the form (e.g., local or nonlocal)
of the interaction in the unknown region. We have denoted
these errors as �Estat, �Enum, and �Esyst respectively.
Assuming that these sources of error are independent of each
other, we expect the total theoretical uncertainty to be given by

(�Eth)2 = (�Estat)2 + (�Enum)2 + (�Esyst)2. (12)

Clearly, the total error is dominated by the largest one. So, it
makes sense either to reduce the largest source of uncertainty
or to tune all uncertainties to a similar level. This sets a realistic
limit of predictive power in ab initio calculations, which
we find to be �Eth

t � 15(1) keV. While the use of realistic
potentials has been a must in few-body calculations, we note
that the physical precision of the calculation is finite and will
definitely have sizable consequences in large scale calculations
in nuclear physics. Given the large systematic uncertainties,
the theoretical calculation of the triton binding energy provides
a good example of a precise but inaccurate quantity.
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[19] R. Navarro Pérez, J. E. Amaro, and E. Ruiz Arriola, Phys. Rev.
C 88, 064002 (2013).
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[28] J. E. Amaro, R. Navarro Pérez, and E. Ruiz Arriola, Few Body

Syst. 55, 977 (2014).
[29] E. Nielsen, D. Fedorov, A. Jensen, and E. Garrido, Phys. Rep.

347, 373 (2001).

[30] R. Machleidt, F. Sammarruca, and Y. Song, Phys. Rev. C 53,
R1483(R) (1996).

[31] J. L. Friar, G. L. Payne, V. G. J. Stoks, and J. J. de Swart, Phys.
Lett. B 311, 4 (1993).
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