
PHYSICAL REVIEW C 90, 045805 (2014)

Hyperon mixing and universal many-body repulsion in neutron stars
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A multi-Pomeron exchange potential (MPP) is proposed as a model for the universal many-body repulsion in
baryonic systems on the basis of the extended soft core (ESC) baryon-baryon interaction. The strength of the
MPP is determined by analyzing the nucleus-nucleus scattering with the G-matrix folding model. The interaction
in �N channels is shown to reproduce well the experimental � binding energies. The equation of state (EoS)
in neutron matter with hyperon mixing is obtained including the MPP contribution, and mass-radius relations of
neutron stars are derived. It is shown that the maximum mass can be larger than the observed one, 2M�, even in
the case of including hyperon mixing on the basis of model parameters determined by terrestrial experiments.
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I. INTRODUCTION

It is a fundamental problem to understand properties of
baryonic many-body systems such as nuclei, hypernuclei, and
neutron stars on the basis of underlying baryon-baryon (BB)
interactions. The basic property of nuclear systems composed
of nucleons is the saturation property of density and energy per
particle. Though important roles for this property are played
by repulsive cores and tensor components included in nucleon-
nucleon (NN ) interactions, it is insufficient quantitatively:
We need to take into account the three-nucleon interaction
composed of the attractive part (TNA) and the repulsive part
(TNR). While the TNA contributes moderately as function
of density, the TNR contribution increases rapidly in the
high-density region and leads to high values of the nuclear
incompressibility. It is well known that the latter is indispens-
able for the stiff equation of state (EoS) of neutron-star matter
needed to reproduce large maximum masses of neutron stars.

The neutron stars J1614-2230 [1] and J0348-0432 [2]
have brought great impacts on the maximum-mass problem,
observed masses of which are (1.97 ± 0.04)M� and (2.01 ±
0.04)M�, respectively. These large masses give a severe
condition for the stiffness of the EoS of neutron-star matter,
suggesting the existence of strong TNR.

On the other hand, the hyperon (Y ) mixing in neutron-star
matter is known to bring about the remarkable softening of
the EoS, which cancels the TNR effect for the maximum mass
[3–5]. One of the ideas to avoid this serious problem is to
consider that the TNR-like repulsions work universally for
YNN , YYN , YYY , as well as for NNN [5]. In this work we adopt
this idea: Universal repulsions among three baryons are called
here the three-baryon repulsion (TBR). The main subject in
this paper is to investigate whether or not the maximum mass
of 2M� can be obtained from the EoS for hyperon-mixed
neutron-star matter, when TBR is taken into account.

In order to treat hyperon-mixed nuclear matter realistically,
it is indispensable to use a reliable interaction model for
baryon-baryon (BB) channels including not only NN but also
YN and YY : We adopt here the extended soft core (ESC)
model developed by two of authors (T.R. and Y.Y.) and Nagels

[6]. In this model two-meson and meson-pair exchanges are
taken into account explicitly and no effective boson is included
differently from the usual one-boson exchange models. The
latest version of ESC model is named ESC08c [6,7]. Hereafter,
ESC means this version. The TBR is taken into account by
the multi-Pomeron exchange potential (MPP) within the ESC
modeling.

Some many-body theory is needed to treat many-body
systems with a realistic BB interaction model: The G-matrix
theory is a good tool for such a purpose, where the corre-
lations induced by short-range and tensor components are
renormalized into G-matrix interactions. Similarly baryonic
coupling terms such as �N -�N ones are included this way into
single-channel G matrices such as �N -�N ones. In the case
of nucleon matter, the lowest-order G-matrix calculations with
the continuous (CON) choice for intermediate single-particle
potentials were shown to simulate well the results including
higher hole-line contributions up to about 4 times normal
density ρ0 [8]. On the basis of this recognition, we study
properties of baryonic matter including not only nucleons but
also hyperons with use of the lowest-order G-matrix theory
with the CON choice.

The methodology in our works is to use the BB interaction
model determined on the basis of terrestrial experiments,
namely to introduce no ad hoc parameter to stiffen the EoS.
The most important is how to determine the strength of the
TNR, which is an essential quantity for the stiffness of EoS.
Many attempts have been made to extract some information on
the incompressibility K of high-density matter formed in high-
energy central heavy-ion collisions. In many cases, however,
the results for the EoS still remain inconclusive. On the other
hand, it was shown clearly in Ref. [9] that the TNR effect ap-
peared in angular distributions of 16O + 16O elastic scattering
(E/A = 70 MeV), etc. Such a scattering phenomenon can be
analyzed quite successfully with the complex G-matrix folding
potentials derived from free-space NN interactions. Then, the
G-matrix folding potentials including MPP contributions are
used to analyze the 16O + 16O scattering, and the strengths of
MPP are adjusted so as to reproduce the experimental data.
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The determined MPP interactions are included in constructing
the EoS of neutron-star matter, and they are expected to result
in an EoS stiff enough to give the observed neutron-star mass
[10]. It should be noted that our MPP is defined so as to work
universally not only in NNN states but also YNN , YYN , and
YYY states. Corresponding to the determined MPP, the TNA is
added phenomenologically to reproduce the nuclear saturation
property precisely.

Thus, our BB interaction is composed of ESC, MPP,
and TNA. ESC gives potentials in S = −1 (�N , �N ) and
S = −2 (�N , ��, and ��) channels. MPP is universal
in these channels. Because TNA is given in NN channels
phenomenologically, there is no theoretical correspondence
in S < 0 channels. However, we can confirm the validity of
the ESC + MPP + TNA model in these channels by applying
this interaction to hypernuclear calculations, and then TNA is
considered a three-baryon attraction (TBA).

The final step in this work is to study properties of
neutron stars with hyperon mixing on the basis of our BB
interaction model. The EoS of β-stable neutron-star matter
composed of neutrons (n), protons (p+), electrons (e−),
muons (μ−), and hyperons (� and �−) is derived from
the G-matrix calculation with use of the ESC + MPP + TBA
model. Using the EoS of hyperonic neuron-star matter, we
solve the Tolmann-Oppenheimer-Volkoff (TOV) equation for
the hydrostatic structure, and obtain mass-radius relations of
neutron stars.

For a massive neutron star including hyperons, there are
works based on the relativistic mean field models [11–13]. In
comparison with these works, the feature of our approach is
to start from the well-established BB interaction model, and
to use no adjustable parameter except those in the additional
many-body interactions determined in terrestrial experiments.

This paper is organized as follows: In Sec. II, BB interaction
models are introduced. It is explained how to determine MPP
and TBA parts. In Sec. III, the ESC + MPP + TBA model is
tested by comparing the calculated result for � hypernuclei to
experimental data. In Sec. IV, we derive the EoS of hyperonic
nuclear matter. By solving the TOV equation, the mass-radius
relations are obtained. The conclusion of this paper is given in
Sec. V.

II. INTERACTION MODEL

A. Baryon-baryon interaction ESC

In Nijmegen ESC potentials, all available NN , YN , and YY ,
data are fitted simultaneously with single sets of meson param-
eters. In the most recently developed ESC-model (ESC08c) the
dynamics consists of the following ingredients:

(i) OBE potentials from pseudoscalar (JPC = 0−+),
vector (JPC = 1−−), scalar (JPC = 0++), and axial
vector (JPC = 1++) are treated with the most gen-
eral vertices. Besides these, also included are the
axial-vector mesons with JPC = 1+−. Two-meson-
exchange (TME) potentials in ESC are restricted to
two-pseudoscalar-exchange (ps-ps) potentials, where
the full pseudoscalar nonets are exchanged.

(ii) Meson-pair exchange (MPE). The two-meson-
baryon-baryon vertices are the low-energy ap-
proximations of (a) the heavy mesons and their
two-meson decays, and (b) contributions from baryon-
resonance �33, etc., and negative-energy states. The
MPE interactions have been extended to all {8} ⊗ {8}
BB channels by using SUf (3) symmetry. For example
the Tomozawa-Weinberg pair-interaction potential is
included in ESC.

(iii) Diffractive contributions to the soft-core potential. The
pomeron is thought of as being related to an even
number of gluon-exchanges. Next to the Pomeron
exchange (even number of gluons) also odderon
exchange (odd number of gluons) is included in the
OBE part of the interactions. Also, room is made for
quark-core effects supplying extra repulsion, which
may be required in some BB channels such as
�+p(I = 3/2,3S1) and �N (I = 1/2,1S0) channels.
We describe this structural effect phenomenologically
by Gaussian repulsions, similar to the Pomeron. In
ESC the strength of this repulsion is taken to be
proportional to the weights of the SU(6)-forbidden
[51] configuration in the various BB-channels.

As a model of universal TBR, we introduce the multi-
Pomeron exchange potential (MPP) [6], consistently with the
ESC modeling, assuming that the dominant mechanism is
triple and quartic Pomeron exchange.

The three- and four-body local potentials are derived
from the triple- and quartic-Pomeron vertexes. The density
(ρ) dependent two-body potentials in a baryonic medium
are obtained by integrating over coordinates of third (and
fourth) particles in the three-body (and four-body) potentials
as follows:

V
(3)

eff (r) = g
(3)
P (gP )3 ρ

M5
F (r), (1)

V
(4)

eff (r) = g
(4)
P (gP )4 ρ2

M8
F (r), (2)

F (r) = 1

4π

4√
π

(
mP√

2

)3

exp

(
−1

2
m2

P r2

)
. (3)

Here, the values of the two-body Pomeron strength gP and the
Pomeron mass mP are the same as those in ESC. A scale mass
M is taken as a proton mass.

As stated in Ref. [10], values of g
(3)
P and g

(4)
P are roughly

estimated from the experimental cross sections of the process
pp → pX (diffractive production of showers of particles) at
very high energies [14,15]: g

(3)
P /gP = 0.15–0.20 and g

(4)
P =

33–228.

B. Determination of MPP strength

In the same way as [10], the analyses for the 16O + 16O
elastic scattering at an incident energy per nucleon Ein/A =
70 MeV are performed so that the MPP strengths g

(3)
P and g

(4)
P

are determined to reproduce the experimental data with the use
of the G-matrix folding potential derived from ESC including
MPP.
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Because the nuclear saturation property cannot be repro-
duced only by adding MPP to ESC, we introduce also an
attractive part phenomenologically as a density-dependent
two-body interaction

VA(r; ρ) = V0 exp[−(r/2.0)2] ρ exp(−ηρ) (1 + Pr )/2, (4)

Pr being a space-exchange operator. Here, because the
functional form is not determined within our analysis, it is
fixed to be similar to the TNA part given in [16]. V0 and η
are treated as adjustable parameters. VA(r; ρ) works only in
even states due to a (1 + Pr ) factor. This assumption is needed
to reproduce the 16O + 16O potential at E/A = 70 MeV and
nuclear-matter energy consistently [10].

Though there exist meson-theoretical models for TNA,
our simple model in Eq. (4) enough to study properties of
high-density EoS. Its strength is adjusted to reproduce the
nuclear saturation property accurately. Then, this TNA part
is not important for the stiffness of EoS in the high-density
region, which is determined essentially by MPP.

On the basis of G-matrix calculations, strengths of the MPP
part (g(3)

P and g
(4)
P ) and the attractive part (V0 and η) are deter-

mined so as to reproduce the 16O + 16O angular distribution at
Ein/A = 70 MeV, and to reproduce the saturation properties
of nucleon matter. The determined parameters are listed in
Table I. Here, it should be noted that the ratio of g

(3)
P and

g
(4)
P cannot be determined in our analysis. In the same way as

Ref. [10], we choose it rather adequately by referring to the
estimation given in [14,15]. Then, chosen values of g

(3)
P and

g
(4)
P are included in set (a). On the other hand, g(4)

P = 0 is taken
in sets (b) and (c). Set (b) is determined to reproduce 16O + 16O
angular distribution as well as set (a). Set (c) has the same value
of g

(3)
P as set (a). Hereafter, interactions ESC + MPP + TNA

with sets (a), (b), and (c) are named MPa, MPb, and MPc,
respectively.

The basic properties of nucleon matter are given by the
following quantities: Denoting an energy per particle as
E(ρ,β) with β = (ρn − ρp)/ρ, a symmetric energy Esym and

its slope parameter L are expressed as Esym = 1
2 [ ∂2E(ρ,β)

∂β2 ]ρ0

and L = 3ρ0[ ∂Esym(ρ)
∂ρ

]ρ0 , respectively. An incompressibility of

symmetric nucleon matter is given by K = 9ρ2
ρ0

[ ∂2E(ρ,0)
∂ρ2 ]ρ0 .

The E/A values for MPa/b (MPc) are −15.8 (−15.5) MeV
at the saturation density ρ0 = 0.16 fm−3. The values of Esym at
ρ0 are 33.1, 33.1, and 32.7 MeV in the cases of MPa, MPb, and
MPc, respectively, and the values of L are 70, 69, and 67 MeV
correspondingly. These values are in nice agreement with
the values Esym = 32.5 ± 0.5 MeV and L = 70 ± 15 MeV
determined recently on the basis of experimental data [17].
The obtained values of K at ρ0 are 310, 280, and 260 MeV for

TABLE I. Parameter values included in MPP and TNA.

g
(3)
P g

(4)
P V0 η

(a) 2.34 30.0 −32.8 3.5
(b) 2.94 0.0 −45.0 5.4
(c) 2.34 0.0 −43.0 7.3

FIG. 1. (Color online) Differential cross sections for 16O + 16O
elastic scattering at E/A = 70 MeV calculated with the G-matrix
folding potentials. Solid, dashed, and dot-dashed curves are for MPa,
MPb, and MPc, respectively. The dotted curve is for ESC.

MPa/b/c, respectively. Thus, the nuclear saturation property
derived from MPa/b/c is quite reasonable in comparison with
the empirical values.

The MPP parts in MPa and MPb are the same as MP1a
and MP2a given in Ref. [10], respectively. The differences are
in the TNA parts: Those of MPa and MPb are tuned so as to
reproduce the saturation properties more accurately than those
of MP1a and MP2a.

In Fig. 1, the calculated results of the differential cross
sections for the 16O + 16O elastic scattering at E/A = 70 MeV
are compared with the experimental data [18]. The corre-
sponding 16O + 16O double-folding potentials are shown in
Fig. 2. Here, the dotted curves are obtained from ESC, and the
angular distribution deviates substantially from the data. Solid,
dashed, and dot-dashed curves are for MPa, MPb, and MPc,
respectively. These sets reproduce nicely the experimental
data, though the fitting by MPc seems to be slightly worse than
MPa/b. In this double-folding model analysis, most important
is the validity of the frozen-density approximation (FDA):
Owing to the FDA, the MPP repulsion in the density region
over the normal density contributes to folding potentials. Such
an effect can be seen in Fig. 2, where the potentials for MPa/b/c
are remarkably shallower than that for ESC. Though reduction
factors are often multiplied on the imaginary parts in the
folding model analyses [9], such a reduction factor is not used
in the present analysis. The necessity to include the quartic
Pomeron coupling has to appear in the difference between
results for MPa and MPb, but it cannot be found in the present
analyses for nucleus-nucleus scattering.

Recently, a detailed analysis for the above 16O + 16O
scattering was performed using the G-matrix double-folding
potential derived from MPa with FDA [19]. Here, it has been
investigated explicitly in regard to what densities MPPs con-
tribute dominantly, and it was found that MPP contributions
from the density region higher than the normal density are
decisively important for resultant angular distributions. Thus,
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FIG. 2. (Color online) Double-folding potentials for 16O + 16O
elastic scattering at E/A = 70 MeV. Solid, dashed, and dot-dashed
curves are for MPa, MPb, and MPc, respectively. The dotted curve is
for ESC.

we can say that valuable information of the EoS in high-density
region can be obtained from double-folding potentials with
FDA.

As given in [10], the mass-radius relations of neutron stars
are obtained by solving the TOV equation with the neutron
matter EoS. The maximum masses for MPa/b/c are 2.5M�,
2.2M�, and 2.1M�, respectively.

III. YN INTERACTION AND HYPERNUCLEI

Let us study here the properties of YN G-matrix interactions
derived from ESC in symmetric nuclear matter including
a single hyperon (� or �). Then, the correlations induced
by baryonic coupling interactions such as �N -�N ones are
renormalized into single-channel parts of G matrices. The
hypernuclear phenomena and the underlying YN interaction
models are linked through the models of hypernuclei and the
YN G-matrix interactions, and then the hypernuclear informa-
tion can be used to test the interaction models. Here, the G-
matrix calculations are performed in the same way as in [20].

Here, the most important is to test the MPP + TBA parts
in channels including hyperons. Though MPP is defined
universally in all baryon channel, TBA is introduced phe-
nomenologically in nucleon channels, and not defined in YN
channels. Our strategy is to determine this part so as to be

TABLE II. Values of U� at normal density and partial wave
contributions in 2S+1LJ states for ESC and MPa/b/c from the G-matrix
calculations with CON prescriptions (in MeV). The value specified
by D gives the sum of 2S+1DJ contributions.

1S0
3S1

1P1
3P0

3P1
3P2 D U�

ESC −13.3 −26.7 2.6 0.2 1.8 −3.2 −1.6 −40.0
MPa −13.6 −25.9 3.4 0.4 2.1 −1.7 −2.7 −38.1
MPb −13.6 −26.0 3.4 0.4 2.1 −1.8 −2.7 −38.3
MPc −13.4 −25.1 3.2 0.3 2.0 −2.1 −2.4 −37.4

consistent with hypernuclear data. As a trial, we assume it to
be the same as for nucleon channels.

The �N G-matrix calculations are performed for ESC
and MPa/b/c. In Table II we show the potential energies U�

for a zero-momentum � and their partial-wave contributions
U�(2S+1LJ ) at normal density ρ0 (kF = 1.35 fm−1), where a
statistical factor (2J + 1) is included in U�(2S+1LJ ). As shown
later, the �-nucleus folding potentials derived from these G
matrices lead to � spectra consistent with hypernuclear data.
As for the partial wave contributions, it is important that the
odd-state contribution is weakly attractive. In the cases of
NSC97e/f models, they are strongly repulsive [21]. Such a
difference becomes remarkable in the high density region rel-
evant to � mixing in neutron star matter. The � onset density
is somewhat increased by strong odd-state repulsions [4]

For applications to finite systems, we derive kF -dependent
local potentials in coordinate space from the G matrices, and
make �-nucleus folding potentials. In this procedure, densities
ρ(r) and mixed densities ρ(r,r ′) of core nuclei are obtained
from Skyrme Hartree-Fock wave functions. For the kF -
dependent parts of our localized G-matrix interactions, we use
the averaged-density approximation: An averaged value 〈kF 〉
is calculated for each � state, and substituted into G matrices.
The energy spectra of � hypernuclei (13

�C, 28
�Si, 51

�V, 139
�La,

208
�Pb) are calculated with the G-matrix interactions obtained

from MPa and ESC. In Fig. 3, the calculated values shown
by solid (MPa) and dashed (ESC) lines are compared with
the experimental values marked by open circles, where the
horizontal axis is given as A−2/3. Here, the experimental data
are shifted by 0.5 MeV from the values given in Ref. [22],
which has been recently proposed according to the improved
calibration [23]. Our G-matrix folding models turn out to
reproduce the energy spectra of � hypernuclei systematically
with no free parameter in both cases of ESC and MPa. The
results for MPb and MPc are very similar to that for MPa.
It should be noted that reasonable � binding energies are
obtained by taking the (MPP + TBA) parts equally to those in
nucleon matter.

The similar results for MPa and ESC mean that the MPP and
TBA contributions are somewhat canceled in evaluations of �
binding energies. Here, the important point is that the results
for (ESC + MPP + TBA) reproduce well the experimental
values. This is considered a necessary condition which our
MPP + TBA should satisfy in the normal density region.

When the results for MPa and ESC are compared care-
fully, we find some interesting differences. In Table III, the
calculated values of the energy spectra of 89

�Y for MPa and
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FIG. 3. (Color online) Energy spectra of � hypernuclei (13
�C,

28
�Si, 51

�V, 139
�La, 208

�Pb) derived from MPa (solid lines) and ESC
(dotted lines). Experimental values are marked by open circles.

ESC are compared with the experimental values. Values in
parentheses are averaged values 〈kF 〉 which are evaluated
self-consistently with solved � wave functions. The 89

�Y data
have been measured with high statistics and the obtained
energy spectrum are very reliable. In this case the result for
MPa is found to fit better than that for ESC. The reason is
that the stronger density-dependent interaction of the former
works more attractively in the upper states with smaller values
of 〈kF 〉. As found in Fig. 3, the same effect brings about
the larger binding energies in light systems such as 13

�C with
smaller values of 〈kF 〉, where the low-density contributions
are dominant.

The stronger density dependence of MPa is due to the
density-dependent contributions of the (MPP + TBA) part. It is
expected that more systematical studies of � binding energies
in future experiments will elucidate the strength of the density
dependence more quantitatively.

TABLE III. Energy spectra (in MeV) of 89
�Y calculated with MPa

and ESC in comparison with experimental values. Averaged values
of kF (in fm−1) are in parentheses.

s p d f

MPa −23.8 −17.4 −10.6 −3.8
(1.27) (1.23) (1.16) (1.08)

ESC −23.7 −16.8 −9.8 −3.0
(1.28) (1.23) (1.17) (1.09)

Expt. −23.7 −17.6 −10.9 −3.7

IV. EOS AND NEUTRON STARS

A. Hyperonic nuclear matter

Let us derive here the EoS of baryonic matter composed of
nucleons (N = n,p) and hyperons (Y = �,�−) on the basis
of the Brueckner theory.

We start from baryon single particle potentials. From
G-matrix elements in momentum space, a single-particle
potential of a B particle in B ′ matter is given by

UB(k) =
∑
B ′

U
(B ′)
B (k) =

∑
B ′

∑
k′,k(B′ )

F

〈kk′|GBB ′,BB ′ |kk′〉

(5)

with B,B ′ = N,Y . Here, spin-isospin quantum numbers are
implicit. The energy density is given by

ε = εkin + εpot

= 2
∑
B

∫ kB
F

0

d3k

(2π )3

{
�

2k2

2MB

+ 1

2
UB(k)

}
. (6)

Then, we have
∫ kB

F

0

k2dk

π2
U

(B ′)
B (k) =

∫ kB′
F

0

k2dk

π2
U

(B)
B ′ (k).

Considering ρB = (kB
F )3

3π2 ,

∂

∂ρB

U (B ′)
B = U

(B ′)
B

(
kB
F

) +
∫ kB

F

0

k2dk

π2

∂U
(B ′)
B (k)

∂ρB

(7)

The second term leads to the rearrangement contribution.
The baryon number density is given as ρ = ∑

B ρB , ρB

being the density for component B. Then, the chemical
potentials μB and pressure P are expressed as

μB = ∂ε

∂ρB

, (8)

P = ρ2 ∂(ε/ρ)

∂ρB

=
∑
B

μBρB − ε. (9)

In Figs. 4 and 5, U
(n)
� for ρ�/ρn = 0.2 and U

(n)
�− for

ρ�/ρn = 0.2 are drawn as functions of ρn, respectively. Here,
solid, dashed, dot-dashed, and dotted curves are for MPa, MPb,
MPc, and ESC, respectively. In the cases of MPa/b/c, we find
the large repulsive contributions from their MPP parts. The
solid curves (MPa) are steeper than the dashed (MPb) and dot-
dashed (MPc) curves due to the four-body repulsion included
in MPa. The values of U

(n)
�− should be noted to be substantially

repulsive even for ESC without MPP contributions. The n�−
interactions are dominated by contributions in 3S1 T = 3/2
states. The strongly repulsive contribution in this state is
due to the Pauli-forbidden state effect taken into account by
strengthening the Pomeron coupling in the ESC modeling [6].

We introduce some approximations to calculate the energy
density of baryonic matter: (1) Hyperonic energy densities
including � and �− are obtained from calculations of n + p +
� and n + p + �− systems, respectively. (2) The parabolic
approximation is used to treat asymmetries between n and p
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FIG. 4. (Color online) U
(n)
� for ρ�/ρn = 0.2 as a function of ρn.

Solid, dashed, dot-dashed, and dotted curves are for MPa, MPb, MPc,
and ESC, respectively.

in n + p sectors. The calculated values of energy densities are
fitted by the following analytical parametrization [24]:

εpot(ρn,ρp,ρ�,ρ�) = ENρN + (E� + E��)ρ�

+ (E� + E��)ρ�. (10)

Ez = (1 − β)f (0)
z + βf (1)

z (11)

with z = N , �, �, ��, ��. Here, we have β = (1 − 2xp)2

with xp = ρp/ρN and ρN = ρn + ρp. Expressions of f (i)
z with

i = 0,1 are given as

f
(i)
N = a

(i)
N ρN + b

(i)
N ρ

c
(i)
N

N , (12)

f (i)
y = A(i)

y ρN + B(i)
y ρ

c
(i)
y

N , (13)

A(i)
y = a

(i)
y0 + a

(i)
y1xY + a

(i)
y2x

2
Y , (14)

B(i)
y = b

(i)
y0 + b

(i)
y1xY + b

(i)
y2x

2
Y , (15)

where xY = ρY /ρN with Y = �, �, and y = �, �, ��,
��. In the above expressions, N , �, and � (�� and ��)
denote contributions from NN , N�, and N�− (�� and �−�−)
interactions, respectively.

FIG. 5. (Color online) U
(n)
�− for ρ�/ρn = 0.2 as a function of ρn.

Also see the caption of Fig. 4.

FIG. 6. (Color online) Square and circle marks are calculated val-
ues of EN with MPa for symmetric and neutron matter, respectively.
Fitting functions are shown by solid curves.

Now, the G-matrix calculations with the CON choice are
performed with ESC and MPa/b/c sets in the density region
of ρ0 < ρB < 4ρ0, and the results are fitted in the above
functional forms. Our fitting procedures are as follows: First,
values of EN in symmetric nucleon matter and neutron matter
are calculated for various values ρN = 0.17–0.7 fm−3, and
fitted by a function aρN + bρc

N with parameters a, b, and c.
In Fig. 6, calculated values of EN for MPa are shown by
square and circle marks for symmetric and neutron matter,
respectively. The corresponding fitting functions are shown
by solid curves, where the quality of fitting is found to be
quite nice. Next, values of E� are calculated in neutron
matter and symmetric nucleon matter including �. They are
obtained for ρN = 0.17–0.7 fm−3 and x� = 0.1,0.2,0.3. In
Fig. 7, calculated values of E� for MPa in the n + � case
are shown by square, circle, and triangle marks for x� =
0.1,0.2,0.3, respectively. The corresponding fitting functions
with aρN + bρc

N forms are shown by solid curves, where a
common value of c is taken for the three cases. Then, values of
a and b for x� = 0.1,0.2,0.3 are fitted by a quadratic function
of x�. A similar figure and parameters are obtained in the case
of symmetric matter including �. The same fitting procedures

FIG. 7. (Color online) Calculated values of E� with MPa in
the n + � case. Square, circle, and triangle marks are for x� =
0.1,0.2,0.3, respectively. Fitting functions are shown by solid curves.
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TABLE IV. Parameters of energy densities for MPa given by
analytical forms Eqs. (10)–(15).

a
(0)
N b

(0)
N c

(0)
N a

(1)
N b

(1)
N c

(1)
N

−234.8 643.8 1.86 66.41 490.1 2.40

a
(0)
�0 a

(0)
�1 a

(0)
�2 b

(0)
�0 b

(0)
�1 b

(0)
�2 c

(0)
�

−436.4 1198. −2790. 1648. −3970. 12730. 2.29
a

(1)
�0 a

(1)
�1 a

(1)
�2 b

(1)
�0 b

(1)
�1 b

(1)
�2 c

(1)
�

−215.2 14.17 −202.7 1117. 2283. −198.5 2.56

a
(0)
�0 a

(0)
�1 a

(0)
�2 b

(0)
�0 b

(0)
�1 b

(0)
�2 c

(0)
�

−5.017 −618.6 1444. 382.1 1803. −2748. 2.00
a

(1)
�0 a

(1)
�1 a

(1)
�2 b

(1)
�0 b

(1)
�1 b

(1)
�2 c

(1)
�

100.4 178.5 −186.2 909.9 1875. −1071. 2.65

a
(1)
��0 a

(1)
��1 a

(1)
��2 b

(1)
��0 b

(1)
��1 b

(1)
��2 c

(1)
��

.7345 −92.92 57.59 −4.144 419.9 480.7 2.27

are performed for E� and E��. Generally, the quality of fitting
for Ey in hyperonic matter is inferior to that for EN in neucleon
matter. The values of fitted parameters for MPa are listed in
Table IV. Here, �� (i = 0) parts are omitted in the table,
because their effects are negligible in the following results.
�−�− and ��− interactions are not taken into account in the
present work.

As discussed later, the EoS’s for MPa violate causality and
predict sound speeds over the speed of light above a critical
density. Then, we adopt the approximation where the EoS is
replaced by the causal EoS above this density in the same way
as the treatment in [25].

B. EoS of hyperon-mixed neutron-star matter

Our neutron-star matter is composed of n, p, e−, μ−, �, and
�−. The equilibrium conditions are summarized as follows:

(1) chemical equilibrium conditions,

μn = μp + μe, (16)

μμ = μe, (17)

μ� = μn, (18)

μ�− = μn + μe; (19)

FIG. 8. (Color online) Composition of hyperonic neutron-star
matter in the case of MPa.

FIG. 9. (Color online) Composition of hyperonic neutron-star
matter in the case of ESC.

(2) charge neutrality,

ρp = ρe + ρμ + ρ�− ; (20)

(3) baryon number conservation,

ρ = ρn + ρp + ρ� + ρ�− . (21)

When the analytical expressions (10)–(15) are substituted
into the chemical potentials (8), the chemical equilibrium
conditions (16)–(19) are represented as equations for densities
ρa (a = n, p, e−, μ−, �, and �−). Then, Eqs. (16)–(21) can
be solved iteratively.

In Figs. 8 and 9, the matter compositions are shown in
the cases of MPa and ESC, respectively. Comparing the two
figures, we note some effects of MPP contributions: (1) The
onset densities of hyperon mixing for MPa are lower than
those for ESC. (2) Hyperon components for MPa are larger
than those for ESC. (3) Larger hyperon components for MPa
are covered by smaller components of n, e−, and μ−, and
proton components are not so different from each other. In
Table V, the onset densities of hyperon mixing are given for
MPa/b/c and ESC. Thus, increasing MPP repulsions are found
to enhance hyperon mixings.

Here, let us see the role of MPP repulsions in more detail.
The repulsions among neutrons make single-particle potentials
shallower, which allows easier conversions of neutrons into
hyperons. These effects are partially canceled out by the
repulsions including hyperons, which make shallower hyperon
single-particle potentials. As seen in Table V, for instance, the
onset densities of �− and � are 0.52 and 0.54 fm−3 for ESC,
respectively. If only the (MPP + TBA) contributions among
nucleons are taken into account in the case of MPa, both of

TABLE V. Onset densities in fm−3.

Model �− �

MPa 0.34 0.36
MPb 0.37 0.42
MPc 0.39 0.45
ESC 0.52 0.54
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FIG. 10. (Color online) Pressure P as a function of energy
density ε in the cases of MPa (upper curves) and ESC (lower
curves). Solid and dotted curves are with and without hyperon mixing,
respectively. In the dashed curve with hyperon mixing, MPP + TBA
parts are switched off in channels including hyperons.

them are 0.32 fm−3. Then, the values of 0.34 and 0.36 fm−3

for MPa are understood as a result of partial canceling of the
MPP repulsive effects.

Pressures (11) are derived from determined values of
densities and chemical potentials. In Figs. 10 and 11, the
calculated values of pressure P are drawn as functions of
energy density ε and baryon density ρ, respectively, in the
cases of MPa (upper curves) and ESC (lower curves). Here,
solid and dotted curves are with and without hyperon mixing,
respectively. The dashed curve is with hyperon mixing, where
the MPP + TBA parts are included only in nucleon channels.
The differences between the two dotted curves are due to
the MPP repulsive contributions among nucleons, and the
remarkable softening from the upper dotted curve to the dashed
curve is brought about by hyperon mixing. This softening
is substantially recovered when the MPP contributions are
included universally among baryons.

C. Neutron stars

Using the EoS of hyperonic neuron matter, we solve the
TOV equation for the hydrostatic structure of a spherical

FIG. 11. (Color online) Pressure P as a function of baryon
density ρB in the cases of MPa (upper curves) and ESC (lower curves).
Also see the caption of Fig. 10.

FIG. 12. (Color online) Neutron-star masses as a function of the
radius R. Solid, dashed, dot-dashed, and dotted curves are for MPa/b/c
and ESC, respectively.

nonrotating star, and obtain the masses and radii of neutron
stars. The EoS’s for MPa/b/c and ESC are used for ρ > ρ0.
Below ρ0 we use the EoS of the crust obtained in [26,27]. Then,
the EoS’s for ρ > ρ0 and ρ < ρ0 are connected smoothly.

In Fig. 12, neutron-star masses are drawn as a function of
radius, where solid, dashed, dot-dashed, and dotted curves are
for MPa/b/c and ESC, respectively. Then, calculated values of
maximum masses M/M� are 2.20M�, 1.93M�, and 1.85M�
for MPa/b/c, respectively. These values are smaller by about
0.3M� than the values without hyperon mixing. Thus, the
maximum mass only for MPa is noted to be substantially
larger than the observed value of ∼2M� owing its four-body
repulsive contribution. It should be noted that the difference
between MPa and MPc comes from the four-body repulsion in-
cluded in the former, because MPc is made by switching off the
four-body part from MPa. On the other hand, MPb is designed
so as to reproduce the repulsive effect of MPa in the 16O-16O
scattering without the four-body repulsive part. The difference
between MPa and MPb originates from the steeper EoS of
MPa by the four-body repulsion in the high-density region.

The mass-radius relations in Fig. 13 demonstrate the effects
of hyperon mixings and MPP contributions. Here, dotted and

FIG. 13. (Color online) Neutron-star masses as a function of the
radius R. Dashed and dotted curves are obtained from MPa and ESC,
respectively, without hyperon mixing. The solid (dot-dashed) curve is
obtained with hyperon mixing, where MPP contributions are included
in all baryons universally (only in nucleon sectors).
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FIG. 14. (Color online) Neutron-star masses as a function of the
central density ρc. Also see the caption of Fig. 13.

dashed curves are obtained from ESC and MPa, respectively,
without hyperon mixing. Then, the remarkable differences
between dotted and dashed curves are due to the MPP
contributions among nucleons included in MPa. Solid and
dot-dashed curves are obtained with hyperon mixing. Here,
the MPP contributions in the former (latter) are included in
all baryons universally (only in nucleon sectors). When the
MPP contributions are included only in nucleon sectors, the
maximum mass in the dashed curve with 2.51M� is strongly
reduced to 1.82M� in the dot-dashed one by the effect of
hyperon mixing. When the MPP contributions are taken into
account universally in all baryons, the maximum mass is
recovered to 2.20M� in the solid curve. We can find the
same demonstration in Fig. 14 where the corresponding curves
of neutron-star masses are drawn as a function of central
density ρc.

In our calculations, the causality conditions at very high
density are violated in the case of using MPa, and not in
MPb and MPc cases. The critical density for MPa, sound
speeds being over the speed of light, is obtained as 0.97
(0.74) fm−3 in the case of (not) including hyperon mixing. As
found in Fig. 14, the masses M/M� take the maximum
values at ∼1.0 (∼0.85) fm−3 in the case of (not) including
hyperon mixing. Our criterion for the violation of the causality
condition is whether or not the critical density is above the
density giving the maximum mass. Thus, we can say that
the hyperon-mixed result with MPa is almost free from the
violation of the causality condition. On the other hand, it
is violated significantly in the corresponding result without
hyperon mixing.

Recently, neutron stars with 2M� have been studied with
use of hyperon-mixed EoS’s based on the relativistic mean-
field (RMF) approximation [28]. They have found that basic
features of our EoS for MPa are similar to those of their
successful RMF models.

V. CONCLUSION

The existence of neutron stars with 2M� gives a severe
condition for the stiffness of the EoS of neutron-star matter,
namely the necessity of the strong TNR. On the other hand,

hyperon mixing in neutron-star matter brings about a remark-
able softening of the EoS, which cancels the TNR effect for the
maximum mass. As a possibility to avoid this serious problem,
we introduce the TNR-like repulsions working universally for
YNN , YYN , YYY , as well as for NNN [5].

On the basis of the BB interaction model ESC, we introduce
the universal three-body repulsion MPP among three baryons.
The strengths of MPP are determined by fitting the observed
angular distribution of 16O + 16O elastic scattering at Ein/A =
70 MeV with use of the G-matrix folding potential. Then, TNA
is added to MPP phenomenologically so as to reproduce the
minimum value ∼ − 16 MeV of the energy per nucleon at
normal density 0.16 fm−3 in symmetric nuclear matter as well
as the 16O + 16O data. In this modeling, the empirical values
of K , Esym, and L are reproduced reasonably. The EoS of
neutron-star matter obtained from ESC + MPP + TNA is stiff
enough to give the large neutron-star mass over 2M�, when
the hyperon mixing is not taken into account.

In order to study the effect of hyperon mixing on the
EoS and mass-radius relations of neutron stars, we need to
use reliable interactions in channels including hyperons. The
reliability of ESC in these channels has been confirmed by
successful applications to hypernuclear systems. Our MPP
contributions exist universally in every baryonic system.
Assuming that the remaining part TNA also contributes univer-
sally as TBA, ESC + MPP + TBA can be tested in applications
to hypernuclei: The energy spectra of � hypernuclei are nicely
reproduced by the derived G matrix interactions with no
modification for TBA. Then, it is suggested that inclusion of
MPP + TBA leads to even better fitting than the case of using
ESC part only.

The EoS of hyperonic nuclear matter is obtained from
ESC + MPP + TBA on the basis of the G-matrix approach,
and the mass-radius relations of neutron stars are derived by
solving the TOV equation. In spite of remarkable softening of
EoS caused by hyperon mixing, its substantial part is recovered
owing to the MPP contributions. As a result, the universal
MPP repulsions are shown to bring about hyperon-mixed
neutron stars with masses ∼2M�. It should be noted that
our conclusion for neutron stars is obtained essentially on
the basis of terrestrial experiments without using ad hoc
parameters to stiffen the EoS. However, there still remains
some ambiguity demonstrated in the difference between the
mass-radius relations for MPa and MPb, both of which
reproduce almost the same results in our analysis for 16O + 16O
elastic scattering. The difference between MPa and MPb
originates from the four-body repulsion included in the former.
It is an interesting subject to confirm its existence clearly in
terrestrial experiments.

While we did not take into account the existence of quarks
in this study, it should be considered. The quark-hadron phase
transition is, however, beyond the scope of the baryonic
approach in the present work; it strongly depends on quark
models, and the transition itself has high uncertainty. Actually,
no one knows whether the transition is first order [29] or
crossover [30]. Even if we assume that the phase transition
is first order, there is the uncertainty caused by the finite-size
effect [31]. It is our work in the near future to consider the
quark-hadron phase transition.
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