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Dense baryonic matter: Constraints from recent neutron star observations
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Updated constraints from neutron star masses and radii impose stronger restrictions on the equation of state
for baryonic matter at high densities and low temperatures. The existence of 2M� neutron stars rules out
many soft equations of state with prominent “exotic” compositions. The present work reviews the conditions
required for the pressure as a function of baryon density to satisfy these constraints. Several scenarios for
sufficiently stiff equations of state are evaluated. The common starting point is a realistic description of both
nuclear and neutron matter based on a chiral effective field theory approach to the nuclear many-body problem.
Possible forms of hybrid matter featuring a quark core in the center of the star are discussed using a three-flavor
Polyakov–Nambu–Jona-Lasinio model. It is found that a conventional equation of state based on nuclear chiral
dynamics meets the astrophysical constraints. Hybrid matter generally turns out to be too soft unless additional
strongly repulsive correlations, e.g., through vector current interactions between quarks, are introduced. The
extent to which strangeness can accumulate in the equation of state is also discussed.
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I. INTRODUCTION

The investigation of compressed baryonic matter is one of
the persistently important themes in the physics of strongly
interacting many-body systems. While high-energy heavy-
ion collisions probe the transition from the hadronic phase
to deconfined quark-gluon matter at high temperatures and
relatively low baryon chemical potentials, the access to
“cold” and dense baryonic matter comes primarily through
observations of neutron stars in which central core densities
several times the density of normal nuclear matter can be
reached.

Two remarkable examples of massive neutron stars have
recently emerged. One of those is the radio pulsar J1614–2230
with a mass M = (1.97 ± 0.04)M� [1]. Even heavier neutron
stars were occasionally discussed in the literature (e.g., [2]
and references therein), but this one is special because of the
high accuracy of its mass determination made possible by
the particular edge-on configuration (an inclination angle of
almost 90◦) of the binary system consisting of the pulsar and a
white dwarf. Given this configuration, a pronounced Shapiro-
delay signal of the neutron star’s pulses could be detected. In
the meantime a second neutron star has been found with a
comparable, accurately determined mass [J0348+0432 with
M = (2.01 ± 0.04)M�] [3], further strengthening the case.

The established existence of 2M� neutron stars rules out
many equations of state (EoS) that are too soft to stabilize such
stars against gravitational collapse. However, some selected
EoS based entirely on conventional nuclear degrees of freedom
are able to develop a sufficiently high pressure so that the
condition to reach 2M� can be satisfied [4–6].

The present work performs an updated analysis of the
constraints on the EoS of strongly interacting baryonic
matter provided by these observations. Traditionally, the
primary source of information is the mass-radius relation of
the star calculated using the Tolman-Oppenheimer-Volkov
equations [7–9] with a given EoS as input. The empirical
restrictions on neutron star radii are less severe than those

on the mass. Nonetheless, the quest for a stiff EoS at high
baryon densities persists as a common theme throughout this
investigation. Earlier related studies that include less stringent
constraints from heavy-ion collisions in addition to those from
neutron star properties are summarized in Ref. [10]. In the
present work we do not discuss heavy-ion collisions.

An essential condition to be fulfilled is the following:
The known properties of normal nuclear matter must be
considered as a prerequisite for the construction of any realistic
EoS, together with the requirement of consistency with
advanced many-body computations of pure neutron matter
(see, e.g., [11,12]). This latter important constraint has so
far not been respected by EoS routinely used in supernova
simulations [13–16].

Neutron star matter interpolates between the extremes of
isospin-symmetric nuclear matter and pure neutron matter. The
fraction of protons added to the neutron sea is controlled by β

equilibrium. The passage from N = Z matter to neutron-rich
matter as it emerges in the core of the star is driven by
detailed properties of the isospin-dependent part of the nuclear
interaction. These isospin-dependent forces also determine
the evolution of the nuclear liquid-gas phase transition from
isospin-symmetric matter towards the disappearance of this
phase transition around Z/N � 0.05. Such properties of the
phase diagram of highly asymmetric nuclear matter provide
further guidance and constraints that we incorporate in our
analysis.

At the interface between low-energy quantum chromo-
dynamics (QCD) and nuclear physics, chiral effective field
theory (ChEFT) has become the framework for a successful
description of the nucleon-nucleon interaction and three-body
forces, as well as for the nuclear many-body problem (see
Refs. [17–20] for recent reviews). ChEFT is our starting point
for a systematic approach to nuclear and neutron matter at
densities (and temperatures) well within the hadronic sector
of QCD, the one governed by confinement and spontaneous
chiral symmetry breaking. The ChEFT approach is used here
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to set the boundary values, at normal nuclear densities, for
the construction of the EoS at higher densities. As will
be demonstrated, a sufficiently stiff EoS supporting a 2M�
neutron star does, indeed, result from in-medium ChEFT
with “conventional” (nucleon and pion) degrees of freedom
plus three-body forces. Options for a transition to quark
matter at very high baryon densities will be examined using a
three-flavor Polyakov–Nambu–Jona-Lasinio (PNJL) model. It
turns out to be unlikely, however, that such a quark component,
even if existent in the deep interior of the star, will be of
observable significance. Furthermore, the possible role of
hyperons will briefly be discussed, again with the condition
in mind that their admixture should not soften the EoS so
much that it falls short of supporting a 2M� neutron star.

The aim of the present paper is then twofold: first, to
establish boundaries and constraints that any equation of state
should fulfill in view of the recent astrophysical observations;
second, to construct a realistic EoS with a firm foundation in
the (chiral) symmetry-breaking pattern of low-energy QCD.
In Sec. II the mass constraint together with (less restrictive)
constraints on neutron star radii are summarized to impose
general limitations for the EoS of neutron star matter. In this
context the neutron star crust is briefly discussed. In Sec. III
the EoS for symmetric and asymmetric nuclear matter and for
pure neutron matter are constructed within the framework of
in-medium ChEFT. This includes the resummation of short-
range interaction ladders to all orders in the large neutron-
neutron scattering length. Comparisons with state-of-the-art
many-body calculations of neutron matter will be displayed.
Section IV is then devoted to astrophysical implications of
these EoS results. A summary and conclusions are presented
in Sec. V.

II. EMPIRICAL CONSTRAINTS FROM NEUTRON STARS

Apart from the mass measurements discussed in the
Introduction, this section briefly reviews and summarizes em-
pirical constraints on neutron star radii and their implications.
Thereafter, it is shown how the 2M� pulsars (J1614–2230
and J0348–0432), in combination with the (considerably less
accurate) radius restrictions, define conditions for acceptable
EoS for neutron star matter.

A. Neutron star radii

In this work we consider constraints on neutron star radii
from several independent sources. The first one, Refs. [21–
23], following earlier studies in Refs. [25,26], is based on
a statistical analysis of the mass-radius curves of four x-
ray bursters (EXO 1745–248, 4U 1608–522, 4U 1820–30,
KS 1731–260) and four quiescent low-mass x-ray binaries
(neutron stars in the globular clusters 47 Tuc, ω Cen, M13,
and NGC 6397). Reference [23] amends the previous analyses
by considering in addition the low-mass x-ray binaries in
the globular clusters NGC 6304 and M28. Analyzing the
x-ray spectra of the neutron stars and assuming that all
objects have hydrogen atmospheres, one arrives at typical
radii, R(1.4), for 1.4M� neutron stars ranging from 10.4 to
12.9 km (95% confidence level) [22] and 11.4 to 12.8 km

(90% confidence level) [23]. A recently updated analysis
gives R(1.4) = 12.1 ± 1.1 km. According to Ref. [23] radii
of neutron stars having masses between 0.8M� and 2.0M�
all lie in a band between 10.9 and 12.7 km, and a similar
band ranging from 11.2 to 12.8 km is quoted in Ref. [24] for
individual stars with masses between 1.2M� and 1.8M�. An
analysis performed in Ref. [27] considering the same objects
as in Ref. [23], but assuming a constant radius for all neutron
stars, leads to R = 9.1+1.3

−1.5 km. However, the statistical method
used in that analysis results in a radius range that is smaller than
the accepted radii assigned to most of the individual neutron
stars under consideration.

As a second source we refer to the neutron star radius
constraints provided by Fig. 6 of Ref. [28]. This detailed
analysis features four independently determined curves of
constraints that, taken together, form a rhombic area in the
mass-radius plot. In combination with the 2M� condition
a triangular area remains, bounded by radii 11.5 � R �
14.5 km. Within the given uncertainties, all acceptable EoS
should generate mass-radius trajectories that pass through
this triangle. These radius constraints are deduced from the
following specific cases: the light-curve oscillations of the
x-ray burster XTE J1814–338 [29]; the thermal spectrum of the
radio-quiet isolated neutron star RXJ 1856–3754 as discussed
in Ref. [30] (recalling, however, the analysis of Ref. [31] that
arrives at a smaller radius than [30]); the 90 %-confidence
analysis using a hydrogen-atmosphere model to fit the spectra
of neutron stars in the globular cluster 47 Tuc [32,33] (with the
added comment in [28] that this deduced radius may be a lower
limit); and, finally, the mass-shedding limit calculated from the
spinning period of the fastest known pulsar, J1748-2446ad.

Significant uncertainties associated with all of those de-
duced neutron star radii are, of course, to be kept in mind. In
the following the two sources of information and analysis just
mentioned will be used in parallel. The resulting constraints
cover altogether broad bands of radii for which we can assume
that they represent a reasonably conservative estimate of
uncertainties.

B. Mass-radius relation

Given an EoS relating pressure and energy density, the
mass-radius curves for neutron stars are determined by solv-
ing the Tolman-Oppenheimer-Volkoff (TOV) equation. This
equation describes the structure of a spherically symmetric star
composed of isotropic material with corrections from general
relativity [7–9]:

dP (r)

dr
= − G

r2c2
[ε(r) + P (r)]

[
M(r) + 4πr3 P (r)

c2

]

×
[

1 − 2GM(r)

c2r

]−1

. (1)

Here G is the gravitational constant, c denotes the speed of
light,1 r is the radial coordinate, and ε(r) and P (r) are the
energy density and pressure, respectively. Moreover, M(r) is

1In all subsequent sections units with c = 1 will be used.
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the total mass inside a sphere of radius r . It is related to the
energy density by

dM(r)

dr
= 4πr2 ε(r)

c2
. (2)

Equations (1) and (2) supplemented by an EoS, P = P (ε),
determine completely the structure of a static (nonrotating),
spherical neutron star. The commonly chosen initial boundary
conditions for the integration of the TOV equation are the
energy density in the core of the neutron star, ε(0) = εc, and
M(0) = 0. The radius, R, of the neutron star is given by the
condition ε(R) = εFe, where the energy density on the surface
of the star has dropped down to that of atomic iron, εFe =
7.9 g/cm3 = 4.4 × 10−12 MeV/fm3. The neutron star mass is

M ≡ M(R) = 4π

c2

∫ R

0
dr r2ε(r), (3)

the total mass measured by the gravitational field felt by a
distant observer.

C. Neutron star equation of state: Constraints from observables

The primary purpose of this preparatory section is to pro-
vide minimally model-dependent constraints on the equation
of state for neutron star matter, in a similar way as previously
described in Refs. [21–26,34,35]. A detailed modeling of the
EoS, satisfying these constraints and extrapolating to neutron
star core densities, are then presented in the subsequent section
guided by in-medium ChEFT as a basic framework, with
extensions to possible hybrid matter at the highest densities.

Solving the TOV equation requires the knowledge of the
EoS in the entire neutron star, including the low-density crust
region at its surface. The outer crust is associated with densities
� � �d below the neutron-drip point, �d ≈ 10−3�0 in units of
nuclear saturation density, �0 = 0.16 fm−3. The structure of
this outer crust region is quite well established [36]. The inner
crust is less well understood [37]. In the transition region to
a uniform nuclear medium (in the density range 0.2�0 � � �
0.5�0) extended clusters of so-called “pasta” phases [38,39]
might be formed.

To describe this multifacet structure of the neutron star’s
crust (not covered by our explicit calculations), we use the
empirical equation of state as given in Ref. [40] for the low-
density region. This EoS is fitted to a Skyrme-Lyon EoS [41]
and to experimental data for neutron-rich nuclei according to
Refs. [36,42]. In the following, we refer to this crust EoS as
“SLy.”

At a density of about 0.5�0 the nuclei dissolve and turn
into a uniform medium of neutrons with a small admixture
of protons in the outer core region of the neutron star. To
interpolate between regions from lower densities up to around
ρ0, we adopt the ChEFT-based EoS determined in Refs. [17,43]
(FKW), assuming at this point for simplicity a (constant)
proton fraction of 10 %. (The detailed evaluation of the proton
fraction via β equilibrium is performed in Sec. IV.) The FKW
EoS is matched to the SLy EoS at their intersection point,
ε0 ≈ 118 MeV/fm3 corresponding to a density � ≈ 0.75�0.

The extrapolation to the high-density domain of the
equation of state is parametrized using three polytropes

fitted sequentially to one another (in a way similar to the
procedure pursued in Refs. [34,35]): P = Ki�

�i , i ∈ {1,2,3}.
The equation of state for each of the branches is

ε = ai

(
P

Ki

)1/�i

+ 1

�i − 1
P (i = 1,2,3), (4)

where the ai are constants determined by the continuity of
ε = ε(P ). It turns out that three polytropes are sufficient [44]
to represent a large variety of models for dense nuclear
matter. We use the FKW EoS up to an energy density ε1 =
153 MeV/fm3 corresponding to nuclear saturation density.
The polytropes are then introduced in the ranges between
ε1 and ε2 = 280 MeV/fm3, ε2 to ε3 = 560 MeV/fm3, and at
energy densities larger than ε3. The parameters �i and Ki

are fixed such that the equation of state is continuous at the
matching points. Instead of varying �1 we vary the pressure
P2 = P (ε2). Following Ref. [44], the parameters P2, �2, and
�3 are varied in the ranges

log10
P2 fm

MeV
= 0.7 + n10.1 � 1.6,

�2 = 1.2 + n20.65 � 3.8, (5)

�3 = 1.3 + n30.8 � 3.7,

with n1,n2,n3 ∈ N. The constraints from neutron star masses
and radii then translate into a limited band area of P (ε). Any
acceptable EoS must lie within this belt.

Combining the SLy EoS for ε < ε0, the FKW EoS for ε0 �
ε < ε1 and the three polytropic EoS for ε1 � ε < ε2, ε2 � ε <
ε3, and ε � ε3, the TOV equation is solved for each set (5). We
accept a parameter set (P2,�2,�3) if the resulting mass-radius
curve reaches or passes beyond the 2-solar-mass limit dictated
by J1614–2230 and J0348+0432, and if it is within the range
of radii suggested by Steiner, Lattimer, and Brown [21–23] or,
alternatively, passes through the constraining triangle as given
by Trümper [28]. For the Steiner-Lattimer-Brown constraints
we keep all parameter sets that generate mass-radius curves
exceeding the 2M� limit in the radius range 11.0–12.5 km
and crossing the M = 1.4M� line in the radius window 10.5–
13.0 km [21–23]. We ensure that causality is not violated; i.e.,
the speed of sound, vs, satisfies the condition

vs =
√

dP

dε
� 1. (6)

The result of this analysis is presented in Fig. 1. The bands
comprise all polytropes that meet the constraints dictated by
the neutron star observables and causality. These emerging
“allowed” corridors are consistent with the results reported in
Ref. [35].

It is of interest to point out that state-of-the-art EoS’s
computed using advanced quantum Monte Carlo methods [11],
as well as the time-honored EoS resulting from a variational
many-body calculation [5] (APR), both pass the test of
being within the allowed P (ε) region, once three-nucleon
forces are included and the nuclear symmetry energy is
constrained around Esym � 33 MeV. Notably, these EoS work
with “conventional” (baryon and meson) degrees of freedom.
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FIG. 1. Allowed regions for the equation of state P (ε) as dictated
by neutron star observables. The upper (dark gray) area takes into
account the limitations as given by Trümper [28] and constraints from
causality. The lower (light gray) band uses, in addition to the 2M�
constraint, a permitted radius window 11.0–12.5 km from Refs. [21–
23]. For energy densities smaller than ε1 and ε0 the FKW and SLy EoS,
respectively, are used. The matching points ε1,ε2,ε3 of the polytropes
in Eq. (4) are also shown in the figure.

III. EQUATIONS OF STATE

This section deals with the construction of an EoS for
baryonic matter at densities relevant to the description of the
neutron star core. The framework is ChEFT, the approach
based on the spontaneously broken chiral symmetry of low-
energy QCD. ChEFT has been applied successfully to the
nuclear many-body problem and its thermodynamics, for
symmetric nuclear matter, pure neutron matter, and varying
proton fractions Z/A between these extremes (see Ref. [17]
for a recent review and references therein). At high baryon
densities, the possible appearance of hybrid matter with
admixtures of deconfined quark degrees of freedom will also
be explored using a Nambu and Jona-Lasinio model including
strange quarks. It is demonstrated, however, that a significant
quark matter component is not likely to appear even in the
very central region of the neutron star core, given the new
observational constraints requiring a sufficiently stiff equation
of state.

A. Chiral effective field theory

In-medium ChEFT incorporates the essentials of low-
energy pion-nucleon and pion-pion interactions together with
the Pauli principle and a systematically structured hierarchy
of nucleon-nucleon forces that include one- and two-pion
exchange dynamics plus important three-body correlations. In
the present work we use an equation of state for neutron star
matter (neutron matter with an admixture of protons) based
on three-loop in-medium ChEFT calculations of nuclear and
neutron matter [17,43,45].

The starting point is the chiral meson-baryon effective
Lagrangian in its isospin SU(2) sector, with pions as the “light”
(Goldstone boson) degrees of freedom coupled to nucleons as
“heavy” sources. This Lagrangian is organized as an expansion

in powers of pion momentum (derivatives of the pion field) and
pion mass (the measure of explicit chiral symmetry breaking
by the small nonzero u- and d-quark masses):

LπN = L(1)
πN + L(2)

πN + · · · . (7)

At leading order we have

L(1)
πN = 	̄[iγμ(∂μ + �μ) − M0 + gAγμγ5 uμ]	, (8)

with the isospin doublet Dirac field of the nucleon, 	 =
(u,d)�. The vector and axial-vector quantities

�μ = 1

2
[ξ †,∂μξ ] = i

4f 2
π

	τ · (	π × ∂μ 	π ) + · · · , (9)

uμ = i

2
{ξ †,∂μξ} = − 1

2fπ

	τ · ∂μ 	π + · · · , (10)

involve the isovector pion field 	π via ξ = exp[(i/2fπ )	τ ·
	π ]. The last steps in the preceding equations result when
expanding �μ and uμ to leading order in the pion field. At
leading order the only parameters that enter are the nucleon
mass M0, the nucleon axial-vector-coupling constant gA, and
the pion decay constant fπ , all to be taken first in the chiral
limit. The pion decay constant plays the role of an order
parameter for spontaneous chiral symmetry breaking. It sets a
characteristic scale, 4πfπ ∼ 1 GeV. The effective field theory
is designed to work at excitation energies and momenta small
compared to that scale.

At next-to-leading order, L(2)
πN , the chiral symmetry-

breaking quark mass term enters. It has the effect of shifting the
nucleon mass from its value in the chiral limit to the physical
mass. The nucleon σ term,

σN = mq

∂MN

∂mq

= 〈N |mq(ūu + d̄d)|N〉, (11)

measures the contribution of the nonvanishing quark mass,
mq = 1

2 (mu + md ), to the nucleon mass MN . Its empirical
value is in the range σN � (45 ± 8) MeV and has been
deduced [46] by extrapolation of low-energy pion-nucleon
data using dispersion relation techniques. Up to this point,
the πN effective Lagrangian, expanded to second order in the
pion field, has the form

LN
eff = 	̄(iγμ∂μ − MN )	 − gA

2fπ

	̄γμγ5 	τ 	 · ∂μ 	π

− 1

4f 2
π

	̄γμ	τ 	 · (	π × ∂μ 	π ) + σN

2f 2
π

	̄	 	π 2 + · · · ,

(12)

where we have not shown a series of additional terms involving
(∂μ 	π )2 that appear in the complete Lagrangian L(2)

πN . These
terms come with low-energy constants c3,4 encoding physics
at smaller distances or higher energies. These constants need
to be fitted to experimental data, e.g., from pion-nucleon
scattering.

The “effectiveness” of such an effective field theory relies
on the proper identification of the active low-energy degrees
of freedom. Pion-nucleon scattering is known to be dominated
by the p-wave �(1232) resonance with spin and isospin
3/2. The excitation energy of this resonance, given by the
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mass difference � = M� − MN � 293 MeV is small, just
slightly larger than twice the pion mass. If the physics of
the �(1232) is absorbed in low-energy constants such as c3,4

of an effective theory that works with pions and nucleons only,
the limit of applicability of such a theory is narrowed down
to an energy-momentum range small compared to �. The
effective Lagrangian is therefore often extended [45,47–49]
by incorporating the �(1232) isobar as an explicit degree of
freedom, and this is the version of ChEFT that we use here to
construct an EoS for neutron star matter.

The pion-nucleon vertices entering Eq. (12) generate a
systematically organized hierarchy of pion exchange mech-
anisms in the nucleon-nucleon interaction: one-pion exchange
at leading order (LO), two-pion exchange processes at
next-to-leading order (NLO), and so forth [18–20]. These
explicitly calculated long- and intermediate-range parts are
supplemented by NN contact terms that encode short-distance
dynamics not resolved in detail at small momenta far below
the chiral symmetry-breaking scale, 4πfπ , of order 1 GeV. The
constants associated with these contact terms are parameters
to be fixed and fine tuned by comparison with empirical data.
In the standard version of ChEFT, terms involving important
p-wave pion-nucleon scattering information through the low-
energy constants c3,4 appear at next-to-next-to-leading order
(N2LO). Three-body NNN forces also emerge for the first
time at N2LO. As mentioned, the version we use in this
work is the one with �(1232) degrees of freedom treated
explicitly. In this case, two-pion exchange processes involving
intermediate � excitations are promoted from N2LO to NLO,
rescaling the constants c3,4 and improving the convergence
of the approach. The importance of the N → � transition
in generating the very large spin-isospin polarizability of the
nucleon is highlighted in this way. This also emphasizes the
significance of virtual � excitations in providing a prominent
part of the central attraction in the 2π exchange NN force at
intermediate distances, as well as an important piece of the
three-body interaction.

This scheme has been applied successfully to the de-
scription of symmetric and asymmetric nuclear matter as
well as pure neutron matter [17,43,45]. In particular, nuclear
thermodynamics, the liquid-gas phase transition, its evolution
as a function of the proton fraction Z/A, and its disappearance
in neutron matter are well reproduced. The isospin dependence
of explicit two-pion exchange processes in the nuclear medium
plays an important role in this context. In-medium ChEFT
provides a systematic way to handle such mechanisms,
including the action of the Pauli principle in the presence
of filled Fermi seas of neutrons and protons with varying
proportions. The Pauli principle is implemented through the
in-medium nucleon propagator,

G(E, 	p ) = i

E − 	p 2

2MN
+ iε

− 2πδ

(
E − 	p 2

2MN

)
�(p), (13)

where

�(p) = 1 + τ3

2
θ
(
k

p
F − | 	p |) + 1 − τ3

2
θ
(
kn
F − | 	p |), (14)

and k
p,n
F are the proton and neutron Fermi momenta, respec-

tively. Intermediate and long-range pion exchange dynamics
(Fock terms from one-pion exchange and all explicit two-pion
exchange processes in the presence of the medium) are
computed up to three-loop order in the energy density. Contact
terms (subject to resummations as described in Ref. [50])
are adjusted to properties of symmetric nuclear matter (the
empirical binding energy per nucleon and the equilibrium
density) and to the symmetry energy at k0

F = 1.36 fm−1.
The “small” parameters, in addition to pion mass and

momentum, now include the Fermi momenta, kp,n
F /4πfπ � 1.

The energy density is derived as an expansion in powers of
Fermi momenta and generally written as

ε
(
k

p
F ,kn

F

) = ε0(kF ) + δ2A2(kF ) + · · · , (15)

introducing the asymmetry parameter δ = (�n − �p)/� with
the neutron and proton densities,

�n,p =
(
k

n,p
F

)3

3π2
, (16)

and the total baryon density, � = �p + �n. For symmetric
nuclear matter, � = 2k3

F /(3π2). Symmetric nuclear matter and
pure neutron matter correspond to the limiting cases δ = 0 and
δ = 1, respectively. A good approximation for δ � 1 relevant
for neutron star matter, with a small admixture of protons
controlled by β equilibrium, is given by extrapolating around
the neutron matter limit, δ = 1, using the δ2 term.

The ChEFT equation of state used in this work operates
with a limited set of altogether four parameters associated
with contact terms (and derivatives thereof), representing
short-distance dynamics, plus a cutoff, � = 0.75 GeV, in
dispersion integral representations of two-pion exchange loop
diagrams.2 Two of those parameters, denoted B3 and B5,
appear in conjunction with contact terms contributing at order
k3
F /M2

N and k5
F /M4

N to the energy per particle in symmetric
nuclear matter. The two remaining ones, B3n and B5n, are
specific to neutron matter.3

The EoS derived from in-medium chiral EFT can be
tested by comparing the result for pure neutron matter with
sophisticated and advanced many-body calculations. Figure 2
shows such a comparison with an EoS based on recent quantum
Monte Carlo (QMC) computations reviewed in Ref. [11].
The QMC equation of state includes three-body interactions
which play an important role in the extrapolation to high
densities. Uncertainties associated with these three-neutron
forces, shown the figure, are discussed in detail in Ref. [11].
Within these uncertainties the quality of the agreement
between the ChEFT and QMC EoS is good even at densities
as high as three times the density of normal nuclear matter
and beyond. At �n ∼ 3 �0 the neutron Fermi momentum,

2This cutoff is not to be confused with the momentum cutoff usually
associated with chiral low-momentum interactions, �low-k ∼ 2 fm−1.

3Including resummations of contact terms, the optimal input values
from best fits to equilibrium nuclear matter and to the symmetry
energy are B3 = −1.36,B5 = −17.7,B3n = 0,B5n = −2.2. This set
is used in the present work.
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FIG. 2. (Color online) Energy per particle, E/N = ε/�n − Mn,
for pure neutron matter as a function of density �n. Solid curve,
ChEFT result [43,45,51] used in the present work; blue shaded area,
results deduced from quantum Monte Carlo (QMC) computations
reviewed in Ref. [11], using different models of the three-neutron
force (3N ).

kn
F ∼ 2.4 fm−1, continues to be appreciably smaller than

the chiral symmetry-breaking scale of order 4πfπ ∼ 1 GeV,
rendering the ChEFT expansion in powers of x = kF /4πfπ

still meaningful.4 The sensitivity to convergence issues in the
chiral expansion of the energy per particle starts at order x4 and
involves even higher powers of x. The only exception to this
scheme is the case of reducible two-nucleon processes such
as iterated one-pion exchange (dominated by the in-medium
second-order tensor force), for which the relative scaling factor
is MN kF /(4πfπ )2. Such diagrams are calculated exactly up to
three-loop order in the energy density.

Elaborating further on questions of convergence, it is
instructive to compare the (perturbative) ChEFT expansion in
the nuclear medium with calculations that start from a chiral
meson-nucleon Lagrangian based on a linear σ model plus
short-distance interactions, combined with a (nonperturbative)
functional renormalization group (FRG) approach [52,53].
The latter takes into account leading subclasses of in-medium
pionic fluctuations and nucleonic particle-hole excitations to
all orders. The close similarity of those ChEFT and FRG
results, for both symmetric nuclear matter [52] and neutron
matter [53] holds up to at least three times the density of
nuclear matter.

Uncertainties related to the previously mentioned cutoff
in the ChEFT approach have been examined by varying this
cutoff in the range 0.6 GeV � � � 0.9 GeV, i.e., by ±20%
around the standard value, � = 0.75 GeV. The resulting
changes in E/N are marginal at �0 = 0.16 fm−3, about 10%
at �n = 3 �0, and 15% at �n = 5 �0.

B. Quark matter: PNJL model with vector interaction

At very high baryon densities the principal possibility exists
that nucleons dissolve into a sea of quarks. In this section,

4Note that x ∼ 0.5, even at densities as high as �n ∼ 5 �0.

quark matter is described using the Polyakov-loop-extended
Nambu and Jona-Lasinio (PNJL) model with Nf = 2 + 1
quark flavors, taking into account two degenerate light (up
and down) quarks with masses mu = md and a heavier strange
quark with mass ms . The PNJL approach has been developed
and discussed extensively in the literature [54–60].

Neutron stars are “cold” systems, with temperatures T
typically below a few MeV. Given the u and d current-quark
masses of the same order, it is useful to prepare the EoS
of quark matter at finite T and then take the limit T → 0
(done here also in view of neutron star cooling issues that are,
however, not part of the present work).

The starting point is the (Euclidean) action of the (local)
PNJL model,

SPNJL =
∫ β

0
dτ

∫
d3x q̄(x)(−iγνD

ν + γ0 μ̂ + m̂)q(x)

+
∫ β

0
dτ

∫
d3x Lint + βV U(�[A],�̄[A]; T ), (17)

where q(x) = [u(x),d(x),s(x)]� is the three-flavor quark
field and m̂ = diagf (mu,md,ms) denotes the (current) quark
mass matrix. We work in the isospin limit with mu = md .
Quark chemical potentials are incorporated in the matrix
μ̂ = diagf (μu,μd,μs).

The interaction part of the Lagrangian, Lint, is given as

Lint = 1

2
G

8∑
a=0

[(q̄ λaq)2 + (q̄ iγ5λ
aq)2] + Lv

−K{det[q̄(1 + γ5)q] + det[q̄(1 − γ5)q]}. (18)

The first term in the first line describes the chirally invariant
combination of scalar and pseudoscalar interactions between
quarks, with coupling strength G of dimension (length)2.
The flavor SU(3) Gell-Mann matrices λi(i = 1, . . . ,8) are
supplemented by λ0 = λ0 = √

2/3 times the 3 × 3 unit matrix.
The second term in the first line introduces additional vector
and axial-vector interactions. Their general form, invariant
under chiral SU(3)L × SU(3)R symmetry, is [61,62]

Lv = −1

2
g

8∑
a=1

(q̄ γ μλaq)2 − 1

2
gv,0(q̄ γ μλ0 q)2

− 1

2
g

8∑
a=1

(q̄ γ μγ5λ
aq)2 − 1

2
ga,0(q̄ γ μγ5λ0 q)2.

Using vector dominance and the small difference between the
masses of ρ and ω mesons, one can choose [62,63] gv,0 =
ga,0 ≡ g. In the following we work with a simplified ansatz
keeping only the single term,

Lv → − 1
2 Gv(q̄ γ μq)2, (19)

with vector-coupling strength Gv = 2
3g. If a color current-

current interaction is chosen to start with, a Fierz transforma-
tion would relate the vector and scalar couplings as Gv = 1

2 G.
The term in the second line of Eq. (18) is the Kobayashi-

Maskawa-’tHooft determinant [64,65] that describes the
(anomalous) breaking of the axial U(1)A symmetry and gives
rise to the large mass of the η′ meson.
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The PNJL model is nonrenormalizable. It operates with
a characteristic three-momentum cutoff scale �, such that
the effective interaction between quarks is “turned off” for
momenta | 	p | > �. No additional divergences appear at finite
temperature and density. We adopt the cutoff prescription given
in Ref. [66] and use the following parameters [63]: mu = md =
3.6 MeV, ms = 87.0 MeV, � = 750 MeV, G = 3.64/�2,
K = 8.9/�5. With this parameter set the empirical meson
spectrum and the measured pseudoscalar decay constants in
vacuum are well reproduced. The value of the vector-coupling
strength, Gv , is varied to investigate the impact of the repulsive
vector interaction on the equation of state. A study comparing
various parameter sets within a similar framework is presented
in Ref. [67].

In Eq. (17) the color gauge covariant derivative Dν =
∂ν + iAν = ∂ν + i δν

0A0,a λa

2 involves the SU(3)c Gell-Mann
matrices λa,a ∈ {1, . . . ,8}. The gauge coupling is absorbed
in the definition of A0,a . The temporal gauge field A0 is
treated as a constant Euclidean background field in the form
A4 = iA0 = A3

4
λ3
2 + A8

4
λ8
2 . The last term in Eq. (17) is the

Polyakov-loop effective potential U , multiplied by the volume
V and the inverse temperature β = T −1, and constructed as

U(�,�̄; T )

T 4
= −1

2
b2(T ) ��̄ + b4(T ) ln[1 − 6��̄

+ 4(�3 + �̄3) − 3(��̄)2], (20)

where � and �̄ are represented as

� = 1
3

[
ei

A3
4+A8

4
2T + e−i

A3
4−A8

4
2T + e

i
A8

4√
3T

]

�̄ = �∗. (21)

The coefficients b2(T ) and b4(T ) are parametrized to reproduce
pure-gauge lattice QCD results (cf. Refs. [57–59,68]). The
temperature T0 appearing in b2(T ) and b4(T ) is set to
the transition temperature for the confinement-deconfinement
crossover in the presence of two light and one heavy quark, as
discussed in Ref. [69].

Given this input, the grand-canonical potential � = − ln Z
is calculated in mean-field approximation with the partition
function Z constructed from the action SPNJL of Eq. (17).
Details are relegated to the Appendix. The result is the
thermodynamic potential �MF given in Eq. (A1). It involves
the expectation values of the scalar fields, σ̄i = −G〈q̄iqi〉
(i ∈ {u,d,s}), representing the chiral condensates for each
quark species, and of the vector field, v̄ = Gv〈q†q〉, related
to the baryon number density of the quarks.

Minimization of �MF determines the fields σ̄i , v̄, A3
4, and

A8
4 from the set of equations

∂�MF

∂σ̄i

= ∂�MF

∂v̄
= ∂�MF

∂A3
4

= ∂�MF

∂A8
4

= 0. (22)

In particular, dynamical quark masses emerge from the gap
equations (A2). In mean-field approximation it follows that
� = �̄ and consequently A8

4 = 0 as shown in Refs. [57,58].
In the limit T → 0, one actually has � = �̄ = 0.

With the aim of describing charge-neutral matter in chem-
ical equilibrium inside neutron stars, Eqs. (22) have to be

supplemented by the following conditions for the densities
and chemical potentials of the quarks and leptons involved:

2
3 �u − 1

3 �d − 1
3 �s − �e − �μ = 0, (23)

μd = μu + μe, μd = μs, μe = μμ. (24)

Equation (23) expresses charge neutrality when both electrons
and muons participate in establishing chemical (β) equilib-
rium. The particle densities are calculated from

�i = −
(

∂�

∂μi

)
T ,V,{μj }j �=i

. (25)

For the particle densities of the leptons e,μ we simply use
those derived from the thermodynamic potential, �lepton, of a
free gas of electrons and muons. β equilibrium in terms of the
processes

d ↔ u + e− + ν̄e, s ↔ u + e− + ν̄e,

d ↔ u + μ− + ν̄μ, s ↔ u + μ− + ν̄μ,

is expressed by Eqs. (24) (neglecting chemical potentials for
neutrinos).

Consider now the EoS for β-equilibrated quark matter.
The gap equations (22) are solved simultaneously under the
constraints of charge neutrality (23) and β equilibrium (24).
Only one of the chemical potentials remains as a free
parameter. With the mean-field thermodynamic potential �MF,
the pressure of the system is

P = −�MF − �lepton. (26)

The energy density is calculated using the Gibbs-Duhem
relation,

ε = T s − P +
∑

i

μi�i, (27)

where the particle densities, �i , are given in Eq. (25), and the
entropy density s is determined as

s = −
(

∂�

∂T

)
V,{μj }

. (28)

Resulting EoS at T = 0 are shown in Fig. 3 for different
values of the vector-coupling strength Gv . It actually turns
out that low temperatures T � 10 MeV do not affect the
EoS for � = 1

3 (�u + �d + �s) � �0. In what follows we use
T = 0 throughout. Figure 3 displays a qualitative change
in the properties of the EoS, depending sensitively on the
vector-coupling strength. For Gv = 0 the low-temperature
EoS features a first-order chiral phase transition leading to
an EoS that is far too soft and fails to satisfy the neutron
star constraints. This first-order transition disappears and
turns into a continuous crossover once the repulsive vector
interaction strength exceeds a critical value, Gcrit

v � 0.9G.
The constraints from neutron star observables would require a
further strengthening of the vector repulsion between quarks,
up to Gv � 1.5G, as demonstrated in Fig. 3.

It is instructive to study the particle ratios,
�i

�u + �d + �s

(i = u,d,s,e),
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FIG. 3. (Color online) Equations of state at T = 0 derived from
the three-flavor PNJL model with inclusion of charge neutrality and β

equilibrium conditions. The blue dashed and solid lines show results
for different vector-coupling strengths Gv , as indicated in the figure.
The black solid line displays the EoS derived from in-medium ChEFT
as described in Sec. III A and discussed further in the next section.
The gray bands show the constraints from neutron star observables
(see Fig. 1).

as they emerge from this (P)NJL model, as a function of the
baryon density

� = 1
3 (�u + �d + �s).

These particle ratios turn out to be universal: They do not
depend on the strength of the vector interaction. This is because
the vector field, v̄, appears only in the combination μi − v̄ with
the chemical potentials μi .

The result is shown in Fig. 4. The muon fraction is always
zero because the muon chemical potential never exceeds
the muon mass. At low baryon densities, � � 3 �0 with

d quarks

u quarks

s quarkselectrons 100

0 2 4 6 8 10 120.0

0.2

0.4

0.6

0.8

1.0

� �0

�
i

�
to

t

FIG. 4. Particle ratios in the three-flavor (P)NJL model subject
to β equilibrium and charge neutrality. The ratios �i/�tot with �tot =
�u + �d + �s , for the species indicated in the figure, are given as
a function of the baryon density (normalized to nuclear saturation
density �0 = 0.16 fm−3).

�0 = 0.16 fm−3, the relative proportion of d and u quarks
is reminiscent of neutron matter. At densities � � 4 �0 strange
quarks start to become important. As pointed out in Sec. IV,
such densities can only be reached at the very center of the
inner core in neutron stars. At these densities the strange-quark
chemical potential μs exceeds the constituent quark mass Ms .
Given their negative charge, strange quarks can now replace
the electrons and at the same time reduce the fraction of d
quarks. At � � 10�0 the densities of all three quark species
approach each other, indicating that the quarks become flavor
degenerate at the highest densities.

IV. NUCLEONIC VERSUS HYBRID EQUATIONS OF STATE

Given the EoS for different realizations of dense baryonic
matter as derived in Sec. III, we now proceed with a discus-
sion of several scenarios, ranging from a purely nucleonic
composition to hybrid hadron-quark matter, always subject
to the constraints provided by neutron star observables and
presented in Sec. II.

A. Conventional nuclear matter

Consider first the EoS based entirely on nuclear ChEFT as
described in Sec. III A. We recall that this EoS is generated
using in-medium chiral perturbation theory to three-loop order
in the energy density. It includes explicitly one- and two-pion
exchange dynamics and three-body forces in the presence of
the nuclear medium, together with resummed contact terms.
The energy density is written as

ε(�,xp) = �[MN + Ē(�,xp)], (29)

with the energy per nucleon, Ē = E/A, given as a function
of the density � = �n + �p and the proton fraction, xp =
�p/�. The expansion of Ē provided by in-medium ChEFT is
actually in powers of the Fermi momentum, i.e., in fractional
powers of the density �. The nucleon mass is taken as the
average of neutron and proton masses, MN = 1

2 (Mn + Mp).
As mentioned previously, it is useful to write the energy per
nucleon as an expression to second order in the asymmetry
parameter, δ = (�n − �p)/�, given the small proton fraction
xp encountered in the neutron star interior. With the calculated
energies per nucleon for symmetric nuclear matter, ĒSM,
and pure neutron matter, ĒNM, and the symmetry energy,
S(�) = ĒNM(�) − ĒSM(�):

Ē = ĒSM(�) + S(�)(1 − 2xp)2

= (1 − 2xp)2ĒNM(�) + 4xp(1 − xp) ĒSM(�). (30)

The ChEFT calculation of the symmetry energy at nuclear
saturation density, �0 = 0.16 fm−3, gives

SChEFT(�0) = 33.5 MeV, (31)

compatible with empirically deduced values that range be-
tween 26 and 44 MeV [70]. It is common to expand the
symmetry energy around nuclear saturation density,

S(�) = S(�0) + L

3

(
� − �0

�0

)
+ · · · . (32)
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The L value,

L = 3�0
∂S

∂�

∣∣∣∣
�=�0

, (33)

is poorly known and supposed to be in the range 50 MeV �
L � 140 MeV (see Refs. [70,71] and references therein). Our
calculation gives

LChEFT = 48 MeV, (34)

at the lower side of the empirical bandwidth. The significance
of the L value is that it scales linearly with the neutron-skin
thickness (i.e., the difference between the root-mean-square
radii of neutron and proton distributions) of heavy nuclei [72].
Implications of the symmetry energy for neutron stars are
discussed in Ref. [73].

β equilibrium involving electrons and muons, n ↔ p +
e− + ν̄e and n ↔ p + μ− + ν̄μ, together with charge neutral-
ity imply

�p = �e + �μ, (35)

μn = μp + μe, μe = μμ, (36)

where the neutron and proton chemical potentials are given by

μn,p =
(

∂ε

∂�n,p

)
V

. (37)

The lepton charge densities, �e,�μ, and the corresponding
chemical potentials, μe,μμ, are again assumed to be those
of a free Fermi gas of electrons and muons.

Incorporating the conditions (35) and (36) the equation of
state P (ε), applicable for neutron star matter in β equilibrium
at zero temperature, is derived using

P = −ε +
∑

i

μi�i (i = n,p; e,μ). (38)

At very low densities this EoS based on ChEFT is matched
again to the “SLy” EoS as in Fig. 1. The complete result
is shown by the solid black curve in Fig. 3. Evidently, the
ChEFT equation of state satisfies the astrophysical constraints
over the whole range of relevant energy densities. The exact
microscopic treatment of the Pauli principle acting on the
in-medium pion-exchange processes and the repulsive three-
nucleon correlations provide the required stiffness of the EoS
in the dense medium to support 2M� neutron stars.

The proton fraction xp in neutron star matter follows from
the ChEFT equation of state is shown in Fig. 5. The smallness
of the proton admixture (which stays systematically below a
maximum of less than 7% reached at about twice the density
of normal nuclear matter) justifies the ansatz quadratic in xp

as written in Eq. (30).
Given the pressure as a function of energy density the TOV

equations (1) and (2) are solved. The resulting ChEFT mass-
radius relation for neutron stars is shown in Fig. 6. It turns
out that there is only a marginal difference between the results
for pure neutron matter and matter in β equilibrium with its
small proton admixture. In either case the equation of state is
sufficiently stiff to pass beyond the 2M� threshold. Our results

0.2 0.4 0.6 0.8 1.00.00

0.02

0.04

0.06

0.08

0.10

� fm 3

x p

FIG. 5. Proton fraction, xp = �p

�
, shown for the ChEFT EoS

including β equilibrium.

are compatible with the accepted range of neutron star radii
according to Ref. [21] and also (within limits) of Ref. [28].

Next, consider the calculated density profile of a neutron
star with a mass M = 2M�, displayed in Fig. 7. As a general
feature of a stiff EoS, the baryon density �c reached in the
center of the star is, by far, lower than the values characteristi-
cally associated with many previous neutron star models which
worked with softer EoS. In the present example, the central
density does not exceed about �c � 4.8�0. Such bounds on the
central density are also characteristic of advanced calculations
using QMC techniques [74].

Concerns might still be raised about how far ChEFT
calculations can be extrapolated into the high-density
regime. A necessary condition for the applicability of in-
medium ChEFT is that the medium persists in the hadronic
phase of QCD with spontaneously broken chiral symmetry.

PSR J1614 2230

PSR J0348 0432

ChEFT, n, p, e, μ

ChEFT, PNM

8 10 12 14 16
0.0

0.5

1.0

1.5

2.0

2.5

R km

M
M

FIG. 6. (Color online) Mass-radius relation computed with the
ChEFT equation of state for neutron stars including β equilibrium.
Stable neutron stars can exist up to the maximum of this curve.
The hardly distinguishable EoS for pure neutron matter (PNM) is
also shown for reference. The horizontal band indicates the masses
of the pulsars J1614–2230 and J0348+0432. The lighter gray band
corresponds to the radius range deduced in Ref. [21].
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FIG. 7. Density profile in the interior of a neutron star with mass
M = 2M� and resulting radius of about R = 11 km. Note that the
central density does not exceed �c ∼ 4.8�0.

Investigations of the in-medium chiral condensate at zero
temperature [17,52,53,75] do indeed show a stabilization of
the density-dependent condensate 〈q̄q〉(�,T = 0), shifting the
transition to chiral symmetry restoration far beyond three times
�0.

The in-medium ChEFT approach relies on the assumption
that the proper baryonic degrees of freedom are nucleons
(rather than liberated quarks) even in compressed baryonic
matter. In this context the following qualitative picture may be
useful for orientation. Models based on the chiral symmetry
of QCD describe the nucleon [76] as a compact valence quark
core with a radius of about 1/2 fm, surrounded by a pionic
cloud. The meson cloud determines most of the empirical
proton rms charge radius of 0.87 fm. For the neutron the picture
of core and cloud is analogous except that the electric charges
of quark core and meson cloud now add up to form the overall
neutral object. Even at � ∼ 5�0 the typical average distance
between two neutrons is about 1 fm; hence, the baryonic cores
still do not overlap appreciably at such densities. The pionic
field surrounding the baryonic sources is, of course, expected
to be highly inhomogeneous and polarized in compressed
matter, but this effect is properly dealt with in chiral EFT. It is
therefore perhaps not so surprising that an EoS based entirely
on nucleons (plus � isobars) and pionic degrees of freedom
works well for neutron stars, once the repulsive mechanisms
for generating stiffness and high pressure are properly incor-
porated. A similar reasoning is found, e.g., in Ref. [77].

B. Hybrid stars

This section deals with the possibility that the inner core of
the neutron star is composed of quark matter. It is obviously
not realistic to think of a quark matter EoS for the entire core
region. However, a combination of a suitable quark matter
equation of state for the inner core with the ChEFT EoS from
the previous section, describing the outer core, is still an option.
In the following we discuss two scenarios: first, an ansatz
featuring quark-hadron continuity, and, second, a first-order
phase transition involving a coexistence region of hadronic
and quark matter.

1. Quark-hadron continuity

The quark-hadron continuity picture has been discussed
previously in Refs. [55,67,78–80]. It is based on the assump-
tion that the outer and inner core regions of the hybrid neutron
star are characterized by a smooth, continuous transition
between the nucleonic and quark matter regions.

Hybrid scenarios were also studied in Ref. [81], where
it was pointed out that the appearances of ordinary neutron
stars and hybrid stars can be quite similar. Hybrid stars with
hyperons and including effects of quark color superconductiv-
ity were explored in Ref. [82] (not respecting, however, the
nuclear physics constraints emphasized in the present work).

Here we follow an ansatz introduced in Ref. [67] and
combine the ChEFT EoS representative of hadronic (nucleonic
plus pionic) matter, PH(ε), with the quark-matter EoS derived
from the PNJL model, PQ(ε),

P (ε) = PH(ε)fH(ε) + PQ(ε)fQ(ε), (39)

with interpolating functions

fH(ε) = 1

2

[
1 − tanh

(
ε − ε̄

�

)]
,

(40)

fQ(ε) = 1

2

[
1 + tanh

(
ε − ε̄

�

)]
.

The parameters ε̄ and � determine the location and the width
of the transition region between the nucleonic and quark matter
sectors. The pressure functions PH(ε) and PQ(ε) are matched
continuously. The density, � = �(ε), can be determined from
the EoS (39) by integrating

d�

�
= dε

P (ε) + ε
. (41)

In Fig. 8 we show the EoS derived from Eq. (39) for
different values of the NJL vector-coupling strength Gv .
We have chosen � = 300 MeV/fm3 and ε̄ = 800 MeV/fm3,

ChEFT PNJL, Gv 1.5G

ChEFT PNJL, Gv 0

50 100 200 300 500 1000 2000

1

5
10
20

100
200

∋MeV fm 3

P
M

eV
fm

3

FIG. 8. (Color online) Equations of state representing the quark-
hadron continuity scenario using different quark vector couplings.
Quark matter (PNJL) and nuclear matter (ChEFT) EoS are matched
continuously at ε = ε̄ = 800 MeV/fm3. Solid curve, Gv = 1.5 G;
dashed curve, Gv = 0. The gray areas are those of Fig. 1 representing
constraints from neutron star observables.
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FIG. 9. (Color online) Solutions of the TOV equations (1) and (2)
(mass-radius relation) for neutron stars using the EoS given in
Ref. (39). The lines correspond to different vector-coupling strengths,
as indicated in the figure. The shaded areas are as in Fig. 6.

representing a transition region 3.0�0 � � � 5.5�0. As in
Sec. IV A the “SLy” EoS has been matched smoothly to the
ChEFT EoS at ε = 100 MeV/fm3. It is evident from the figure
that a hadron-quark hybrid scenario meets the constraints
from neutron star observables only if the repulsive vector
coupling between quarks is sufficiently large, Gv > G. This
is confirmed by the mass-radius plot shown in Fig. 9. At this
point our results are qualitatively similar to those of Ref. [67]
despite their use of a different hadronic EoS and of a different
method.

2. Hadron-quark first-order phase transition

In the previous section the transition region from the
hadronic to the quark phase was chosen by means of the
parameters (�,ε̄) of the interpolating functions (40). In this
section a different approach is taken assuming a first-order
phase transition from hadronic to quark matter with an
extended coexistence region of the two phases. The system
is characterized by two conserved quantities: electric charge
and baryon number. For such systems with more than one
conserved charge, the Maxwell construction is generalized and
replaced by the Gibbs condition [83]. In the present case, this
condition describing mechanical and chemical equilibrium is

PH(μn,μe) = PQ(μn,μe), (42)

expressed as the pressure balance between hadronic and quark
components in terms of the neutron and electron chemical
potentials. For the nucleonic phase, the proton chemical
potential is μp = μn − μe. The muon chemical potential is
μμ = μe. For the quark matter phase, the quark chemical
potentials are expressed in terms of μn and μe according to

μu = 1
3 (2μp − μn) = 1

3 (μn − 2μe),
(43)

μd = μs = 1
3 (2μn − μp) = 1

3 (μn + μe).

The choice of the chemical potentials μn,μe is arbitrary. Note
that PQ also depends on the mean fields σ̄i ,v̄, which are, in
turn, dependent on μn and μe. The total baryon density in the

ChEFT
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FIG. 10. (Color online) Equations of state including a first-order
phase transition between hadronic and quark matter. The transition
region itself is characterized by the flat parts of the curves. The (upper)
solid curve includes a vector repulsion of Gv = 0.5G between quarks,
while the (lower) dashed curve is found using Gv = 0. The gray areas
are as in Fig. 1.

coexistence region is [83],

� = χ �Q + (1 − χ ) �H, (44)

where χ (with 0 � χ � 1) denotes the proportion of quark
matter in the hadron-quark mixed system. The combinations
χ �Q and (1 − χ ) �H are the densities of deconfined quarks
and confined baryons, respectively, in the coexistence region.
Global charge neutrality implies

χ
∑

i=u,d,s

qi �i + (1 − χ ) �p − �e − �μ = 0, (45)

where the qi denote the quark charges.
The Gibbs condition (42) together with Eq. (45) allows to

eliminate two of the three quantities μn,μe,χ . The pressure is
a function of the remaining (free) parameter. The resulting
equation of state is shown in Fig. 10. The corresponding
particle densities (for the case Gv = 0) are displayed in
Fig. 11. The coexistence region in the case without vector
interaction, Gv = 0, extends over the baryon density interval
4�0 � � � 9�0. For Gv = 0.5G the coexistence region is
shifted to 6�0 � � � 10�0. Hence, the phase transition takes
place over a broad density range and moves toward higher
densities as the vector repulsion is increased. An interesting
feature observed in Fig. 10 is the increase of the proton fraction
to about 10% in the coexistence region. This is primarily to
compensate the increasing supply of negative charges from the
emergent d and s quarks.

The first-order quark-hadron transition softens the EoS. The
impact of the phase transition is visible in the mass-radius
plot of Fig. 12. The Gv = 0 case is interesting with its
rapid turn of the mass-radius trajectory once the coexistence
region is entered. While the 2M� threshold is barely touched,
the opening of the hadron-quark hybrid regime bends the
M(R) curve downward, causing instability of the neutron star.
Stability is recovered when the repulsive vector interaction be-
tween quarks is introduced (with Gv = 0.5G in our example).
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FIG. 11. (Color online) Particle ratios as a function of the (nor-
malized) baryon density for the particles as indicated in the figure.
The first-order coexistence region is marked by the rapid decrease
of neutrons and the steep rise of quarks. The case without vector
interaction (Gv = 0) is shown.

However, in this case the first-order phase transition moves to
densities � � 6�0, exceeding the maximal central density that
can be realized in the inner core of the star.

To elaborate further on this point, it is instructive to have a
look at the density profile of a neutron star with M = 1.95M�,
calculated using Gv = 0 in the hybrid sector (see Fig. 13). In
this case, which just barely satisfies the empirical constraints,
a possible quark-hadron coexistence domain is restricted to a
small part of the inner core within a radius of about 2 km.
The central density, �c � 5�0, is only slightly larger than �c �
4.8�0 of the 2M� neutron star reached with the “conventional”
EoS based on chiral EFT.

We have emphasized repeatedly that the required stiffness
of the equation of state keeps the central density of a 2M�
neutron star within limits not exceeding typically five times

FIG. 12. (Color online) Solutions of the TOV equations using the
EoS incorporating a first-order hadron-quark phase transition (see
Fig. 10). Mass-radius trajectory lines correspond to different vector-
coupling strengths Gv , as indicated in the figure. The shaded areas
are as in Fig. 6.
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FIG. 13. Density profile a neutron star with mass M = 1.95M�
and radius R � 11.4 km. The EoS includes the quark-hadron first-
order phase transition and no vector interaction, Gv = 0. The central
density is �c ≈ 5 �0. The shaded area shows the onset of the
coexistence region in the inner core within a radius r � 2 km.

�0. At this point the present model is consistent with the
statement in Ref. [2], derived just from causality and the 2M�
constraint, that the maximum density cannot exceed 8�0. The
actual bulk baryon densities relevant for most of the material
inside a neutron star are significantly lower. Recalling Eq. (3)
and approximating the energy density roughly as ε ∼ MN�,
one notes that r2�(r), rather than the density profile itself,
matters in the integration of the mass up to the star radius
R. For illustration, we plot the dimensionless, scaled quantity
(r/R)2�(r)/�0 in Fig. 14 and observe that the characteristic
bulk densities stay around 2�0–3�0 and hence in a density

ChEFT

ChEFT PNJL Gv 0

0 2 4 6 8 10 12
0.0
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�(r) [fm  ]-3

FIG. 14. (Color online) Density profiles �(r) multiplied by r2

and scaled with R2�0, where R is the radius of the neutron star
and �0 = 0.16 fm−3 is the density of normal nuclear matter. Results
are shown for a typical 2M� neutron star. The upper horizontal scale
shows the local baryon density. Solid curve, equation of state from
nuclear ChEFT (M = 2M�); dashed curve, including hadron-quark
coexistence in the center of the star (M = 1.95M�, calculated using
Gv = 0).
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range where nuclear chiral EFT can well be applied. In this plot
the difference between a “conventional” ChEFT scenario and
an EoS including hadron-quark coexistence is almost invisible.
A qualitatively similar feature has been noticed in Ref. [81].

The possibility of hadron-quark coexistence has also been
studied in Ref. [84] using a model that combines a relativistic
mean field (RMF) equation of state for the hadronic sector with
a nonlocal PNJL model for quark matter. While the nonlocal
effective interaction between quarks does not make much of a
difference compared to the local couplings used in the present
work, it should be noted that RMF-based EoS usually fail to
satisfy at least one of the EoS criteria, namely the requirement
of consistency with the most advanced many-body calculations
of neutron matter [12,16].

C. Comments on hyperon admixtures to the EoS

Admixtures of � and � hyperons to the EoS of dense
baryonic matter in neutron stars have been under discussion for
a long time. While � hyperons are not likely to appear because
the absence of � hypernuclei suggests a weakly repulsive �N
interaction, the low-energy �-nuclear interaction is attractive.
From hypernuclear phenomenology it is known that the
�-nuclear mean field is about half as strong as the Hartree-
Fock potential experienced by a nucleon in the nuclear
medium.

In neutron star matter, � hyperons can take over the role
of the neutrons when this becomes energetically favorable
at baryon densities exceeding 2–3 times �0. Examples of
calculations including hyperons in the EoS can be found
in Refs. [85,86]. From these and similar calculations it is
now widely accepted that the softening of the equation of
state produced by � admixtures, in the absence of additional
repulsive interactions, reduces the maximum mass of a neutron
star to values way below 2M�. Additional repulsive forces
acting on the hyperons in dense matter are required to maintain
a sufficiently steep slope of the pressure P (ε) at high densities.

Our present work features an equation of state for the
hadronic sector based on in-medium chiral SU(2) effective
field theory. A fully consistent chiral SU(3) approach to
baryonic matter, including both � and � hyperons and
the complete pseudoscalar meson octet in coupled channels
beyond LO, is not yet available. However, we can present a
rough estimate of � hyperon admixtures to the previously
derived EoS that combines chiral EFT in the hadronic sector
with the three-flavor NJL model for quark matter (see Figs. 10
and 11), by simply adding a � contribution to the energy
density, using an attractive mean-field (Hartree) potential
adjusted to reproduce hypernuclear data.

The result, Fig. 15, can be considered as typical and
representative for a large class of similar model calculations.
The onset of hadron-quark coexistence at � � 3.5�0 takes
place for a system in which a substantial fraction of neu-
trons is now substituted by � hyperons (implemented here
according to the RMF treatment of Ref. [87]). However, the
corresponding EoS has now become too soft. It does not
satisfy the pertinent constraints and fails to support a 2M�
neutron star. For the example shown, the maximum neutron
star mass is Mmax � 1.5M�. Once � hyperons are present,
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FIG. 15. (Color online) Particle ratios as a function of baryon
density � (in units of �0 = 0.16 fm−3) for the particles indicated, as
in Fig. 11 but with inclusion of � hyperons.

the only possibility to preserve stability of the star within
the “allowed” regions of Fig. 1 appears to be through extra
repulsive interactions of the hyperons with the surrounding
baryonic medium.

Understanding the origin of such repulsive hyperon-nuclear
interactions at high baryon densities is thus a key issue
for the near future. Advanced Monte Carlo calculations of
hypernuclear matter [88–90] have recently focused on the role
of repulsive three-body �NN forces. These computations use
semiphenomenological �N interactions fitted to the available
two-body scattering data together with parametrized �NN
potentials constrained by the systematics of � separation
energies in a series of hypernuclei. A sufficiently large �NN
coupling strength in hyperneutron matter [90] does indeed
meet the requirement of producing a stiff equation of state
such that it can satisfy the 2M� constraint.

Steps forward are now taken towards a more systematic
foundation of hyperon-nucleon interactions and related three-
body forces. An example is the hyperon-nucleon potential
in momentum space generated from chiral SU(3) EFT at
NLO [91,92]. At this order all two-pion exchange processes
are explicitly constructed. Also included is the second-order
pion exchange mechanism that drives �N ↔ �N coupled-
channels dynamics. This mechanism primarily generates the
attractive mean field that binds the � in hypernuclei. It is
accompanied by smaller repulsive corrections from kaon-
exchange Fock terms and from Pauli blocking of the prop-
agating nucleon in the intermediate �N state of the two-pion
exchange process [93]. The Pauli effect just mentioned acts like
an equivalent three-body piece in a description without explicit
�, translating the in-medium �N ↔ �N coupled-channels
into effective �N and �NN potentials. Such interactions are
beginning to be adopted in many-body calculations of hyper-
nuclei [94]. An additional important feature of the chiral SU(3)
approach at NLO is the emergence of momentum-dependent
repulsive terms [92] that grow rapidly with increasing �N
relative momentum. While these terms play only a limited role
in � hypernuclei, they are expected to become increasingly
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important at the higher baryon densities and Fermi momenta
encountered in the center of a neutron star.

V. SUMMARY AND CONCLUSIONS

The present work contributes to the discussion of the
EoS for dense baryonic matter in view of the by-now-well-
established existence of 2M� neutron stars. This study consists
of two parts with the following aims: first, to update the
constraints for the pressure as a function of energy density
from the new mass determinations together with (less accurate)
limits on neutron star radii; second, to construct EoS that
are compatible with these observational constraints, while at
the same time satisfying the conditions provided by nuclear
physics and known properties of nuclear and neutron matter.

(1) Concerning the first part, the observational constraints
determine a band of acceptable neutron star EoS that are
characterized by their pronounced stiffness: At baryon
densities � � 0.8 fm−3, about five times the density
of normal nuclear matter in equilibrium, the pressure
must at least be P � 150 MeV fm−3 to support 2M�
neutron stars. This conclusion does not depend on the
detailed composition of the matter forming the core of
the star. Our results at this point are compatible with
related studies reported in Refs. [21–23,34,35].

(2) Within the present model investigation of mass-radius
trajectories, the stiffness condition on the equation
of state has an important implication: The maximum
density in the center of the neutron star does not exceed
about five times nuclear-matter density, corresponding
to neutron Fermi momenta less than 0.6 GeV and
average kinetic energies of less than 100 MeV.

(3) The modeling of the equation of state in the second
part of this work has been performed according to the
following criteria. The theory used to construct this
equation of state should accurately reproduce:
(a) nuclear phenomenology and the thermodynamics

of symmetric nuclear matter;
(b) advanced many-body calculations, such as recent

Monte Carlo computations, of pure neutron matter;
(c) the symmetry-breaking pattern of low-energy

QCD and its implications for the nuclear many-
body problem.

In-medium ChEFT is a systematic framework that
satisfies these three criteria. The energy density and
pressure resulting from this approach at three-loop
order does generate the required stiffness of the neutron
star equation of state, based on the explicit treatment
of two-pion exchange processes, three-body forces, and
their in-medium behavior with proper inclusion of Pauli
principle effects. At its present level of development,
in-medium ChEFT is expected to work quite reliably
up to about twice to three times the density of normal
nuclear matter. Limitations are primarily related to still
existent uncertainties in three-body interactions. They
amount to errors in the energy per particle of about
5% at �n ∼ 2�0 and about 20% at �n ∼ 3�0. Further
open issues include the role of four-body correlations as

they are encountered in the hierarchy of chiral effective
interactions at higher order.

(4) Nonetheless, ChEFT calculations at three-loop order
in the energy density turn out to be consistent with
recent Monte Carlo computations of pure neutron
matter even up to about four times �0. At the same
time, the pertinent baryon densities reached in neutron
stars, given the stiffness condition on the EoS, are not
extremely high. As pointed out, the bulk material of the
star rests primarily on radial regions where the density
does not exceed about 2–3 times �0. The physics at
such densities is considered to be well accessible to
ChEFT methods.

(5) Possible scenarios for the appearance of hybrid hadron-
quark matter in the deep interior of neutron stars have
also been explored in the present work, combining
the ChEFT equation of state in the hadronic phase
with either continuous or first-order transitions to
quark matter. The quark matter component is described
schematically in terms of a three-flavor (P)NJL model.
Hybrid stars built with such a model are found unable to
pass beyond the 2M� line unless an additional repulsive
vector-current interaction between quarks is introduced
to generate a sufficiently stiff equation of state. At the
same time, such strong repulsion in the quark sector
eliminates the first-order chiral phase transition that
is characteristic of more basic versions of the NJL
model, in favor of a smooth chiral crossover at low
temperatures and high densities.

(6) The resulting hybrid equation of state, compatible with
the criteria under the previous points (1)–(3), does
not feature an extended region of quark matter in the
inner core of a neutron star. Likewise, the admixture
of strangeness (in the form of hyperons or deconfined
strange quarks) is not substantial in such a constrained
scenario. The presence of � hyperons would have again
to be accompanied by strongly repulsive �N and/or
�NN correlations to sustain the necessary pressure.

In summary, the present work supports the idea that neutron
stars are indeed predominantly composed of neutrons rather
than more exotic forms of matter.

ACKNOWLEDGMENTS

This work has been partially supported by BMBF, by
the DFG Cluster of Excellence “Origin and Structure of the
Universe,” and by DFG/NSFC through the Sino-German CRC
110 “Symmetries and the Emergence of Structure in QCD.”
We thank Norbert Kaiser, Abishek Mukherjee, and Sebastian
Schulteß for many helpful and stimulating discussions. One of
us (W.W.) gratefully acknowledges discussions and hospitality
during a visit to ITP-CAS in Beijing.

APPENDIX: SOME DETAILS OF THE PNJL MODEL

The PNJL grand-canonical potential � = − lnZ , with Z
derived from the action SPNJL of Eq. (17) in mean-field
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approximation, is

�MF = − lnZMF = 1

βV
SPNJL, MF

= −2T
∑

a

∑
i=u,d,s

∑
n∈Z

∫
�

d3p

(2π )3

× ln
[(

ωa,i
n + i v̄

)2 + 	p 2 + M2
i

]

+ σ̄ 2
u + σ̄ 2

d + σ̄ 2
s

4G
− v̄2

2GV

+ K

2G3
σ̄u σ̄d σ̄s

+U(�,�̄; T ). (A1)

This result is found by standard bosonization of Eq. (17),
introducing expectation values of the scalar fields, σ̄i =
−G 〈q̄iqi〉 (i ∈ {u,d,s}), and of the vector field, v̄ = Gv 〈q†q〉.
The dynamically generated (constituent) quark masses are
determined by the gap equations

Mu = mu + σ̄u + K

2G2
σ̄d σ̄s ,

Md = md + σ̄d + K

2G2
σ̄u σ̄s, (A2)

Ms = ms + σ̄s + K

2G2
σ̄u σ̄d .

These masses (or, equivalently, the scalar mean fields σ̄i)
serve as order parameters for the chiral transition. The shifted
Matsubara frequencies ωa,i

n with a ∈ {0,±},i ∈ {u,d,s} are
given by

ω±,i
n = ωn − i μi ± A3

4

2
− A8

4

2
√

3
,

(A3)

ω0,i
n = ωn − i μi + A8

4√
3
,

where ωn = (2n + 1)πT , n ∈ Z, denote the fermionic Mat-
subara frequencies and the μi are the chemical potentials
for each quark species. The thermodynamic potential is
written

�MF = �� + �free + �bos + U(�,�̄; T ). (A4)

�� is the fermionic part of Eq. (A1) with quark momenta cut
off at | 	p | = �; after performing the Matsubara summation,
one finds

�� = −6
∑

i∈{u,d,s}

∫
| 	p |��

d3p

(2π )3
E(i)( 	p )

− 2T
∑

i∈{u,d,s}

∫
| 	p |��

d3p

(2π )3

×{ln[1 + 3(� + �̄ e−βE
(i)
− ( 	p ))e−βE

(i)
− ( 	p ) + e−3βE

(i)
− ( 	p )]

× ln[1 + 3(�̄ + �e−βE
(i)
+ ( 	p ))e−βE

(i)
+ ( 	p ) + e−3βE

(i)
+ ( 	p )]}

(A5)

(with β = 1/T ). The quasiparticle energies of the quarks are
(i ∈ {u,d,s}):

E
(i)
± ( 	p ) =

√
	p 2 + M2

i ± (μi − v̄). (A6)

The potential �free is the contribution of a gas of quarks
with momenta above the cutoff �. These high-momentum
quarks have their current-quark masses and do not interact.
This added contribution makes sure that recover the correct
Stefan-Boltzmann limit is recovered for the pressure and the
energy density. The last two pieces in Eq. (A4) are

�bos = σ̄ 2
u + σ̄ 2

d + σ̄ 2
s

4G
− v̄2

2GV

+ K

2G3
σ̄u σ̄d σ̄s (A7)

and the Polyakov effective potential (20).
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