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Polynomial fits and the proton radius puzzle
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The proton radius puzzle refers to the ≈7σ discrepancy that exists between the proton charge radius determined
from muonic hydrogen and that determined from electronic hydrogen spectroscopy and electron-proton scattering.
One possible partial resolution to the puzzle includes errors in the extraction of the proton radius from ep elastic
scattering data. This possibility is made plausible by certain fits that extract a smaller proton radius from the
scattering data consistent with that determined from muonic hydrogen. The reliability of some of these fits that
yield a smaller proton radius was studied. We found that fits of form factor data with a truncated polynomial fit
are unreliable and systematically give values for the proton radius that are too small. Additionally, a polynomial
fit with a χ 2

reduced ≈ 1 is not a sufficient indication for a reliable result.
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I. PHYSICS MOTIVATION

The proton radius puzzle pertains to the disagreement
between the proton charge radius determined from muonic
hydrogen and from electron-proton systems: atomic hydrogen
and ep elastic scattering. The muonic hydrogen result [1,2] of
rp = 0.840 87 ± 0.000 39 fm is about 13 times more precise
and ≈7σ different than the recent CODATA 2010 [3] result
of rp = 0.8775 ± 0.0051 fm. The CODATA analysis includes
atomic hydrogen and the precise cross section measurements
of Bernauer et al. [4,5], which give rp = 0.879 ± 0.008 fm, but
not the more recent confirmation of Zhan et al. [6] which yields
rp = 0.875 ± 0.010 fm. For a recent review, see Ref. [7].

Many possible explanations of the proton radius puzzle
have been ruled out. There are, for example, no known
issues with the atomic theory, or with the muonic hydrogen
experiment. It appears that the most likely explanations are
novel physics beyond the Standard Model that differentiates
μp and ep interactions, novel two-photon exchange effects
that differentiate μp and ep interactions, and errors in the
ep experiments. It is therefore important to examine possible
issues in the ep experiments before concluding that interesting
physics is required.

While the extracted radius values given above have been
confirmed by some analyses, other analyses of ep scattering
data give a smaller radius consistent with the muonic hydrogen
result. Examples of confirming analyses include the z expan-
sion of [8] (rp = 0.871 fm ± 0.009 fm ± 0.002 fm ± 0.002
fm), and the sum-of-Gaussians fit of [9–11] (rp = 0.886 fm
± 0.008 fm). However, three recent analyses give smaller
radii, consistent with the muonic hydrogen result. Griffioen
and Carlson [12] observed that a truncated linear polynomial
fit of the low Q2 Bernauer data yields rp ≈ 0.84 fm, with good
χ2. The dispersion relation analysis of Lorenz et al. [13] yields
rp = 0.84± 0.01 fm with a large χ2

reduced ≈ 2.2, in a simulta-
neous fit of proton and neutron data. The fluctuating radius
fit found in Ref. [14] yields rp = 0.8333± 0.0004 fm with

*Permanent address: Syracuse University, Syracuse, NY 13210,
USA.

χ2
reduced ≈ 4—but note the criticism of the authors of Ref. [15].

A summary of some recent proton radius determinations can
be seen in Fig. 1. The variation in the radius determined from
scattering experiments calls into question the reliability of the
proton radius determination from scattering experiments.

In this paper we study the reliability of proton radius
determinations from the ep elastic scattering experiments.
We note that there are a number of issues in extracting a
radius from the experimental data, as discussed in Refs. [7]
and [11]. In particular, we look at the radius extraction
through the Taylor series expansion of the proton electric
form factor: G

p
E(Q2) = 1 − Q2r2

p/6 + Q4r4
p/120 + · · · such

that r2
p = −6dG

p
E(Q2)/dQ2|Q2=0. We use a polynomial fit1

that has the same functional form as a truncated Taylor
series expansion, and note that a polynomial fit exhibits
unphysical behavior in extrapolations to large Q2, as it
necessarily diverges to infinity, and this might also affect a
radius determination.

The basic result of this paper—that radius extractions with
polynomial fits cannot be trusted to be reliable—has already
been argued by Sick [16], who claimed that higher-order
terms in the expansion prevent a precise determination of
the proton radius for any Q2 region. Determining the Q2

term precisely requires a larger Q2 range to determine the
Q4 term precisely, which requires an even larger Q2 range to
determine the Q6 term precisely, and so on. The inefficiency
and inconsistency of the truncated polynomial fit has also been
demonstrated in unpublished numerical work by Distler [18].
Lastly, Borisyuk [19] has argued that there is a systematic error
related to the deviation of a fitted radius and the true radius
due to the inadequacy of the form factor parametrizations in
describing the true form factor. In this paper, we find with the
polynomial fits an offset between the real radius and the radius
extracted with a fit that results from truncating the power-series
expansion to fit a finite range of data. This is a systematic error
that we call the truncation offset.

1Note that in similar analyses, the polynomial fit is commonly called
the Taylor series expansion.
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FIG. 1. (Color online) A summary of some recent proton charge
radius determinations: Sick [16], CODATA 2006 [17], Pohl et al. [1],
Bernauer et al. [4,5], CODATA 2010 [3], Zhan et al. [6], Hill &
Paz [8], Sick Gaussians [9,10], Lorenz et al. [13], Griffioen &
Carlson [12], Antognini et al. [2], and Mart & Sulaksono [14]. The
dashed and dotted lines are drawn at 0.88 and 0.84 fm, respectively,
for reference.

II. METHOD

The most precise ep elastic scattering data come from
Bernauer et al. [4,5], but for our purposes it is more useful
to generate pseudodata for G

p
E from a parametrization with a

known radius. To get data similar in shape to the actual proton
form factor, and to study how sensitive the result is to the input,
we generate the pseudodata from six parametrizations of the
proton form factor data as follows:

(i) the Arrington, Melnitchouk, Tjon (AMT) fit [20], a
Padé parametrization with rp ≈ 0.878 fm;

(ii) the Arrington fit [21], an inverse polynomial
parametrization with rp ≈ 0.829 fm;

(iii) the Bernauer n = 10 polynomial fit [22], with rp ≈
0.887 fm;

(iv) the standard dipole fit, with rp ≈ 0.811 fm;
(v) the Kelly fit [23], a Padé parametrization with rp ≈

0.863 fm; and
(vi) the Lorenz, Hammer, and Meissner (LHM) fit [13],

which combines dispersion relations with a vector me-
son dominance parameterization with rp ≈ 0.84 fm.

In addition, the numerical procedures were confirmed by
generating pseudodata from a linear function with rp =
0.86 fm. Figure 2 compares the parametrizations listed above.

For each form factor parametrization, we generate pseudo-
data points with 0.2% uncertainties (corresponding to 0.4%
cross section uncertainties) spaced every 0.001 GeV2 in Q2

from Q2
min = 0.004 GeV2 to a variable Q2

max. These pseudodata
have roughly the uncertainties and data-point density of the
Bernauer data, but reflect a known radius. We fit the data with
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FIG. 2. (Color online) Parametrizations of the proton electric
form factor used to generate pseudodata, relative to the dipole form
factor, Gdipole = (1 + Q2/0.71 GeV2)−2.

polynomials in Q2:

a0

[
1 +

n∑
i=1

ai(Q
2)i

]
, (1)

with n= 1, 2, 3, and 4, and where a0 was statistically consistent
with unity and a1 ∝ r2. For each parametrization, polynomial
order, and Q2

max, the pseudodata generation and fitting is
repeated 5000 times to generate distributions of r2, σ (r2),
and χ2. From these distributions we extract the proton charge
radius and its uncertainty, and the mean χ2. Numerical work
was done using CERN MINUIT and ROOT.

III. RESULTS

We find the results from all six form factor parametrizations
are qualitatively similar. The AMT pseudodata fits are repre-
sentative of the typical behavior and are shown here. Figure 3
shows the truncation offset versus Q2

max. The lines shown
indicate the truncation offset, while the width of the bands
indicates the root mean square (r.m.s.) width of the distribution
of proton radii from the 5000 fits done, corresponding to the
statistical uncertainty of the radius extraction in the fit. Figure 4
shows how χ2

reduced varies with Q2
max. Lastly, Fig. 5 shows the

truncation error in units of the fit uncertainty versus χ2
reduced.

In all plots, the four series of fits shown correspond to the
polynomials of order 1 to 4 as defined in Eq. (1).

Some observations related to these figures include the
following.

(i) Fit uncertainties decrease with increasing Q2
max due

to the greater number of data points and the greater
“lever arm” of the data.

(ii) Low Q2 data with the uncertainties and data-point
density we have assumed do not by themselves
determine a precise radius.
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FIG. 3. (Color online) The truncation offset versus Q2
max for the

AMT parametrization. The lines indicate the size of the truncation
offset and the bands the r.m.s. width of the radius distribution from
the 5000 fits.

(iii) As there is more curvature in the generating functions
than in the fit functions, the truncation offset gener-
ally grows with Q2

max, but decreases with increasing
order of the fit.

(iv) The nature of the curvature in the proton electric form
factor is such that the truncation offset using these
parametrizations almost always leads to a fit radius
that is smaller than the “real” radius.

(v) Comparing Figs. 3 and 4 shows that χ2
reduced is not a

reliable guide to the quality of the radius extracted.
There can already be a significant truncation offset
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FIG. 4. (Color online) Reduced χ 2 for the fits of the pseudodata
generated from the AMT form factor parametrization versus Q2

max.

reduced
2χ

1.00 1.05 1.10 1.15 1.20

fitσ
) 

/ 
fit

-r
ac

tu
al

(r

0

5

10

15

20

AMT Fit

linear fit
quadratic fit
cubic fit

 order fitth4

AMT Fit

FIG. 5. (Color online) The truncation offset divided by the fit un-
certainty as a function of the fit χ 2

reduced, for the AMT parametrization.

before the χ2
reduced is obviously far from unity. For

example, in the cubic AMT fit with Q2
max = 0.24

GeV2, χ2
reduced = 1.018, but the extracted radius of

0.859 ± 0.002 fm differs from the 0.878-fm radius
of the AMT fit by 0.019 fm, about half of the proton-
radius-puzzle discrepancy, and about ten times the fit
uncertainty.

(vi) The above point is also demonstrated in Fig. 5, which
shows that a small χ2

reduced does not guarantee an
accurate determination of the radius; even with a
small truncation error, the truncation offset of the fit
is several times the fit uncertainty.

(vii) Even fits with χ2
reduced < 1.1 can result in a truncation

offset equal to the difference between the ep and μp
proton radius determinations, �r ≈ 0.037 fm.

(viii) One can find combinations of Q2
max and fit order

for which there is no significant truncation offset
and good statistical precision on the extracted radius
(as done in Ref. [19], but with a different fitting
parametrization). However, the combinations vary
with form factor parametrization, and it is problem-
atic in practice to ensure that a radius extracted with
a polynomial fit from actual data is reliable.

To summarize, a proton radius determination through a
polynomial fit analysis is suspect. It is believed that other fit
functions, such as the inverse polynomial or z expansion have
smaller, but still significant, truncation offsets [24].

As mentioned, six different form factor parametrizations
were studied. Figures 6 to 8 compare the third-order cubic
fit results for all the form factor parametrizations. Fits to
a form factor following the Arrington parametrization give
the smallest truncation offset and is the least sensitive to
fit order, while fits to a form factor following the Bernauer
polynomial parametrization result in the largest truncation
offset and sensitivity to fit order.
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FIG. 6. (Color online) The truncation offset versus Q2
max for the

third-order fits of the pseudodata generated from the different form
factor parametrizations.

Also of interest is how the truncation offset might affect
upcoming experiments should a truncated polynomial fit
be used, in particular low Q2 measurements of the proton
radius. In this case, the region of interest is Q2

max < 0.1
GeV2. The results fitting from Q2

min = 0.004 GeV2

up to Q2
max = 0.01–0.1 GeV2 are shown for fits of order 1 and

2 in Figs. 9 and 10 for the truncation offset and the χ2
reduced,

respectively, using the Arrington parametrization. Ultimately,
the statistical fit uncertainty on extracting the radius depends
on the final uncertainties the future experiments achieve,
however, the truncation error depends on the Q2 range.
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FIG. 7. (Color online) Reduced χ 2 versus Q2
max for the third-

order fits of the pseudodata generated from the different form factor
parametrizations.
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FIG. 8. (Color online) The truncation offset divided by the fit
uncertainty as a function of the fit χ 2

reduced, for the six different
parametrizations.

One upcoming experiment is Jefferson Lab E12-11-
106 [25], which plans to measure elastic ep scattering in
the range Q2 ≈10−4–0.02 GeV2. We simulate the experiment
using 12 data points at the Q2 values shown in Fig. 30
of the proposal—note that other estimates in the proposal
rebin the data into more points. Under these assumptions, a
linear fit to pseudodata yields a truncation offset ranging from
0.016 fm for the Arrington parametrization to 0.025 fm when
the AMT parametrization is used. The χ2

reduced for both fit
examples is ≈1.1. A higher-order quadratic fit reduces the
truncation offset by an order of magnitude, however, results
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FIG. 9. (Color online) The truncation offset versus Q2
max for liner

and quadratic fits in the low Q2 region.
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FIG. 10. (Color online) Reduced χ 2 versus Q2
max for linear and

quadratic fits in the low Q2 region.

in a statistical fit uncertainty of 0.05 fm assuming 0.4%
point-to-point cross section uncertainties. This demonstrates
that a truncated polynomial fit of the E12-11-106 data alone is
highly suspect as a technique to determine an accurate radius.

A second upcoming experiment is the MUSE measurement
of μ±p and e±p scattering at the Paul Scherrer Institute [26].
This experiment will have six independent datasets (three
different beam momentum, two polarities) for each particle

type, covering a Q2 range of 0.0025–0.0775 GeV2. MUSE
will make a relative comparison of the ep and μp elastic
scattering cross sections and form factors, largely canceling
several systematic uncertainties including the truncation offset
in the radius extraction. Doing so will allow for a ≈0.01
fm measurement of the difference between the proton charge
radius as measured by electrons versus muons.

In summary, Sick [16] and Distler [18] have indicated
that a precise proton radius could not reliably be extracted
using a polynomial fit of the form factor. Using six form
factor parametrizations for which the radius is known, we
have confirmed that this is the case. In particular, we have
shown that the condition χ2

reduced ≈ 1 is not sufficient for the
extracted radius to be reliable. Due to the higher-order terms in
the polynomial fit, even an apparently good fit of the data can
have a significant offset from the real radius. This truncation
offset increases with fitting a wider range of data, but decreases
with fitting with a higher-order expansion. Even for a fit with
a small truncation offset, the offset can be large relative to the
fit uncertainty. Finally, we have also observed that for the six
form factor parametrizations used to generate pseudodata, the
truncation offset generally results in an extracted radius that is
smaller than the true radius.
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