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Thermalization of hadrons via Hagedorn states
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Hagedorn states are characterized by being very massive hadron-like resonances and by not being limited
to quantum numbers of known hadrons. To generate such a zoo of different Hagedorn states, a covariantly
formulated bootstrap equation is solved by ensuring energy conservation and conservation of baryon number B,
strangeness S, and electric charge Q. The numerical solution of this equation provides Hagedorn spectra, which
also enable us to obtain the decay width for Hagedorn states needed in cascading decay simulations. A single
Hagedorn state cascades by various two-body decay channels subsequently into final stable hadrons. All final
hadronic observables such as masses, spectral functions, and decay branching ratios for hadronic feed-down are
taken from a hadronic transport model. Strikingly, the final energy spectra of resulting hadrons are exponential,
showing a thermal-like distribution with the characteristic Hagedorn temperature.
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I. INTRODUCTION

In the 1960s physicists were puzzled by the diversity of
different hadron species growing with beam energy. Before
the emergence of quantum chromodynamics (QCD) as the
theory of strong interactions, many ideas arose to explain
these findings. Hagedorn [1] proposed to describe the variety
of particles found by a common mass spectrum, now better
known as Hagedorn spectrum, arising in the framework of
a “statistical bootstrap model.” In the infinite mass limit this
spectrum is exponentially rising where the slope is determined
by the Hagedorn “temperature” TH . Above this temperature
the partition function of a strongly interacting hadronic system
with such an exponential growth of states diverges and a new
state of matter, the quark gluon plasma (QGP), is assumed
to be realized. One of the most challenging problems is to
understand how this phase transition exactly occurs and which
new properties this new state of matter has. One possible tool
to investigate microscopically a phase transition from hadronic
to partonic phase is the application and generation of Hagedorn
states being created in multi-particle collisions [2–6]. These
resonances belong to the continuous part of the Hagedorn
spectrum and are allowed to have any mass larger than that of
the heaviest known hadron and also any quantum numbers as
long as they are compatible with their mass. Such Hagedorn
states can alter the occurrence of various phases from hadronic
to deconfined partonic matter [7–12].

The abundant appearance of Hagedorn states in the vicinity
of TH helps to explain how chemical equilibrium of hadrons
is achieved on timescales significantly smaller than the typical
lifetime of a fireball (t ≈ 10 fm/c). In Refs. [4–6], the au-
thors examined chemical equilibration times of (multi)strange
(anti)baryons at Relativistic Heavy Ion Collider (RHIC)
energies by solving a set of coupled rate equations. It was
assumed, that most abundant mesons (pions, kaons) “cluster”
to Hagedorn states which in turn decay into (anti)baryons,
driving them quickly into equilibrium. For example, the chem-
ical equilibration times of protons, kaons, and lambdas within
this approach are of the order of 1–2 fm/c. The inclusion of
Hagedorn states in a hadron resonance gas model provides a

lowering of the speed of sound, cs , at the phase transition,
and is in good agreement with lattice calculations [13–16].
In addition, by comparing calculations with the inclusion of
Hagedorn states to calculations without them, a significant
lowering of the shear viscosity to entropy ratio, η/s, is
observed [13,15,17,18]. The inclusion of Hagedorn states
creates a minor dependence of the thermal fit parameters
of particle ratios on the Hagedorn temperature, TH , which
is assumed to be equal to TC [19].

In order to describe the hadronization of jets in e+e−
annihilation events, different scenarios were developed during
the 1970s and 1980s: While the first one assumes independent
parton fragmentation [20], the fundamental objects of the
second approach are string excitations [21]. Finally, the basic
assumption of the latter is that partons tend to cluster in color
singlet states from the very beginning of the generated event.
These clusters then decay to smaller ones, until some cutoff
scale is reached and hadrons are formed [22,23]. An explicit
application of the statistical bootstrap model has been used
to calculate several properties of particles stemming from
decays of hadronic fireballs being created in relativistic heavy
ion collisions [24]. In the framework of relativistic quan-
tum molecular dynamics (RQMD) multiparticle collisions
and their decays were introduced by the so-called particle
clusters a particle system can separate into, provided that
separable interactions in the relativistic particle dynamics
exist. This clustering is, for example, fulfilled for colored
quarks and gluons [25]. Another statistical approach within
the microcanonical ensemble addressed the hadronization of
quark matter droplets [26]. A further statistical treatment of
Hagedorn states was performed in Ref. [27] by forcing detailed
balance between creation and decay of Hagedorn states with
a simplistic description of the spectrum in the low-mass
region. The authors made then the extreme assumption of one
single very heavy (∼100 GeV) Hagedorn state subsequently
decaying into stable hadrons giving rise to measured particle
multiplicities at RHIC and Super Proton Synchrotron (SPS)
energies. Terms such as “quark matter droplets,” “clusters,”
or “fireballs” may all be identified with possible Hagedorn
states, all describing color neutral systems. While none of
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them were ever observed directly, the inclusion of such color
neutral Hagedorn states helped, for example, to improve
the equation of state for many phenomena at hadronization
in heavy ion collisions. Thus, Hagedorn states describe the
physics close to the border between quark gluon plasma and
hadron resonance gas, and hence are a good tool to describe
the still not understood hadronization process happening in the
phase transition between the two.

The idea is thus to implement Hagedorn states into a
transport model, namely ultrarelativistic quantum molecular
dynamics (UrQMD) [28], where detailed balance between
their production in binary collisions and their decay into
two particles only should hold. Before doing so first the
branching ratios of Hagedorn states have to be developed,
which is the primary aim of this paper. This article is structured
as follows. In Sec. II derivation of a covariant bootstrap
equation is provided, along with the decay width formula
needed to obtain branching ratios of Hagedorn states into
various two-particle decay channels. In Sec. III multiplicities
of stable hadrons with respect to strong force are shown. Their
ratios are then compared to experimental data. In Sec. IV
the energy distribution of those decay hadrons is examined;
they move freely without further reinteractions, leading to
the remarkable result that they all are distributed in energy
in a thermal-like manner, exhibiting the same slope which
is the Hagedorn temperature TH , obtained from a fit of the
Hagedorn spectrum. Finally in Sec. V a conclusion is drawn
showing the opportunities Hagedorn states offer to understand
the hadronization process in elementary and also in heavy ion
collisions.

II. THEORETICAL FRAMEWORK

The main idea behind the statistical bootstrap model is the
postulate stating that fireballs consist of fireballs which in
turn consist of fireballs, etc., resulting in a common spectrum
with the remarkable feature that it grows exponentially in the
infinite mass limit. To put this postulate mathematically one
has to count the number of states of a relativistic particle i
enclosed in volume V according to [29],

dNi = 2miV
d4pi

(2π )3
δ
(
p2

i − m2
i

)
, (1)

which is modified to

dÑi = 2midmiτ �Ci
(mi)V

d4pi

(2π )3
δ
(
p2

i − m2
i

)
. (2)

In Eq. (2), dmiτ �Ci
(mi) is introduced to take into account

the mass degeneration. Thus particle i carrying the quantum
numbers denoted by �Ci = (Bi,Si,Qi) with four-momentum
between pi and pi + dpi might also take on different masses,
whose distribution is given by the function τ �Ci

. In the presented
work, only the case where two particles make up a Hagedorn
state of mass m and volume V is considered. Hence the total
number of states of such Hagedorn state made up by two
particles is given by a convolution of the constituents’ state
densities, dñi = d4Ñi/dp

4
i for i = 1,2, with the constraint

of strict total energy and quantum number conservation. The
mass degeneration of the created Hagedorn state is considered

according to Eq. (2) by τ �C , eventually leading to the bootstrap
equation

τ �C(m) = R3

3πm

∑
�C1, �C2

∫∫
dm1dm2 τ �C1

(m1) m1

×τ �C2
(m2) m2 pcm(m,m1,m2)δ �C, �C1+ �C2

, (3)

where pcm denotes the momenta of both constituent particles
with masses m1 and m2 in the rest frame of made up Hagedorn
state with mass m,

pcm(m,m1,m2) = 1

2m

√(
m2 − m2

1 − m2
2

)2 − 4m2
1m

2
2, (4)

as usual. The (spherical) volume V of the Hagedorn state
is expressed by its radius, R, which is considered to be
constant and set to some physical reasonable values. Contrary
to the well known noncovariant bootstrap equation [30,31],
the expression here is explicitly covariant. In the generalized
solution of (3), the number of constituents can theoretically
be more than 2. The reason to consider two constituents case
only is because Hagedorn states can and will be implemented
in UrQMD as a whole zoo of new particles. In this transport
scheme maximally two particles in the incoming channel are
allowed because the interaction probability is calculated on the
basis of cross sections. On the other hand resonance decays in
two hadrons are realized in UrQMD too, making possible an
implementation of further (2 ↔ 1) processes, now involving
Hagedorn states. For this kind of new processes the principle
of detailed balance will strictly hold. The accepted error by
the approximation of only two outgoing particles is about
30%, which can be estimated by looking at the Hagedorn state
decay probability into n particles, P (n) = (ln 2)n−1/(n − 1)!,
yielding a probability for the decay into two particles of 69%,
into three particles of 24%, etc. [30].

The bootstrap equation (3) in general is a highly nonlinear
integral equation of Volterra type which can be solved analyt-
ically for some special cases [32,33]. In Sec. III a numerical
solution of the bootstrap equation is provided considering the
general case containing all hadrons of UrQMD’s particle table.
The Hagedorn spectra, τ �C(m), telling us how many states exist
between m and m + dm, is needed to formulate the Hagedorn
state’s creation cross section and its total decay width. The
general cross section formula [34] in the center-of-mass frame
with creation matrix element |Mc| reads

dσ = (2π )4

4mpcm

|Mc|2d�n(p1 + p2; p3, . . . ,pn+2). (5)

For the production process (2 → 1) only one particle phase
space �1 and the mass degeneration τ �C has to be considered,
giving

σ = π |Mc|2
4m2pcm

τ �C(m). (6)

In the same way, the general decay formula [34] with decay
matrix element |Md | reads

d� = (2π )4

2m
|Md |2d�n(p; p1, . . . ,pn). (7)
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Since only a two-body decay (1 → 2) is of interest here,
calculation of the corresponding two-body phase space �2

is done by taking the mass degeneration for both constituents
into account, as was done similarly for the bootstrap equation,
resulting in

� �C = |Md |2
8πm2

∑
�C1, �C2

∫∫
dm1dm2τ �C1

(m1)τ �C2
(m2)

×pcm(m,m1,m2)δ �C, �C1+ �C2
. (8)

Additionally one has to sum over all pairs of quantum number
combinations �C1 and �C2 which are constrained by Kronecker’s
δ. It should be reemphasized that, due to the inclusion of the
mass degeneration into the decay width as in Eq. (8), the decay
scenario of Hagedorn resonances is not phase-space dominated
as in, e.g., [29]. On the contrary, the exponentially rising
Hagedorn spectra alter drastically the resulting distributions.

In the general formulas for cross section and decay width,
the creation and the decay matrix elements |Mc|2 and |Md |2
appear, which for Hagedorn states are at first unknown.
By demanding the principle of detailed balance for 2 ↔ 1
processes where Hagedorn states involved, |Mc|2 = |Md |2
holds, and one eventually arrives at

� �C(m) = σ

2π2τ �C(m)

∑
�C1, �C2

∫∫
dm1dm2τ �C1

(m1)

×τ �C2
(m2)p2

cm(m,m1,m2)δ �C, �C1+ �C2
. (9)

The cross section σ for inelastic scatterings resulting in
Hagedorn state production is unfortunately unknown. To make
a first, reasonable ansatz for σ the case is considered where
two Hagedorn states inelastically collide, producing another
Hagedorn state. Since the Hagedorn states are assumed to
be spherical with radius R, the fusion cross sections will be
considered to be just their geometrical projections, resulting
in σ = πR2. This holds also for processes where two hadrons
or a hadron together with a Hagedorn state fuse to a larger
Hagedorn state. More sophisticated assumptions about the
relevant cross sections are postponed to future studies [35].
Thus Hagedorn state’s radius R connects its production with
its decay properties via the principle of detailed balance. The
partial decay width of a Hagedorn state with mass m and charge
vector �C decaying into two particles with masses m1, m2 and
charges �C1, �C2 reads

d2� �C, �C1, �C2
(m,m1,m2) = σ

2π2
p2

cm(m,m1,m2) (10)

× dm1τ �C1
(m1)dm2τ �C2

(m2)

τ �C(m)
δ �C, �C1+ �C2

.

The two-body branching ratios B are just the ratios of partial
and total decay widths, Eqs. (10) and (9),

d2B �C, �C1, �C2
(m,m1,m2) = d2� �C, �C1, �C2

(m,m1,m2)

� �C(m)
, (11)

needed for calculation of hadronic multiplicities in cascade
simulations.

III. SPECTRAL LEVEL DENSITIES AND DECAY WIDTHS

To solve the bootstrap-equation one starts by inserting
known hadron spectral functions τ �Ci

on the right-hand side of
Eq. (3), resulting in first Hagedorn states on the left-hand side
of this equation. The low-mass inputs are the spectral functions
provided by the hadronic table of UrQMD consisting of 55
different baryons and 32 different mesons. In the subsequent
steps, these created Hagedorn states serve as constituents
in addition to the known sources. In each step, quantum
number conservation �C = �C1 + �C2 is assured. In this way one
proceeds by increasing the mass of possible Hagedorn states
by steps of 	m = 0.01 GeV. The computation time increases
with mass according to m8, since more and more constituent
pairs have to be taken into account. Thus the applicability
of this approach is limited to the region m � 8 GeV. The
numerical solution of the given bootstrap equation (3) for
a meson-like, nonstrange and electrically neutral (B = S =
Q = 0) Hagedorn spectrum for two different typical radii
(R1 = 0.8 fm, R2 = 1.0 fm) is presented in Fig. 1. In the same
figure also spectra for baryonic nonstrange and electrically
charged states (B = 1, S = 0, Q = 1) are shown. All Hage-
dorn spectra rise exponentially for masses � 1.5 GeV with
different slopes for different radii, but for m < 1.5 GeV they
all include and thus fit the hadronic part of the spectrum. Here
lies the major advantage of the present approach, since ad hoc
assumptions of the kind τ (m) = f (m) exp(m/TH ) with most
used prefunctions f (m) = Am−b or f (m) = A(m2 + m2

r )−b

fail to describe the low-mass region of the spectrum. The
slopes of the exponential part depend strongly on the size
of the Hagedorn state since in a larger one more states can
be counted than in a smaller one. The slope parameter is
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FIG. 1. (Color online) Meson-like (B = S = Q = 0) (upper
part) and baryonic (B = 1, S = 0, Q = 1) (lower part) Hagedorn
spectra for two different radii with corresponding (fitted) Hagedorn
temperatures. The black line represents the sum of spectral functions
of hadrons with the given quantum numbers.
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the well known Hagedorn temperature TH being extracted
with the fit function τfit(m) = Am−b exp(m/TH ), yielding
TH = 0.145 GeV for R = 1.0 fm and TH = 0.162 GeV for
R = 0.8 fm. Thus smaller Hagedorn states exhibit a larger
Hagedorn temperature depending on the energy density. The
Hagedorn temperature range is basically the same for mesonic
and baryonic spectra in the presented model, in contrast
to [36], where mesonic and baryonic Hagedorn temperatures
differ significantly because they were extracted not from the
continuous part of the Hagedorn spectrum but solely from
its low-mass region. The shown Hagedorn spectra pose the
question of why Hagedorn states, especially in the hadronic
mass range (m � 2.5 GeV), have not been observed yet. For
example, Hagedorn states like the one at m = 2 GeV with
quantum numbers B = Q = 2 and S = 0 are an inevitably
consequence of the solution of the bootstrap equation and
might be excluded by some more sophisticated approaches.
On the other hand there are speculations [36], based on
the identification of chiral multiplets, that the particle list
of the Particle Data Group [34] is not complete yet. Two
major experimental difficulties make Hagedorn states hard to
observe: the first one is the large decay width of Hagedorn
states [11], and the second, due to the small gaps compared to
the widths, is their degree of inseparability for masses beyond
the hadronic range. In [36,37] the authors discuss possible
missing resonances at low masses such as m = 1.7 GeV, or
missing strange baryons. In addition, in [38] arguments are
given that the large decay width of the Hagedron states make
them hard to observe, as already mentioned.

In Fig. 2 the total decay width of a meson-like, nonstrange
and electrically uncharged (B = S = Q = 0) Hagedorn state
for the same two radii as before is shown. The total decay width
of a Hagedorn state consists of three distinct contributions,
where the first one considers only hadrons, the second hadrons
and Hagedorn states, and the third one only Hagedorn states in
the outgoing channel. The peak in the mass range of MHS =
0–2 GeV comes mainly from the first contribution, because
in this mass range the phase space for pure hadronic decay
is largest. The height of the peak depends on the number
of hadronic pairs, whose quantum numbers all sum up to
the quantum number of the Hagedorn state they are building
up, which is large for B = S = Q = 0. Another remarkable
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FIG. 2. (Color online) Total decay width of charge neutral Hage-
dorn state for two different radii.

feature is that for both radii the total decay width tends to a
constant value depending only on R. This finding resembles
an idea put forward in [11] that the width of a heavy Hagedorn
state should depend only on its size.

IV. MULTIPLICITIES AND THERMAL-LIKE
ENERGY SPECTRA

Having the numerous branching ratios (11) at hand, one
is able to calculate hadronic multiplicities stemming from
Hagedorn state decays. Here one starts with some initial
(heavy) Hagedorn state, which decays subsequently down until
hadrons are left only. Among those also nonstable resonances
might appear, which further undergo a hadronic feed-down,
leaving one with light and stable hadrons with respect to the
strong force, such as pions, kaons, etc.. All hadronic properties
used here were taken from the transport model UrQMD.

Calculated multiplicities for some uncharged (B = S =
Q = 0) initial Hagedorn state are shown in Fig. 3. One
observes a linear dependence of all multiplicities on the initial
Hagedorn state mass where the magnitude depends on the
available phase space for each hadron. Thus, in a decay of
a charge neutral Hagedorn state, π− dominate, which have
to be produced in pairs mostly with π+ since exact charge
conservation is enforced. Kaons, especially K−, are even
more strongly suppressed not only because of their larger
mass but also due to the fact that they have to conserve both
electric charge and strangeness. For the baryons presented
the same argument holds, since both have to conserve baryon
number B and additionally electric charge Q for proton and
strangeness S for 
. As expected for the multistrange hyperons
�0 and �− the production suppression is even stronger. In
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FIG. 3. (Color online) Hadronic multiplicities after a cascade
decay of Hagedorn state with radius R = 0.8 fm and B = S = Q = 0
(upper part) and B = 1, S = −3, Q = −1 (lower part) and the
following hadronic feed-down.
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FIG. 4. (Color online) Energy spectra of hadrons stemming from
cascade decay of a charge neutral Hagedorn state with radius R =
0.8 fm and initial masses MHS = 4 GeV and MHS = 8 GeV.

the calculations a mean number of strange quarks 〈s〉 =
0.548 at MHS = 4 GeV and 〈s〉 = 1.232 at MHS = 8 GeV
is obtained, confirming the stronger strangeness suppression
at low Hagedorn state masses. This has to be contrasted
with the results for a baryonic, multistrange, and electrically
charged (B = 1, S = −3, Q = −1) �−-like Hagedorn state
also shown in Fig. 3. Now the choice of the Hagedorn
state’s initial quantum numbers is reflected in the preference
of baryon production, although they are much heavier than
the presented mesons. Especially the abundance of hyperons
(�−,�0) compared to the case discussed before is striking,
since the easiest way to conserve the initial quantum numbers
is the production of one �−π0 or one �0K− pair, where on
the other hand the phase space for all other hadrons with
different quantum numbers is suppressed now. Hence exact
conservation of quantum numbers always causes a competition
between a hadron’s phase space and its quantum numbers.

The energy distributions of final hadrons stemming from
Hagedorn state decays in these cascading decay simulations
are a further intriguing result of this work. They are shown
in Fig. 4 for an uncharged (B = S = Q = 0) Hagedorn state
with initial masses MHS = 4 GeV and MHS = 8 GeV. The
energy distributions for all species presented follow some
exponential law with the same slope being independent of
the Hagedorn state’s initial mass. Thus the energies of these
final hadrons have a Boltzmann-like distribution, which in
turn means that their distribution obeys a “thermal” state at
a temperature of Tth = 0.162 GeV. This is not established
due to multiparticle collisions, because after the decay these
final hadrons move freely and do not reinteract with each
other again. It is quite remarkable, since this is more or less
exactly the Hagedorn temperature (cf. Fig. 1). The Hagedorn
temperature TH was nothing but a slope parameter to fit the
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FIG. 5. (Color online) Hadronic ratios stemming from cascade
decay of a charge neutral Hagedorn state with radius R = 0.8 fm.

exponential part of the Hagedorn spectrum, where on the
other hand Tth is a slope of Boltzmann-like distribution of
the created hadron resonance gas. Starting with a bootstrap
formula with no introduction of any notion of temperatures at
all resulted in a “thermalized” decay with Tth 	 TH . This has
to be contrasted with purely microcanonical considerations,
where one assumes that all final states are equiprobable. Due
to the derived branching ratios of Eq. (11) plus the final
hadronic decays, this is not the case in the present work. Thus,
while yielding the same results, namely that the Hagedorn
temperature is recovered in the spectra, their origins are
different. In the present work, the decay properties are not only
phase space dominated, but due to the exponential rising mass
degeneration, are modified such that the energy spectra yield
the Hagedorn temperature. This result has to be compared with
microcanonical analysis of an exponentially growing mass
spectrum, where the occurrence of thermally and chemically
equilibrated hadron gas at the Hagedorn temperature in contact
with a Hagedorn thermostat [7] has been demonstrated.

In Fig. 5 various ratios of the most interesting stable hadrons
stemming from a decay of an uncharged (B = S = Q = 0)
Hagedorn state with R = 0.8 fm are presented. Numerical
values for the multiplicity ratios for Hagedorn state masses of
4 and 8 GeV are listed in Table I and compared to experimental
results for p-p and Pb-Pb collisions at midrapidity, both

TABLE I. Comparison of particle multiplicity ratios from theory
vs p-p at

√
sNN = 0.9 TeV [39] and Pb-Pb at

√
sNN = 2.76 TeV [40–

42], both from ALICE at LHC. Calculated values are listed for
Hagedorn state masses of 4 GeV and 8 GeV. Numbers in brackets
denote the error in the last digits of the multiplicity ratios.

p-p Pb-Pb 4 GeV 8 GeV

K−/π− 0.123(14) 0.149(16) 0.187 0.210
p/π− 0.053(6) 0.045(5) 0.043 0.066

/π− 0.032(4) 0.036(5) 0.021 0.038

/p 0.608(88) 0.78(12) 0.494 0.579
�−/π− 0.003(1) 0.0050(6) 0.0023 0.0066
�−/π− · 10−3 — 0.87(17) 0.086 0.560
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measured by the ALICE Collaboration at the Large Hadron
Collider (LHC).

The theoretical multiplicity ratios lie rather close to ones
measured by ALICE, except for the very rare multi-strange
baryon �−. However, it has to be made clear that the decay
of Hagedorn states alone is never assumed to describe the
experimental data in heavy ion collisions. On the contrary,
Hagedorn state branching ratios in (11) appear physically
reasonable and reliable, enabling one to implement these
Hagedorn states into a full dynamical picture of UrQMD.
Results of these investigations will be presented in upcoming
papers [35], which are beyond the scope of this article.

V. CONCLUSIONS

In the context of heavy ion collisions Hagedorn states have
to be considered as a phenomenological tool to describe the
phase transition from the quark gluon plasma to the hadron
resonance gas. This phase transition is believed to occur around
the critical temperature Tc, which in our understanding equals
the Hagedorn temperature TH , where Hagedorn states appear
most abundantly. At this stage of phase transition they serve
as “intermediate” states which decay directly or via a decay
chain into final known hadrons. Also in smaller systems like
e+-e− or p-p lighter color neutral blobs or clusters may be
created which solely decay [22,23]. For such small systems
one employed thermal descriptions with exact conservation of
strangeness [43] or incorporating a strangeness suppression
factor γs [44] where the conditions for their applicability were
investigated in [45,46]. On the other hand, in relativistic heavy
ion collisions larger objects may be generated which then also

interact and are decaying and regenerated. This may lead to
a faster equilibration close to the phase transition [4,6] and
might explain the success of the statistical model [47,48].
The statistical model has also been employed for much
smaller systems in elementary collisions [45,46]. One of the
defined goals of the PANDA collaboration at the Facility for
Antiproton and Ion Research (FAIR, Darmstadt) is the search
for new exotic states [49].

Summarizing, such a finding gives new insight into the
microscopic and thermal-like hadronization in ultrarelativistic
e+-e− (see, e.g., [44]), hadron-hadron, and especially heavy
ion collisions: An implementation of the presented Hagedorn
state decays in addition to their production mechanisms
into the transport approach UrQMD offers a new venue
for allowing hadronic multiparticle collisions in a consistent
scheme, wich is important in the vicinity of the deconfinement
transition. Understanding faster thermalization and chemical
equilibration, and also microscopic transport properties, can
be thoroughly investigated in the future [35].
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