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Role of diquark correlations and the pion cloud in nucleon elastic form factors
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Electromagnetic form factors of the nucleon in the spacelike region are investigated within the framework of
a covariant and confining Nambu–Jona-Lasinio model. The bound-state amplitude of the nucleon is obtained
as the solution of a relativistic Faddeev equation, where diquark correlations appear naturally as a consequence
of the strong coupling in the color 3̄ qq channel. Pion degrees of freedom are included as a perturbation to the
“quark-core” contribution obtained using the Poincaré covariant Faddeev amplitude. While no model parameters
are fit to form-factor data, excellent agreement is obtained with the empirical nucleon form factors (including the
magnetic moments and radii) where pion loop corrections play a critical role for Q2 � 1 GeV2. Using charge
symmetry, the nucleon form factors can be expressed as proton quark sector form factors. The latter are studied in
detail, leading, for example, to the conclusion that the d-quark sector of the Dirac form factor is much softer than
the u-quark sector, a consequence of the dominance of scalar diquark correlations in the proton wave function.
On the other hand, for the proton quark sector Pauli form factors we find that the effect of the pion cloud and
axial-vector diquark correlations overcomes the effect of scalar diquark dominance, leading to a larger d-quark
anomalous magnetic moment and a form factor in the u-quark sector that is slightly softer than in the d-quark
sector.
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I. INTRODUCTION

The electromagnetic form factors of a nucleon provide
information on its internal momentum space distribution of
charge and magnetization, thus furnishing a unique window
into the quark and gluon substructure of the nucleon. Building
a bridge between QCD and the observed nucleon properties
is a key challenge for modern hadron physics and recent
form-factor measurements, for example, demonstrate that a
robust understanding of nucleon properties founded in QCD
is just beginning.

A key example of the impact of such measurements is
provided by the polarization transfer experiments [1–6], which
revealed that the ratio of the proton’s electric to magnetic
Sachs form factors, μp GEp(Q2)/GMp(Q2), is not constant but
instead decreases almost linearly with Q2. These experiments
dispelled decades of perceived wisdom which perpetuated
the view that the nucleon contained similar distributions
of charge and magnetization. Nucleon form-factor data at
large Q2 can also be used to test the scaling behavior
predicted by perturbative QCD, which, for example, makes
the prediction that Q2 F2p(Q2)/F1p(Q2) should tend to a
constant as Q2 → ∞ [7,8]. However, recent data extending
to Q2 � 8 GeV2 [5,6] find scaling behavior much closer to
QF2p(Q2)/F1p(Q2), which has been attributed to the quark
component of the nucleon wave function possessing sizable
orbital angular momentum [9]. An interesting recent example,
which demonstrates that there is much of a fundamental
nature still to learn in hadron physics, involves the muonic
hydrogen experiments [10,11] that found a proton charge
radius some 4% smaller than that measured in elastic elec-
tron scattering or electronic hydrogen, representing a 7σ
discrepancy. As yet there is no accepted resolution to this
puzzle [12–14].

It is clear, therefore, that a quantitative theoretical under-
standing of nucleon form factors in terms of the fundamental
degrees of freedom of QCD, namely the quarks and gluons,
remains an important goal. This task is particularly challenging
because nucleon form factors parametrize the amplitude for a
nucleon to interact through a current and remain a nucleon
for arbitrary spacelike momentum transfer. Therefore, long-
distance nonperturbative effects associated with quark binding
and confinement must play an important role at all Q2, while,
because of asymptotic freedom at short distances, perturbative
QCD must also be relevant at large momentum transfer. This
scenario is somewhat in contrast to that found with the structure
functions measured in deep inelastic scattering, which can be
factorized into short-distance Wilson coefficients, calculable
in perturbative QCD, and the long-distance parton distribution
functions (PDFs) which encode nonperturbative information
on the structure of the bound state. A consequence of factoriza-
tion is that once the PDFs are known at a scale Q2

0 � �2
QCD, the

Q2 evolution of the PDFs, on the Bjorken x domain relevant
to hadron structure, is governed by the DGLAP evolution
equations [15–17]. An analogous factorization is not possible
for the nucleon electromagnetic form factors.

Here we investigate the nucleon electromagnetic form
factors using the Nambu–Jona-Lasinio (NJL) model [18–22],
which is a Poincaré covariant quantum field theory with many
of the same low-energy properties as QCD. For example,
it encapsulates the key emergent phenomena of dynamical
chiral symmetry breaking and confinement.1 This model
also has the same flavor symmetries as QCD and should

1Standard implementations of the NJL model are not confining. This
can be seen in results for hadron propagators which develop imaginary

0556-2813/2014/90(4)/045202(29) 045202-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevC.90.045202
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therefore provide a robust chiral effective theory of QCD valid
at low to intermediate energies. The NJL model is solved
nonperturbatively, using the standard leading-order truncation.
Finally, to respect chiral symmetry effectively, we also include
pion degrees of freedom in a perturbative manner. This proves
essential [23–25] for a good description of the nucleon form
factors below Q2 ∼ 1 GeV2.

The outline of the paper is as follows. Section II gives an
introduction to the NJL model, encompassing the gap equation,
the Bethe-Salpeter equation and the relativistic Faddeev equa-
tion. In Sec. III we explain how to calculate the matrix elements
of the quark electromagnetic current which give the nucleon
electromagnetic form factors. A key ingredient is the dressed
quark-photon vertex: the interaction of a virtual photon with
a nonpointlike constituent, or dressed quark, which is detailed
in Sec. IV. Pion loop effects at the constituent quark level are
also discussed and results for dressed quark form factors are
presented. Because the nucleon emerges as a quark-diquark
bound state, a critical step in determining the nucleon form
factors is to determine the electromagnetic current for the
relevant diquarks. This is discussed in Sec. V for scalar and
axial-vector diquarks, together with form-factor results for the
pion and ρ mesons, which are the q̄q analogs of these diquarks.
The electromagnetic current of the nucleon is determined in
Sec. VI, where the role of pion loop effects is discussed in
detail. Careful attention is paid to the flavor decomposition
of the nucleon form factors and the interpretation of their
Q2 dependence in terms of the interplay between the roles
of diquark correlations and pionic effects within the nucleon.
Comparisons with experiment are presented and inferences
drawn regarding features of the data and connections to the
quark structure within the nucleon. Conclusions are presented
in Sec. VII.

II. NAMBU–JONA-LASINIO MODEL

The NJL model, while originally a theory of elementary
nucleons [18,19], is now interpreted as a QCD-motivated chiral
effective quark theory characterized by a 4-fermion contact
interaction between the quarks [20–22]. A salient feature of
the model is that it is a Poincaré covariant quantum field
theory where interactions dynamically break chiral symmetry,
giving rise to dynamically generated dressed quark masses,
a pion that is a q̄q bound state with the properties of a
pseudo-Goldstone boson and a large mass splitting between
low-lying chiral partners. The NJL model has a long history
of success in the study of meson properties [20,22] and more
recently as a tool to investigate baryons as 3-quark bound
states using the relativistic Faddeev equation [26–28]. Recent
examples include the study of nucleon PDFs [29–33], quark
fragmentation functions [34,35], and transverse momentum-
dependent PDFs [36,37]. Finally, we mention that the NJL

pieces in particular kinematical domains, indicating that the hadron
can decay into quarks. In the version of the NJL model used here quark
confinement is introduced via a particular regularization prescription
which eliminates these unphysical thresholds. This regularization
procedure is discussed in Sec. II.

−1
=

−1
+

FIG. 1. (Color online) The NJL gap equation in the Hartree-Fock
approximation, where the thin line represents the elementary quark
propagator, S−1

0 (k) = /k − m + iε, and the shaded circle represents
the q̄q interaction kernel given in Eq. (2). Higher-order terms,
attributed to meson loops, for example, are not included in the gap
equation kernel.

model has been used to study the self-consistent modification
of the structure of the nucleon in-medium and its role in the
binding of atomic nuclei [38].

The SU(2) flavor NJL Lagrangian relevant to this study, in
the q̄q interaction channel, reads2

L = ψ̄(i/∂ − m̂)ψ

+ 1
2 Gπ [(ψ̄ψ)2 − (ψ̄ γ5 �τ ψ)2] − 1

2 Gω(ψ̄ γ μ ψ)2

− 1
2 Gρ[(ψ̄ γ μ�τ ψ)2 + (ψ̄ γ μγ5 �τ ψ)2], (1)

where m̂ ≡ diag[mu,md ] is the current quark mass matrix
and the 4-fermion coupling constants in each chiral channel
are labeled by Gπ , Gω, and Gρ . Throughout this paper we
take mu = md = m. The interaction Lagrangian can be Fierz
symmetrized, with the consequence that after a redefinition
of the 4-fermion couplings one need only consider direct
terms in the elementary interaction [28]. The elementary
quark-antiquark interaction kernel is then given by

Kαβ,γ δ =
∑
�

K� �αβ �̄γ δ

= 2i Gπ [(1)αβ(1)γ δ − (γ5τi)αβ(γ5τi)γ δ]

− 2i Gρ[(γμτi)αβ(γ μτi)γ δ + (γμγ5τi)αβ(γ μγ5τi)γ δ]

− 2i Gω(γμ)αβ(γ μ)γ δ, (2)

where the indices label Dirac, color, and isospin.
The building blocks of mesons and baryons in the NJL

model are the quark propagators. The NJL dressed quark
propagator is obtained by solving the gap equation, which
at the level of approximation used here is illustrated in Fig. 1

2The complete SU(2) flavor NJL interaction Lagrangian can, in
principle, also contain the chiral singlet terms

1
2 Gη[(ψ̄ �τ ψ)2 − (ψ̄ γ5 ψ)2] − 1

2 Gf (ψ̄ γ μγ5 ψ)2

− 1
2 GT [(ψ̄ iσμνψ)2 − (ψ̄ iσμν �τ ψ)2].

The complete Lagrangian explicitly breaks UA(1) symmetry unless
Gη = Gπ and GT = 0. These are the conditions imposed on the NJL
Lagrangian by chiral symmetry if the chiral group is enlarged to three
flavors, where the UA(1) symmetry is usually broken by introducing
a 6-fermion interaction [20,22].
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and reads3

iS−1(k) = iS−1
0 (k) −

∑
�

K� �

∫
d4�

(2π )4
Tr[�̄ iS(�)], (3)

where S−1
0 (k) = /k − m + iε is the bare quark propagator

and the trace is over Dirac, color, and isospin indices. The
only piece of the q̄q interaction kernel given in Eq. (2)
that contributes to the gap equation expressed in Eq. (3) is
the isoscalar-scalar interaction 2i Gπ (1)αβ(1)γ δ . This yields a
solution of the form

S(k) = 1

/k − M + iε
. (4)

The interaction kernel in the gap equation of Fig. 1 is local and
therefore the dressed quark mass, M , is a constant and satisfies

M = m + 12 i Gπ

∫
d4�

(2π )4
TrD[S(�)], (5)

where the remaining trace is over Dirac indices. For sufficiently
strong coupling, Gπ > Gcritical, Eq. (5) supports a nontrivial
solution with M > m, which survives even in the chiral limit
(m = 0).4 This solution is a consequence of dynamical chiral
symmetry breaking (DCSB) in the Nambu-Goldstone mode
and it is readily demonstrated, by calculating the total energy
[39], that this phase corresponds to the ground state of the
vacuum.

The NJL model is a non-renormalizable quantum field the-
ory; therefore, a regularization prescription must be specified
to fully define the model. We choose the proper-time regular-
ization scheme [38,40,41], which is introduced formally via
the relation

1

Xn
= 1

(n − 1)!

∫ ∞

0
dτ τn−1 e−τ X,

−→ 1

(n − 1)!

∫ 1/�2
IR

1/�2
UV

dτ τn−1 e−τ X, (6)

where X represents a product of propagators that have been
combined using Feynman parametrization. Only the ultraviolet
cutoff, �UV, is needed to render the theory finite; however, for
bound states of quarks we also include the infrared cutoff, �IR.
This has the effect of eliminating unphysical thresholds for
the decay of hadrons into free quarks and therefore simulates
aspects of quark confinement in QCD.

Mesons in the NJL model are quark–antiquark bound
states whose properties are determined by first solving the
Bethe-Salpeter equation (BSE). The kernels of the gap and

3In principle, there is an infinite tower of higher-order terms that
can appear in the NJL gap equation kernel, with meson loops an
important example. However, in keeping with the standard treatment,
these higher-order terms are not included. We do, however, include
a single pion loop as a perturbative correction to the quark-photon
vertex. This is discussed in Sec. IV.

4In the proper-time regularization scheme defined in Eq. (6) the
critical coupling in the chiral limit has the value Gcritial = π2

3 (�2
UV −

�2
IR)−1.

q
= +

q

FIG. 2. (Color online) NJL Bethe-Salpeter equation for the
quark-antiquark t matrix, represented as the double line with the
vertices. The single line corresponds to the dressed quark propagator
and the BSE q̄q interaction kernel, consistent with the gap equation
kernel used in Eq. (5), is given by Eq. (2).

BSEs are intimately related, as exemplified by the vector and
axial-vector Ward-Takahashi identities, which relate the quark
propagator to inhomogeneous Bethe-Salpeter vertices [42].
The NJL BSE, consistent with the gap equation of Fig. 1, is
illustrated in Fig. 2 and reads

T (q) = K +
∫

d4k

(2π )4
K S(k + q) S(k) T (q), (7)

where q is the total momentum of the two-body system, T
is the two-body t matrix, and K is the q̄q interaction kernel
given in Eq. (2). Dirac, color and isospin indices have been
suppressed in Eq. (7). Solutions to the BSE in the q̄q channels
with quantum numbers that correspond to those of the pion,5

ρ, and ω have the forms

Tπ (q)αβ,γ δ = (γ5τi)αβ τπ (q) (γ5τi)γ δ, (8)

Tρ(q)αβ,γ δ = (γμτi)αβ τμν
ρ (q) (γντi)γ δ, (9)

Tω(q)αβ,γ δ = (γμ)αβ τμν
ω (q) (γν)γ δ, (10)

where τi are the Pauli matrices and

τπ (q) = −2i Gπ

1 + 2 Gπ �PP (q2)
, (11)

τμν
ρ (q) = −2i Gρ

1 + 2 Gρ �V V (q2)

[
gμν + 2 Gρ �V V (q2)

qμqν

q2

]
,

(12)

τμν
ω (q) = −2i Gω

1 + 2 Gω �V V (q2)

[
gμν + 2 Gω �V V (q2)

qμqν

q2

]
.

(13)

The functions τπ (q), τμν
ρ (q), and τμν

ω (q) are the reduced t
matrices, which are interpreted as propagators for the pion, ρ,
and ω mesons. The bubble diagrams in Eqs. (11)–(13) have

5The NJL Lagrangian of Eq. (1) implies that the Gρ(ψ̄ γ μγ5 �τ ψ)2

q̄q interaction should also contribute in the pionic channel, giving
rise to π -a1 mixing. However, because the a1 meson is much heavier
than the pion, the amount of mixing is small and we therefore ignore
π -a1 mixing in this work.
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the form

�PP (q2)δij = 3i

∫
d4k

(2π )4
Tr[γ5 τi S(k) γ5 τj S(k + q)],

(14)

�V V (q2)

(
gμν − qμqν

q2

)
δij

= 3i

∫
d4k

(2π )4
Tr[γ μτi S(k) γ ντj S(k + q)], (15)

where the traces are over Dirac and isospin indices. Meson
masses are then defined by the pole in the corresponding two-
body t matrix.

In a covariant formulation a two-body t matrix, near a
bound-state pole of mass mi , behaves as

T (q) → �i(q) �i(q)

q2 − m2
i

, (16)

where �i(q) is the normalized homogeneous Bethe-Salpeter
vertex function for the bound state. Expanding the t matrices
in Eqs. (8)–(10) about the pole masses gives

�i
π =

√
Zπ γ5 τi, �μ,i

ρ = √
Zρ γ μ τi, �μ

ω =
√

Zω γ μ,

(17)

where i is an isospin index and the normalization factors are
given by

Z−1
π = − ∂

∂q2
�PP (q2)

∣∣∣
q2=m2

π

, (18)

Z−1
ρ,ω = − ∂

∂q2
�V V (q2)

∣∣∣
q2=m2

ρ,ω

. (19)

These residues are interpreted as the effective meson-quark-
quark coupling constants. Homogeneous Bethe-Salpeter ver-
tex functions are an essential ingredient in, for example,
triangle diagrams that determine the meson form factors.

Baryons in the NJL model are naturally described as
bound states of three dressed quarks. The properties of
these bound states are determined by the relativistic Faddeev
equation whose solution gives the Poincaré covariant Faddeev
amplitude. To construct the interaction kernel of the
Faddeev equation we require the elementary quark-quark in-
teraction kernel. Using Fierz transformations to rewrite Eq. (1)
as a sum of qq interactions, keeping only the isoscalar-scalar
(0+,T = 0) and isovector–axial-vector (1+,T = 1) two-body
channels, the NJL interaction Lagrangian takes the form

LI,qq = Gs[ψ̄ γ5 C τ2 βA ψ̄T ][ψT C−1γ5 τ2 βA ψ]

+Ga[ψ̄ γμ C τiτ2 βA ψ̄T ][ψT C−1γ μ τ2τi βA ψ],

(20)

where C = iγ2γ0 is the charge conjugation matrix and the
couplings Gs and Ga give the strength of the scalar and axial-
vector qq interactions. Because only color 3̄ qq states can
couple to a third quark to form a colorless 3-quark state, we

must have βA =
√

3
2 λA(A = 2,5,7) [28]. The Lagrangian of

Eq. (20) gives an elementary qq interaction kernel,

Kαβ,γ δ = 4i Gs(γ5 C τ2 βA)αβ(C−1 γ5 τ2 βA)γ δ

+ 4i Ga(γμ C τiτ2 βA)αβ(C−1 γ μ τ2τi βA)γ δ. (21)

This kernel has been truncated to support only scalar and
axial-vector diquark correlations because the pseudoscalar and
vector diquark components of the nucleon must predominantly
be in � = 1 states and are therefore suppressed. Pseudoscalar
and vector diquarks are also usually found to be considerably
heavier than their scalar and axial-vector counterparts [43].

Using Eq. (21) as the interaction kernel in the Faddeev
equation allows us to first sum all two-body qq interactions to
form the scalar and axial-vector diquark t matrices. Diquark
correlations in the nucleon are therefore a natural consequence
of the strong coupling in the color 3̄ quark-quark interaction
channel. The BSE in the qq channel for our NJL model reads

T (q) = K + 1

2

∫
d4k

(2π )4
K S(k + q) S(−k) T (q), (22)

where K is given in Eq. (21) and there is a symmetry factor of
1
2 relative to the q̄q BSE of Eq. (7). The solutions to the BSE
in the scalar and axial-vector diquark channels are

Ts(q)αβ,γ δ = (γ5 C τ2 βA)αβτs(q)(C−1γ5 τ2 βA)γ δ, (23)

Ta(q)αβ,γ δ = (γμ C τiτ2 βA)αβτμν
a (q)(C−1γν τ2τi βA)γ δ, (24)

where

τs(q) = −4i Gs

1 + 2 Gs �PP (q2)
, (25)

τμν
a (q) = −4i Ga

1 + 2 Ga �V V (q2)

[
gμν + 2 Ga �V V (q2)

qμqν

q2

]
.

(26)

The scalar and axial-vector diquark masses are defined as
the poles6 in Eqs. (25) and (26), respectively, and the
homogeneous Bethe-Salpeter vertices read

�s =
√

Zs γ5 C τ2 βA, �μ,i
a =

√
Za γ μ C τi τ2 βA, (27)

where i is an isospin index. The pole residues are given by

Z−1
s = −1

2

∂

∂q2
�PP (q2)

∣∣∣
q2=M2

s

, (28)

Z−1
a = −1

2

∂

∂q2
�V V (q2)

∣∣∣
q2=M2

a

, (29)

where Ms and Ma are the scalar and axial-vector diquark
masses. These pole residues are interpreted as the effective
diquark-quark-quark couplings.

6In QCD these poles should not exist, because diquarks, as colored
objects, are not part of the physical spectrum. Nevertheless, diquark
states play a very important role in many phenomenological studies,
for example, in the spin and flavor dependence of nucleon PDFs
[44,45]. They have also been observed in lattice QCD studies [46]
as well as model studies of QCD, for example, in the rainbow-ladder
truncation of the Dyson-Schwinger equations (DSEs). In the DSE
approach diagrams beyond the rainbow-ladder truncation have been
shown to remove the pole in the diquark t matrix [47].
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p
=

p

FIG. 3. Homogeneous Faddeev equation for the nucleon in the
NJL model. The single lines represent the quark propagator and the
double lines the diquark propagators. Both scalar and axial-vector
diquarks are included in these calculations.

The homogeneous Faddeev equation is illustrated in Fig. 3,
where diquark correlations have been made explicit. The
relativistic Faddeev equation in the NJL model has been
solved numerically in Refs. [48–50], where the integrals
were regularized using the Lepage-Brodsky and transverse
momentum cutoff schemes. In the proper-time regularization
scheme used here, solving the Faddeev equation is much more
challenging and we therefore employ the static approximation
to the quark exchange kernel. In this approximation the
propagator of the exchanged quark becomes S(k) → − 1

M
[48].

The nucleon vertex function then takes the form

�N (p) =
√

−ZN � =
√

−ZN

[
�s(p)

�
μ,i
a (p)

]

=
√

−ZN

[
α1(

α2
pμ

MN
γ5 + α3 γ μγ5

)
τi√

3

]
χ (t) u(p),

(30)

where i is an isospin index and χN (t) is the nucleon isospinor:

χ
(

1
2

) =
(

1
0

)
, χ

(− 1
2

) =
(

0
1

)
. (31)

The first element in the column vector of Eq. (30) represents
the piece of the nucleon vertex function consisting of a quark
and a scalar diquark, while the second element represents the
quark and axial-vector diquark component. The nucleon mass
is labeled by MN and the Dirac spinor is normalized such that
ūN uN = 1. ZN is the nucleon vertex function normalization
and α1,α2,α3 are obtained by solving the Faddeev equation.
After projection onto positive parity, spin- 1

2 and isospin- 1
2 , the

homogeneous Faddeev equation is given by [28]

�N (p,s) = K(p) �N (p,s), (32)

which in matrix form reads[
�s

�
μ
a

]
= 3

M

[
�Ns

√
3γαγ5 �

αβ
Na√

3γ5γ
μ �Ns −γαγ μ �

αβ
Na

] [
�s

�a,β

]
. (33)

The quark-diquark bubble diagrams are defined as

�Ns(p) =
∫

d4k

(2π )4
τs(p − k) S(k), (34)

�
μν
Na(p) =

∫
d4k

(2π )4
τμν
a (p − k) S(k). (35)

TABLE I. Model parameters constrained to reproduce the physi-
cal pion, ρ, and ω masses; the pion decay constant; and the nucleon
and � baryon masses. The infrared regulator and the dressed quark
mass are assigned their values a priori. The regularization parameters
and dressed quark mass are in units of GeV, while the couplings are
in units of GeV −2.

�IR �UV M Gπ Gρ Gω Gs Ga

0.240 0.645 0.4 19.0 11.0 10.4 5.8 4.9

The vertex normalization of Eq. (30) is given by

ZN =
[
�

∂ �N (p)

∂p2
�

]−1

p2=M2
N

, (36)

where

�N (p) =
[
�Ns(p) 0

0 �
αβ
Na(p)

]
. (37)

Regulating expressions such as those in Eqs. (34) and (35)
using the proper-time scheme is tedious. Therefore, to render
the Faddeev equation and form-factor calculations tractable
we make the pole approximation to the meson and diquark t
matrices; for example, Eqs. (25) and (26) become

τs(q) → − i Zs

q2 − M2
s + i ε

, (38)

τμν
a (q) → − i Za

q2 − M2
a + i ε

(
gμν − qμqν

M2
a

)
. (39)

Similar expressions are obtained in the meson sector.
In summary, the model parameters consist of the two

regularization scales �IR and �UV, the dressed quark mass
M ,7 and the Lagrangian coupling constants Gπ , Gρ , Gω,
Gs , Ga . The infrared regularization scale is associated with
confinement and therefore should be of the order �QCD, and
we choose �IR = 0.240 GeV and for the constituent quark
mass take M = 0.4 GeV. The physical pion mass (mπ =
140 MeV) and decay constant (fπ = 92 MeV) determine �UV

and Gπ . The physical masses of the ρ (mρ = 770 MeV) and ω
(mω = 782 MeV) mesons constrain Gρ and Gω, respectively,
while the physical nucleon (MN = 940 MeV) and � (M� =
1232 MeV) baryon masses determine Gs and Ga .8 Numerical
values are given in Table I.

Using the parameters given in Table I, we obtain the
following results for the residues of the two-body t matrices:
Zπ = 17.9, Zρ = 6.96, Zω = 6.63, Zs = 11.1, and Za =
6.73. For the nucleon vertex function of Eq. (30) we find
ZN = 28.1 and (α1, α2, α3) = (0.55, 0.05,−0.40), where the
scalar and axial-vector diquark masses are Ms = 0.768 GeV
and Ma = 0.929 GeV.

7Alternatively, one could specify a current quark mass, as one
determines the other through the gap equation.

8The relativistic Faddeev equation for the � baryon is discussed,
for example, in Ref. [28].
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III. NUCLEON ELECTROMAGNETIC CURRENT

The electromagnetic current of an on-shell nucleon, ex-
pressed in terms of the Dirac and Pauli form factors, has the
form

j
μ
λ′ λ(p′,p) = 〈p′, λ′|Jμ

em|p, λ〉

= u(p′, λ′)
[
γ μ F1(Q2)+ iσμνqν

2 MN

F2(Q2)

]
u(p, λ),

(40)

where q = p′ − p is the 4-momentum transfer, Q2 ≡ −q2,
and λ, λ′ represent the initial and final nucleon helicity,
respectively. The nucleon’s electric and magnetic Sachs form
factors [51], which diagonalize the Rosenbluth cross section,
are then given by

GE(Q2) = F1(Q2) − Q2

4 M2
N

F2(Q2), (41)

GM (Q2) = F1(Q2) + F2(Q2). (42)

Hadron form factors can be decomposed into a sum over the
quark charges multiplied by quark-sector form factors, such
that

Fh(Q2) =
∑

q

eq F
q
h (Q2). (43)

The quark-sector form factors F
q
h (Q2) represent the contribu-

tion of the current quarks of flavor q to the total hadron form
factor Fh(Q2). The proton and neutron form factors expressed
in terms of quark-sector form factors read

Fip(Q2) = eu F u
ip(Q2) + ed F d

ip(Q2) + · · · , (44)

Fin(Q2) = eu F u
in(Q2) + ed F d

in(Q2) + · · · , (45)

where i = 1, 2. Note that in light of the experimental discovery
that the strange quarks contribute very little to the nucleon
electromagnetic form factors [52–55], we neglect their contri-
bution to Eqs. (44) and (45). Assuming equal u and d current
quark masses and neglecting electroweak corrections, the u
and d quark-sector form factors of the nucleon must satisfy
the charge symmetry constraints:

Fd
in(Q2) = Fu

ip(Q2) and Fu
in(Q2) = Fd

ip(Q2). (46)

Experimentally, if electroweak and heavy quark effects are
small, the u and d quark-sector form factors are given
accurately by

Fu
ip = 2 Fip + Fin, F d

ip = Fip + 2 Fin. (47)

Recent accurate data for the neutron form factors has enabled a
precise determination of the quark-sector proton form factors
[56]. We discuss results for these quark-sector form factors in
Sec. VI.

The slope of an electromagnetic form factor at Q2 = 0 is a
measure of either the squared rms charge or magnetic radius
of a hadron. Unless stated otherwise, all squared rms radii are

defined by

〈r2〉 = −6

η

∂ f (Q2)

∂Q2

∣∣∣∣
Q2=0

∣∣∣ η =
{

1 if f (0) = 0,

f (0) if f (0) 
= 0,

(48)

where f (Q2) is an arbitrary form factor. This definition
reproduces the standard nucleon results for the charge and
magnetic radii defined by the Sachs form factors,

〈
r2
E

〉 = −6
∂ GE(Q2)

∂Q2

∣∣∣∣
Q2=0

, (49)

〈
r2
M

〉 = − 6

GM (0)

∂ GM (Q2)

∂Q2

∣∣∣∣
Q2=0

, (50)

but also generalizes to radii defined with respect to the Dirac
and Pauli form factors and quark-sector form factors. Hadronic
radii, in units of fm, are obtained from the result of Eq. (48)
using

r ≡ sign(〈r2〉)
√

|〈r2〉|. (51)

To calculate the nucleon electromagnetic current and
therefore the Dirac and Pauli form factors, one must know
the manner in which the nucleon described in Sec. II couples
to the photon, guaranteeing electromagnetic gauge invariance.
The necessary Feynman diagrams are illustrated in Fig. 4 and a
proof of gauge invariance is given in Appendix B. We include
both scalar and axial-vector diquarks in our nucleon wave
function and therefore the diagrams in Fig. 4 represent six
distinct Feynman diagrams. The diagram on the left, referred
to as the quark diagram, represents the processes where the
photon couples to a dressed quark with either a scalar or
an axial-vector diquark as a spectator. The diquark diagram,
on the right in Fig. 4, represents four Feynman diagrams;
the photon can couple to a scalar diquark, an axial-vector
diquark or cause a transition between these two diquark states.
Importantly, in the diquark diagram the photon couples to
the quarks inside each diquark, thereby resolving internal
diquark structure and resulting in, for example, diquarks with
a finite size. In principle, for the diquark diagram, the photon
should couple to an off-shell diquark; however, in this work we
limit the Lorentz structure of the photon-diquark interaction
to that of an on-shell diquark. In general, such an on-shell
approximation for a vertex function can only be formulated if
it appears between pole parts of two Green’s functions [57],

p p

q

+
p pq

FIG. 4. (Color online) Feynman diagrams representing the nu-
cleon electromagnetic current. The diagram on the left is called the
quark diagram and the diagram on the right the diquark diagram. In
the diquark diagram the photon interacts with each quark inside the
nonpointlike diquark.
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which, in this work, is consistent with the pole approximations
for the diquark t matrices described in Eqs. (38) and (39).

The coupling of a photon to a dressed quark and to on-shell
diquarks is discussed in Secs. IV and V.

IV. QUARK-PHOTON VERTEX

The quark-photon vertex in the NJL model, and other
field theoretic approaches, is given by the solution to an
inhomogeneous BSE. The NJL model version of this equation,
consistent with the truncation used in the gap and BSEs
discussed Sec. II, is represented diagrammatically in Fig. 5.
The large oval represents the quark-photon vertex, �

μ
γQ(p′,p),

the 4-fermion interaction kernel is given in Eq. (2) and the
elementary vertex, which gives the inhomogeneous driving
term, has the form γ μ Q̂ (where Q̂ is the quark charge
operator). The second equality in Fig. 5 expresses this equation
in an equivalent form using the q̄q t matrices.

The quark charge operator is

Q̂ =
(

eu 0

0 ed

)
= 1

6
+ τ3

2
, (52)

where eu = 2
3 and ed = − 1

3 are the u and d quark charges.
The quark-photon vertex therefore has both an isoscalar and
an isovector component, which may, in general, be expressed
in the form

�
μ
γQ(p′,p) = 1

6
�μ

ω(p′,p) + τ3

2
�μ

ρ (p′,p). (53)

The quark-photon vertex, separated into flavor sectors defined
by the dressed quarks, reads

�
μ
γQ(p′,p) = �

μ
U (p′,p)

1 + τ3

2
+ �

μ
D(p′,p)

1 − τ3

2
. (54)

In general, each dressed quark component of the quark-
photon vertex contains contributions from both the u and d
current quarks. This will prove important when we consider
quark-sector form factors and associated charge symmetry
constraints. Note that throughout this paper we use a capital
Q = (U,D) to indicate that an object is associated with

p

p

=
p

p

+
p

p

=
p

p

+
p

p

FIG. 5. (Color online) Inhomogeneous BSE whose solution
gives the quark-photon vertex, represented as the large shaded
oval. The small dot is the inhomogeneous driving term, while the
shaded circle is the q̄q interaction kernel given in Eq. (2). Only
the ρ and ω interaction channels contribute. This integral equation
can equivalently be represented using the elementary quark-photon
interaction and the ρ and ω t matrices, given in Eqs. (12) and (13).
This case is depicted by the second equality.

dressed quarks and a lowercase q = (u, d) to represent the
current quarks of the NJL and QCD Lagrangians.

The quark-photon vertex has in general 12 Lorentz struc-
tures [58], 4 longitudinal and 8 pieces transverse to the photon
momentum, where each Lorentz structure is accompanied
by a scalar function of the three variables q2, p′2, and
p2.9 The standard NJL q̄q interaction kernel, as employed
in Sec. II for the gap and BSE equations, is momentum
independent, which implies that the quark-photon vertex can
only depend on the momentum transfer q = p′ − p, not p′
and p separately. Therefore, in this work, the contributions to
the vertex functions of Eq. (53) from the NJL BSE, take the
form

�(bse)μ
ω (q) = γ μ +

(
γ μ − qμ/q

q2

)
F̂1ω(q2) + iσμνqν

2 M
F2ω(q2),

(55)

�(bse)μ
ρ (q) = γ μ +

(
γ μ − qμ/q

q2

)
F̂1ρ(q2) + iσμνqν

2 M
F2ρ(q2).

(56)

With the quark propagator of Eq. (4), these results satisfy the
Ward-Takahashi identity,

qμ �
μ
γQ(p′,p) = Q̂[S−1(p′) − S−1(p)], (57)

demanded by U(1) vector gauge invariance.
Current conservation at the hadron level implies that the

qμ/q/q2 term in Eqs. (55) and (56) cannot contribute to hadron
form factors. We therefore write our effective vertex as

�
(bse)μ
i (q) = γ μ F1i(q

2) + iσμνqν

2 M
F2i(q

2), (58)

where i = (ω, ρ) and F1i(q2) = 1 + F̂1i(q2). This vertex has
the same form as the electromagnetic current for an on-shell
spin- 1

2 fermion. For a pointlike quark F1ω(q2) = 1 = F1ρ(q2)
and F2ω(q2) = 0 = F2ρ(q2). However, interactions in the NJL
model not only dynamically generate a dressed quark mass but
also generate nontrivial dressed quark form factors.

The inhomogeneous BSE for the quark-photon vertex,
depicted in Fig. 5, has the form

�
μ
γQ(p′,p) = γ μ

(
1

6
+ τ3

2

)
+

∑
�

K� �

× i

∫
d4k

(2π )4
Tr[�̄ S(k + q) �

μ
γQ(p′,p) S(k)],

(59)

where
∑

� K� �αβ �̄λε represents the interaction ker-
nel given in Eq. (2). The Dirac and isospin structure
of �

μ
γQ(p′,p), given in Eqs. (53), (55), and (56), im-

plies that of the interaction channels in Eq. (2) only
the isovector-vector, −2i Gρ(γμ�τ )αβ(γ μ�τ )γ δ , and isoscalar-
vector, −2i Gω(γμ)αβ(γ μ)γ δ , pieces can contribute.

9The 12 Lorentz structures in the quark-photon vertex are not all
independent, because, for example, the Ward-Takahashi identity and
time-reversal invariance place additional constraints.
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IAN C. CLOËT, WOLFGANG BENTZ, AND ANTHONY W. THOMAS PHYSICAL REVIEW C 90, 045202 (2014)

The dressed quark form factors obtained from the inhomo-
geneous BSE, associated with the electromagnetic current of
Eq. (58), are

F1i(q
2) = 1

1 + 2 Gi �V V (q2)
, F2i(q

2) = 0, (60)

where i = ω, ρ. Comparison with Eqs. (12) and (13) indicate
that F1ω and F1ρ have a pole at q2 = m2

ω and m2
ρ , respectively.

The NJL BSE kernel of Eq. (2) does not generate Pauli form
factors for the dressed quarks because it does not include
the tensor-tensor 4-fermion interaction. The dressed-up and
dressed-down quark form factors given by the BSE therefore
read

F
(bse)
1Q (Q2) = 1

6 F1ω(Q2) ± 1
2 F1ρ(Q2), (61)

where the plus sign is associated with a dressed-up quark. The
superscript (bse) indicates that these form factors are obtained
solely from the BSE.

Results for the dressed quark BSE form factors are
illustrated as the dashed lines in Figs. 6. A notable feature
of these results is that they do not drop to zero as Q2 → ∞,
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FIG. 6. (Color online) (Top) Dressed-up quark form factors. The
dashed line is the Dirac form factor obtained from the BSE of Eq. (59);
the solid and dash-dotted lines are, respectively, the Dirac and Pauli
form factors generated by also including the pion loop corrections
illustrated in Fig. 8. (Bottom) Dressed-down quark form factors. Each
curve represents an analogous form factor to those in the top panel.

p pk

p − k

β α

ij

FIG. 7. (Color online) Pion loop contribution to the dressed
quark self-energy. The pion couples to the dressed quark via γ5 τi

and the pion t matrix is approximated by its pole form.

but instead behave as

F
(bse)
1U (Q2)

Q2→∞= eu, F
(bse)
1D (Q2)

Q2→∞= ed, (62)

signifying that at infinite Q2 the photon interacts with a bare
current quark. This result is consistent with QCD expectations
based on asymptotic freedom.

Pion loop corrections to the quark-photon vertex are also
considered and treated as a perturbation to the dressed quark
form factors obtained from the BSE, as given in Eqs. (60)
and (61). In this case the dressed quark propagator receives
an additional self-energy correction which is illustrated in
Fig. 7.10 In addition to the pionic self-energies on the dressed
quarks, pion exchange between quarks should also be included
in the two-body kernels that enter the Bethe-Salpeter and
Faddeev equations. However, it is straightforward to show
that in the limit where the nucleon and � are mass degenerate,
including only self-energy correction on the dressed quarks
yields essentially the correct leading nonanalytic behavior of
the electromagnetic form factors as a function of quark mass.
Further, in form-factor calculations diagrams with a photon
coupling to an exchanged pion do not contribute because of the
cancellation between π+ and π− exchange. This self-energy is
evaluated using a pole approximation, where the external quark
is assumed on mass shell. The pion loop therefore shifts the
dressed quark mass by a constant, giving a quark propagator
of the form

S̃(k) = Z S(k), Z = 1 + ∂ �(p)

∂/p

∣∣∣∣
/p=M

, (63)

where S(k) is the usual Feynman propagator for
a dressed quark of mass11 M and the self-energy

10Chiral symmetry as expressed in the the NJL Lagrangian of Eq. (1)
demands that the σ meson be included also; however, because the σ

has charge zero and (in this work) mπ/mσ � 0.18, these additional
correction are small and are not included.

11When including pion loops on the dressed quarks we renormalize
the Gπ coupling in the NJL Lagrangian to keep the dressed quark
mass fixed.
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p p

μ

q

Z × +
p p

μ

q

k

+
p pk

μ

q

FIG. 8. (Color online) Pion loop contributions to the quark-
photon vertex. The quark wave function renormalization factor Z

represents the probability of striking a dressed quark without a pion
cloud. In the first two diagrams the photon couples to the dressed
quark with a vertex of the general form given by Eq. (53) and defined
by Eqs. (58) and (60). The shaded oval in the third diagram represents
the quark-pion vertex, which we approximate by its pole form. It is
therefore given by (�′ + �)Fπ (Q2), where Fπ (Q2) is the usual pion
form factor [see Eq. (86) and associated discussion].

reads12

�(p) = −
∫

d4k

(2π )2
γ5 τi S(p − k) γ5 τi τπ (k). (64)

When evaluating �(p) the reduced pion t matrix is approxi-
mated by its pole form; that is,

τπ (k) → i Zπ

k2 − m2
π + iε

. (65)

The quark wave function renormalization factor, Z, represents
the probability to strike a dressed quark without the pion cloud
and is essential to maintain charge conservation. Using the
parameters in Table I gives Z = 0.80.

The quark electromagnetic current, including pion loops, is
illustrated in Fig. 8. Evaluating this current between on-shell
constituent quarks, gives for the dressed quark-sector currents
of Eq. (54),

�
μ
Q(p′,p) = γ μ F1Q(Q2) + iσμνqν

2 M
F2Q(Q2), (66)

where Q = (U,D). The dressed quark form factors read

F1U = Z
[

1
6 F1ω + 1

2 F1ρ

] + [F1ω − F1ρ]f (q)
1 + F1ρ f

(π)
1 ,

(67)

F1D = Z
[

1
6 F1ω − 1

2 F1ρ

] + [F1ω + F1ρ]f (q)
1 − F1ρ f

(π)
1 ,

(68)

F2U = [F1ω − F1ρ]f (q)
2 + F1ρ f

(π)
2 , (69)

F2D = [F1ω + F1ρ]f (q)
2 − F1ρ f

(π)
2 , (70)

where the Q2 dependence of each form factor has been omitted.
The body form factors, f (q)

1 and f
(q)
2 , originate from the second

diagram in Fig. 8, while f
(π)
1 and f

(π)
2 are the body form factors

12The pion-quark-quark vertex in Fig. 7 can be read directly from
the pion t matrix, given by Eq. (8), and takes the form γ5 τi . A
pseudovector component to the vertex would be generated through
π−a1 mixing in the BSE kernel; however, the strength of this vertex is
suppressed by mπ/ma1 ∼ 0.1 relative to the dominant pseudoscalar
component. Therefore, we do not include a π−a1 mixing in the
pion-quark-quark vertex.
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FIG. 9. (Color online) Dressed quark body form factors associ-
ated with the pion loop corrections, where f

(q)
1 and f

(q)
2 originate

from the second diagram in Fig. 8 and f
(π )

1 and f
(π )

2 from the third
diagram.

from the third diagram, which also contain the pion body
form factor [see discussion associated with Eq. (86)]. These
body form factors are illustrated in Fig. 9. When evaluating
the pion loop diagrams in Figs. 7 and 8 we use the proper-
time regularization scheme; however, in this case the pions
should not be confined and we therefore set �IR = 0 GeV.
This procedure guarantees that the leading-order nonanalytic
behavior of the hadron form factors as a function of the pion
mass is retained.

Results for the Dirac and Pauli dressed quark form factors,
including pion loop effects, are given in Fig. 6. The pion cloud
softens the Dirac form factors, however its most important
consequence is the nonzero Pauli form factor for the dressed
quarks. At infinite Q2 the dressed quark Dirac form factors
now become

F1U (Q2)
Q2→∞= Z eu, F1D(Q2)

Q2→∞= Z ed, (71)

whereas the Pauli form factors vanish for large Q2. We find
dressed quark anomalous magnetic moments of

κU = 0.10 and κD = −0.17, (72)

defined as κQ ≡ F2Q(0). The quark charge and magnetic radii,
defined with respect to the Sachs form factors and Eq. (48),
take the values

rU
E = 0.59 fm, rU

M = 0.60 fm, (73)

rD
E = 0.73 fm, rD

M = 0.67 fm. (74)

Decomposing the dressed quark form factors in quark/flavor
sectors gives

F1U (Q2) = eu F u
1U (Q2) + ed F d

1U (Q2), (75)

F1D(Q2) = eu F u
1D(Q2) + ed F d

1D(Q2), (76)
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FIG. 10. (Color online) (Top) Dressed-up quark Dirac form fac-
tors, which also include pion-cloud effects, separated into quark
sectors. The solid line is the u-quark sector of the dressed-up quark
and the dashed line represents d-quark sector. (Bottom) Dressed-up
quark Pauli form factors separated into quark sectors. The solid line
is the u-quark sector and the dashed line the d-quark sector.

where the flavor sector dressed-up quark form factors read

Fu
1U = Z 1

2 [F1ω + F1ρ] + [3 F1ω − F1ρ]f (q)
1 + F1ρ f

(π)
1 ,

(77)

Fd
1U = Z 1

2 [F1ω − F1ρ] + [3 F1ω + F1ρ]f (q)
1 − F1ρ f

(π)
1 ,

(78)

Fu
2U = [3 F1ω − F1ρ]f (q)

2 + F1ρ f
(π)
2 , (79)

Fd
2U = [3 F1ω + F1ρ]f (q)

2 − F1ρ f
(π)
2 . (80)

The flavor sector dressed-down quark form factors are given
by

Fu
iD = Fd

iU and Fd
iD = Fu

iU , (81)

where i = (1, 2). Therefore, these results satisfy charge sym-
metry and are illustrated in Fig. 10. For the quark-sector
anomalous magnetic moments we find

κu
U = 0.02 and κd

U = −0.25, (82)

and therefore the d current quarks carry the bulk of the
dressed-up quark anomalous magnetic moment. This will have
important implications for the nucleon form factors.

p p

q
μ

−k

+
p p

−k

q
μ

FIG. 11. (Color online) Feynman diagrams that represent the
diquark electromagnetic current. The shaded circles are the diquark
Bethe-Salpeter vertices and the shaded ovals are the quark-photon
vertex. The Feynman diagrams for the meson form factors are
analogous. However, the flow of baryon number on one of the quark
lines must be reversed.

V. DIQUARK AND MESON FORM FACTORS

Critical to our picture of nucleon structure are diquark
correlations inside the nucleon. An essential step, therefore,
in calculating the nucleon form factors is to first determine the
interaction of the virtual photon with the diquarks. A further
reason to discuss the diquark form factors is that the scalar
and axial-vector diquarks are the qq analogs of the π and ρ
mesons.

The electromagnetic current of a diquark is represented by
the Feynman diagrams illustrated in Fig. 11 and is expressed
as

jμ(p′,p) = i

∫
d4k

(2π )4
Tr[�(p′) S(p′ + k) �

μ
γQ(p′,p)

× S(p + k)�(p) ST (−k)], (83)

where the superscript T indicates transpose. The Bethe-
Salpeter vertices are represented by �(p) and are given in
Eq. (27). The dressed quark-photon vertex �

μ
γQ(p′,p) is given

in Eqs. (54) and (66).
Hadron form factors are determined using the three variants

for the dressed quark form factors discussed in Sec. IV
and illustrated, for the nontrivial variants, in Fig. 6. Results
obtained by treating the dressed quarks as pointlike will be
labeled with a superscript (bare), while those obtained using
the dressed quark form factors from the BSE [Eq. (61)] will be
labeled with a superscript (bse) and our full results, where
the quark form factors also include pion loop corrections,
Eqs. (67)–(70), will have no superscript label.

The electromagnetic current for a scalar diquark, or any
on-shell spin-0 particle, has the general form

jμ
s (p′,p) = (p′ + p)μ Fs(Q

2) (84)

and is therefore parametrized by a single form factor. Evaluat-
ing Eq. (83) for the scalar diquark gives

Fs(Q
2) = [F1U (Q2) + F1D(Q2)]f V

s (Q2)

+ [F2U (Q2) + F2D(Q2)]f T
s (Q2), (85)

where f V
s , f T

s are the scalar diquark body form factors
associated with the vector and tensor photon couplings to the
dressed quarks [see Eq. (66)]. Results for the scalar diquark
form factor are given in Fig. 12 for the three variants of dressed
quark form factors. Vertex corrections introduced by the BSE
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FIG. 12. (Color online) Results for the scalar diquark and pion
form factors. For the pion we just show the full results; however, for
the scalar diquark form factors we show the cases when the dressed
quarks are pointlike, the quark-photon vertex is given by the BSE and
finally when pion loop corrections are also included.

result in a softer form factor (dashed line) in comparison
with results obtained using pointlike dressed quark form
factors (dash-dotted line). Including pion loop corrections only
slightly alters the scalar diquark form factor (solid line).

The q̄q analog of the scalar diquark is the pion, where for
the π+ the electromagnetic form factor is given by

Fπ (Q2) = [F1U (Q2) − F1D(Q2)]f V
s (Q2)

+ [F2U (Q2) − F2D(Q2)]f T
s (Q2). (86)

The body form factors in Eq. (86) are the same as those for
the scalar diquark, except they are now functions of the pion
mass instead of the scalar diquark mass.13 We do not include
pion loop corrections on the dressed quarks in the case of the
pion form factor, because at the hadronic level there is no three
pion vertex. The full result for the pion form factor is given as
the dotted curve in Fig. 12. The scalar diquark and pion form
factors multiplied by Q2 are presented in Fig. 13, where good
agreement with pion form-factor data from Refs. [59–63] is
seen. At large Q2 both form factors plateau, where we find
Q2 Fπ (Q2) → 0.48 and Q2 Fs(Q2) → 0.30. The pion form-
factor result is consistent with the perturbative QCD prediction
[64,65],

Q2 Fπ (Q2)
Q2→∞−→ 16 π f 2

π αs(Q
2), (87)

in the sense that the strong coupling constant, αs(Q2),
corresponds to a constant in the NJL model and therefore
Q2 Fπ (Q2) should become constant as Q2 → ∞. Taking
Eq. (87) literally, our pion form-factor result implies that
αs(Q2) = 1.12, which using a NNLO result for the running
coupling [66] would correspond to an NJL model scale of
Q2

0 ∼ 0.18 GeV2, which is consistent with previous estimates

13There is also a factor of two because of the different definition for
the Bethe-Salpeter normalization given in Eq. (18), compared to that
in Eq. (28).
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FIG. 13. (Color online) Scalar diquark and pion form factors
multiplied by Q2. The pion form-factor data is from Refs. [59–63].

[30–32]. Our calculated pion form factor reaches its plateau by
Q2 � 6 GeV2, which corresponds to the same scale at which
the Dyson-Schwinger equation results of Ref. [67] reach a
maximum, after which the result of Ref. [67] decreases because
of the logarithmic running of αs(Q2) in QCD.

Results for the scalar diquark and pion charge radii are
given in Table II for the three variants of the dressed quark
form factors. The charge radius of the pion and scalar
diquark are found to be very similar, where the pion radius
is approximately 5% smaller than the experimental value from
Refs. [59,68].

The electromagnetic current for an axial-vector diquark, or
any on-shell spin-1 particle, has the general form [69]

jμ,αβ
a (p′,p) =

[
gαβF1a(Q2) − qαqβ

2 M2
a

F2a(Q2)

]
(p′ + p)μ

− (qαgμβ − qβgμα)F3a(Q2), (88)

where the Lorentz indices μ, α, β represent the polarizations of
the photon, initial axial-vector diquark, and final axial-vector
diquark, respectively. The Lorentz covariant form factors
of Eq. (88) are often reexpressed as the Sachs-like charge,
magnetic, and quadruple form factors for a spin-1 particle,
given by

GC(Q2) = F1(Q2) + 2
3 η GQ(Q2), (89)

GM (Q2) = F3(Q2), (90)

GQ(Q2) = F1(Q2) + (1 + η)F2(Q2) − F3(Q2), (91)

TABLE II. Charge radii for the scalar diquark and pion, each
shown for the three variants for the dressed quark form factors. The
experimental value for the pion is from Refs. [59,68]. All radii are in
units of fm.

r
(bare)
E r

(bse)
E rE r

exp
E

Scalar diquark 0.46 0.62 0.63
Pion 0.46 0.62 0.62 0.663 ± 0.006
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FIG. 14. (Color online) Axial-vector diquark body form factors.
These body form factors must still be multiplied by the appropriate
dressed quark form factors to obtain the axial-vector diquark form
factors.

where η = Q2

4 m2
H

and mH is the relevant hadron mass. At Q2 =
0 these form factors give, respectively, the charge, magnetic
moment, and quadruple moment of a spin-one particle, in
units of e, e/(2 mH ), and e/m2

H . The charge, magnetic, and
quadrupole radii—〈r2

C〉, 〈r2
M〉, 〈r2

Q〉—are defined with respect
to these Sachs-like form factors.

Evaluating the Feynman diagrams of Fig. 11, using the
axial-vector diquark Bethe-Salpeter vertex given in Eq. (27)
and the quark-photon vertex of Eq. (54) gives, for an axial-
vector diquark with quark content {ud}, the form-factor result

F
{ud}
ia (Q2) = [F1U (Q2) + F1D(Q2)]f V

i (Q2)

+ [F2U (Q2) + F2D(Q2)]f T
i (Q2), (92)

where i ∈ 1, 2, 3 correspond to the form factors in Eq. (88).
Expressions for axial-vector diquarks of the {uu} and {dd} type
are simply given by Eq. (92) with the appropriate substitution
of the dressed quark form factors. The vector and tensor
body form factors, f V

i and f T
i , are illustrated in Fig. 14. A

notable feature of these form factors is that charge conservation
implies f V

1 (0) = 1 and f T
1 (0) = 0. The magnetic moment

equals f V
3 (0) = 2.09, which, because of relativistic effects, is

slightly larger than the canonical value of μ1 = 2 for a spin-1
particle. For the quadrupole moment the body form factors
imply Q = −0.83, which, because of relativistic effects, is
about 17% smaller than the canonical value of Q = −1.

Results for the form factors of Eq. (88) for an axial-vector
diquark with quark content {ud} are presented in Fig. 15.
In each case the vertex dressing from the quark-photon
inhomogeneous BSE results in a softening of form factors,
compared to the case of pointlike dressed quarks. Although the
pion loop effects leave F1a almost unchanged, both F2a and
F3a receive sizable negative corrections. The origin of these
corrections can be traced back to Eq. (88) and the results in
Fig. 14. The tensor body from factors f T

2 and f T
3 are large and

positive for small Q2. This, together with the large negative
anomalous magnetic moment of the dressed-down quark [see
Eq. (72)], results in sizable corrections to F2a and F3a from
pion loop effects.
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FIG. 15. (Color online) Form factors for an axial-vector diquark
with quark content {ud}.

The Lorentz covariant form factors for the ρ+ meson,
associated with the current of Eq. (88), are given by

Fiρ(Q2) = [F1U (Q2) − F1D(Q2)]f V
i (Q2)

+ [F2U (Q2) − F2D(Q2)]f T
i (Q2), (93)

where i ∈ 1, 2, 3 and the body form factors are now functions
of the ρ mass instead of the axial-vector diquark mass. Results
for the Sachs-like spin-1 form factors defined in Eqs. (89)–(91)
are illustrated in Fig. 16 for a {ud}-type axial-vector diquark
and the ρ+ meson. In these figures we only show the full results
which include pion-cloud effects. The zero in the charge form
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factors occurs at Q2 � 6.6 GeV2 for G
{ud}
C and for G

ρ+
C at

Q2 � 2.6 GeV2.
Static properties of the ρ+ and the axial-vector diquarks are

given Table III for variants of the dressed quark form factors.
We find that pion loop effects have a substantial impact on the
static properties of the axial-vector diquarks and ρ mesons.
For example, the pion cloud increases the magnitude of the
ρ+ magnetic moment by 24% and the quadrupole moment
by 22%, while for the {ud}-type axial-vector diquarks we
find a reduction of the magnetic moment by 21% and the
magnitude of the quadrupole moment by 14%. The sign
difference between these corrections for the ρ+ and {ud}-type

axial-vector diquark arises because the dressed-down quark
form factors enter the respective currents with the opposite
sign—see Eqs. (92) and (93)—and the dressed-down quark
has a large anomalous magnetic moment. For the ρ+ meson
the pion cloud uniformly increases the charge, magnetic,
and quadrupole radii by approximately 16%, whereas for the
{ud}-type axial-vector diquarks the pion cloud has little effect
on the charge and quadrupole radii but increases the magnetic
radius by 38%.

As an interesting check on the large Q2 behavior of our
ρ or axial-vector diquark form-factor results, we make a
comparison with the relations derived in Ref. [70]. That is,
at large timelike or spacelike momenta, the ratio of the form
factors for a spin-1 particle should behave as

GC(Q2) : GM (Q2) : GQ(Q2) = (
1 − 2

3η
)

: 2 : −1, (94)

where corrections are of the orders �QCD/Q and �QCD/Mρ .
For our spin-1 results we find that the GC/GQ constraint is
satisfied to better than 15% for Q2 = 10 GeV2 and to better
than 3% for Q2 = 100 GeV2; for Q2 > 1000 GeV2 our result
takes the value given in Eq. (94). The calculated ratios GC/GM

and GM/GQ saturate within 15% of the values in Eq. (94).
However, this deviation is well within the leading correction
of �QCD/Mρ ∼ 0.3.

The remaining diquark electromagnetic current that con-
tributes to the nucleon form factors is the transition current
between scalar and axial-vector diquarks. This current has the
form

jμ,α
sa (p′,p) = ± 1

Ms + Ma

iεαμσλp′
σpλ Fsa(Q2), (95)

where the plus sign indicates a scalar → axial−vector transi-
tion and the reverse process has the minus sign. The Lorentz
indices μ and α represent the polarizations of the photon and
the axial-vector diquark. Evaluating the Feynman diagram of
Fig. 11 for this transition process gives

Fsa(Q2) = [F1U (Q2) − F1D(Q2)]f V
sa (Q2)

+ [F2U (Q2) − F2D(Q2)]f T
sa(Q2), (96)

where f V
sa (Q2) and f T

sa(Q2) are the vector and tensor body form
factors. The electromagnetic transition form factor describing
the γ ∗π+ → ρ+ process is given by

Fπρ(Q2) = [F1U (Q2) + F1D(Q2)]f V
sa (Q2)

+ [F2U (Q2) + F2D(Q2)]f T
sa(Q2), (97)

TABLE III. Results for the magnetic moment, quadruple moment, and the charge, magnetic, and quadruple radius of the axial-vector
diquarks and ρ+ meson. In each case we present results for various levels of sophistication for the constituent quark form factors. All radii are
in units of fm; the magnetic moment has units e/(2 mH ) and the quadruple moment e/m2

H , where mH is the mass of the relevant diquark or
meson.

μ(bse) μ Q(bse) Q r
(bse)
C rC r

(bse)
M rM r

(bse)
Q rQ

{uu} axial-vector diquark 2.78 3.14 −1.10 −1.20 0.65 0.76 0.61 0.74 0.61 0.74
{ud} axial-vector diquark 0.70 0.55 −0.28 −0.24 0.37 0.38 0.60 0.62 0.61 0.64
{dd} axial-vector diquark −1.39 −2.04 0.55 0.73 0.65 0.84 0.61 0.80 0.62 0.79
ρ+ 2.08 2.57 −0.87 −1.06 0.67 0.82 0.62 0.77 0.62 0.77
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FIG. 17. (Color online) Results for the scalar ↔ axial−vector
diquark and π ↔ ρ electromagnetic transition form factors.

where body form factors are now functions of the π and ρ
masses. Results for Fsa and Fπρ are presented in Fig. 17. The
vertex dressing from the BSE produces a softer form factor, and
for the diquark transition the large isovector combination of
the constituent quark Pauli form factors, arising from the pion
cloud, gives a sizable correction for Q2 � 1 GeV2. Results
for the transition moment and transition radius are given in
Table IV.

VI. NUCLEON FORM-FACTOR RESULTS

The Feynman diagrams that contribute to the nucleon’s
electromagnetic current are illustrated in Fig. 4, where the
coupling of the photon to the dressed quarks and diquarks
has been discussed in Secs. IV and V, respectively. Using a
quark-photon vertex of the form given in Eq. (54) demarcates
the nucleon form factors into flavor sectors defined by the
dressed quarks, such that

Fip(Q2) = FU
ip (Q2) + FD

ip (Q2), (98)

Fin(Q2) = FU
in (Q2) + FD

in (Q2), (99)

where i = (1, 2). The dressed quark flavor-sector nucleon form
factors are given by the product of dressed quark form factors
[e.g., Eqs. (67)–(70)] with the nucleon body form factors, such
that

F
Q
ip = F1Q f

Q,V
ip + F2Q f

Q,T
ip , (100)

F
Q
in = F1Q f

Q,V
in + F2Q f

Q,T
in , (101)

TABLE IV. Results for the transition moment, defined as κT ≡
F (0), the transition radius (which is normalized by κT ), for scalar ↔
axial−vector diquark and pion ↔ ρ transitions. Radii are in units of
fm.

κ
(bse)
T κT r

(bse)
T rT

s ↔ a 2.66 3.61 0.75 0.99
π ↔ ρ 0.62 0.49 0.54 0.54

where Q = (U,D) and the Q2 dependence of each form factor
has been omitted. The superscript V indicates a vector body
form factor and the superscript T a tensor body form factor,
which arise from the quark current of Eq. (66).

The proton body form factors in Eq. (100), which represent
the sum of the six Feynman diagrams of Fig. 4, have the
structure

f
U,V
ip = f

s,V
iQ + 1

3f
a,V
iQ + f

s,V
iD + 5

3f
a,V
iD + 1√

3
f

sa,V
iD , (102)

f
D,V
ip = 2

3f
a,V
iQ + f

s,V
iD + 1

3f
a,V
iD − 1√

3
f

sa,V
iD . (103)

For equal current quark masses the neutron body form factors
in Eq. (101) are given by

f
D,V
in = f

U,V
ip and f

U,V
in = f

D,V
ip , (104)

and therefore the nucleon body form factors satisfy the
constraints imposed by charge symmetry. Expressions for
the nucleon tensor body form factors are obtained from
Eqs. (102)–(104) with V → T . The nomenclature for these
nucleon body form factors is as follows: A subscript Q
implies that the photon couples directly to a quark (quark
diagram) and a subscript D implies that the photon couples
to (a quark inside) a diquark (diquark diagram); a superscript
s indicates that the diagram contains only a scalar diquark,
while the superscript a only an axial-vector diquark and the
superscript sa implies the sum of the two diagrams where a
photon induces a transition between scalar and axial-vector
diquarks. The numerical coefficients in Eqs. (102) and (103)
arise from the isospin structure of the proton Faddeev and
the quark-photon vertices, given in Eqs. (30) and (54),
respectively.

Nucleon body form-factor results for each diagram in Fig. 4,
as expressed by Eqs. (102) and (103), are presented in Fig. 18
for the vector coupling to the dressed quarks and in Fig. 19 for
the tensor coupling. Table V gives the Q2 = 0 values of the
nucleon body form factors. Charge conservation for the vector
coupling implies that in this case diagrams with the same
quark-diquark content must be equal at Q2 = 0. Furthermore,
with the normalization used here, the sum of quark diagrams
and of diquark diagrams must each equal one in the vector
case. For the vector coupling, charge conservation also forbids
the scalar–axial-vector diquark diagram (sa) from contributing
to the charge. However, this diagram does give an important
contribution to the nucleon anomalous magnetic moment. For
the vector coupling diagrams the only object with a magnetic
moment is the axial-vector diquark. Thus, the nonzero values
for the other f2 body form-factor diagrams, in the bottom
panel of Fig. 18, indicate that the associated pieces of the
nucleon wave function have sizable p and d wave components.
Therefore, the nucleon wave function contains a significant
amount of quark orbital angular momentum.

Figure 19 and Table V demonstrate that the tensor coupling
diagrams do not contribute to the nucleon charge, which is
consistent with constraints imposed by the Ward-Takahashi
identity for the nucleon electromagnetic current. However,
these diagrams do have an important impact on the anomalous
magnetic moment. The Q2 behavior of the form factors is
also influenced by the tensor coupling diagrams. However,
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FIG. 18. (Color online) Nucleon Dirac (top) and Pauli (bottom)
body form factors which result from a vector coupling to the quarks
in the Feynman diagrams of Fig. 4. To obtain their contribution to
the nucleon form factors these results must be multiplied by the
appropriate isospin factors, as in Eqs. (102) and (103), and the dressed
quark Dirac form factors.

once multiplied by the dressed quark Pauli form factors,
their contribution diminishes rapidly with Q2, being of little
importance for Q2 � 1 GeV2.

In Sec. II the nucleon Faddeev equation was solved by
first making a pole approximation for the diquark t matrices;
see, for example, Eqs. (38) and (39). For a consistent nucleon
form-factor calculation we must therefore approximate all two-
body t matrices by their pole form, which also includes the
quark-photon vertex obtained from the inhomogeneous BSE
illustrated in Fig. 5. Expressing �V V (q2) = q2 �̂V V (q2) in
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FIG. 19. (Color online) Nucleon Dirac (top) and Pauli (bottom)
body form factors which result from a tensor coupling to the quarks
in the Feynman diagrams of Fig. 4. To obtain their contribution to
the nucleon form factors these results must be multiplied by the
appropriate isospin factors, as in Eqs. (102) and (103), and the dressed
quark Pauli form factors.

Eq. (60) and expanding �̂V V (q2) about either the ρ or ω pole
mass, we obtain results for the pole forms of the BSE form
factors,

F1i(Q
2) = 1

1 + Q2/m2
i

, i ∈ ω, ρ, (105)

which is the familiar vector meson dominance result. The
dressed quark form factors therefore maintain the vector
meson pole structure in the timelike region obtained in the
original BSE results of Eq. (60). For the nucleon form-factor

TABLE V. Nucleon Dirac and Pauli body form factors evaluated at Q2 = 0. The subscript i = 1,2 corresponds to either the first or the
second row of the table. An entry with only one significant figure takes that exact value because of charge conservation. The last four columns
give results for the vector and tensor versions of Eqs. (102) and (103) at Q2 = 0. To obtain nucleon form-factor results at Q2 = 0 these results
must be multiplied the by appropriate quark charge for the vector coupling diagrams and by the appropriate dressed quark anomalous magnetic
moment for the tensor coupling diagrams.

f s,V
iQ f a,V

iQ f s,V
iD f a,V

iD f sa,V
iD f s,T

iQ f a,T
iQ f s,T

iD f a,T
iD f sa,T

iD f U,V
ip f D,V

ip f U,T
ip f D,T

ip

Dirac 0.688 0.312 0.688 0.312 0 0 0 0 0 0 2 1 0 0
Pauli 1.134 −0.451 −0.546 0.472 0.666 1.482 0.008 0.0 0.659 0.893 1.61 −1.07 3.10 −0.29
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FIG. 20. (Color online) Results for the proton Dirac (top) and
Pauli (bottom) form factors. In each case the dot-dashed curve
[superscript (bare)] gives the result when the constituent quark form
factors are those of an elementary Dirac particle, the dashed curve
[superscript (bse)] includes the quark-photon vertex dressing effects
from the BSE, and the solid curve is the full result which also
includes pion loop effects. The dotted curve is the empirical result
from Ref. [71].

calculations the result in Eq. (105) will replace the full BSE
result of Eq. (60) used in the dressed quark form factors, for
example, in Eq. (61) and Eqs. (67)–(70).

Dirac and Pauli form-factor results for the proton and
neutron are presented in Figs. 20 and 21, respectively, while
results for the Sachs form factors are given in Figs. 22 and
23. The three curves in each figure represent results for
the three variants of the dressed quark form factors used in
Eqs. (98)–(101). The dot-dashed curves are the results where
the dressed quarks are treated as pointlike and therefore their
Dirac form factors are constants equal to the quark charges and
the Pauli form factors are zero. These results are labeled with
the superscript (bare). Results for the nucleon form factors
that include the dressing of the quark-photon vertex by vector
mesons, generated by Eq. (105), are illustrated by the dashed
lines with the superscript (bse). Finally, we use dressed quark
form factors that also incorporate effects from pion loops,
which generate a nonzero Pauli form factor for the dressed
quarks. These results are illustrated as the solid lines (without
a superscript label).
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FIG. 21. (Color online) Results for the neutron Dirac (top) and
Pauli (bottom) form factors. In each case the dot-dashed curve
[superscript (bare)] gives the results when the constituent quark
form factors are those of an elementary Dirac particle, the dashed
curve [superscript (bse)] includes the quark-photon vertex dressing
effects from the BSE, and the solid curve is the full result which also
includes pion loop effects. The dotted curve is the empirical result
from Ref. [71].

The full results for the nucleon form factors, including
pion loop effects, display good agreement with the empirical
parametrizations from Ref. [71], which are illustrated as the
dotted curves in Figs. 20 through 23. Both the proton and the
neutron Dirac form factor are slightly softer than the empirical
parametrizations, whereas the Pauli form factors are in almost
perfect agreement. The dressing of the quark-photon vertex by
the pole form of the BSE [Eq. (105)] results in a significant
softening of all nucleon form factors, proving critical for
a realistic Q2 dependence of the form factors. Pion loop
corrections result in a further 50% reduction of the neutron
Dirac form factor for low to moderate Q2 and significantly
enhance the nucleon Pauli form factors for Q2 � 1 GeV2.
These enhancements correspond to increases in the magnitude
of the proton and neutron anomalous magnetic moments by
25% and 45%, as indicated in Table VI. For the proton
and neutron magnetic moments we find μp = 2.78 μN and
μn = −1.81 μN , which agree well with the experimental
values of μp = 2.793 μN and μn = −1.913 μN [72]. To
obtain the physical result |κn| > κp for the nucleon anomalous
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FIG. 22. (Color online) Results for the proton Sachs electric (top)
and magnetic (bottom) form factors. In each case the dot-dashed
curve [superscript (bare)] is the result when the constituent quark
form factors are those of an elementary Dirac particle, the dashed
curve [superscript (bse)] includes the quark-photon vertex dressing
effects from the BSE, and the solid curve is the full result, which also
includes pion loop effects. The dotted curve is the empirical result
from Ref. [71].

magnetic moments, we find that the dressed quark anomalous
magnetic moments of Eq. (72) are critical. In particular,
κU must be positive and κD negative, with |κD| > κU . We
obtain |κD| > κU because the second diagram in Fig. 8 only
contributes to the dressed-down quark anomalous magnetic
moment [cf. Eqs. (69) and (70)], giving an additional negative
contribution.

Results for the charge and magnetic radii, defined by
Eqs. (49) and (50), are given in Table VI for the two cases
where the dressed quark form factors are given by Eq. (105)
and where pion loop effects are also included. The pion loop
effects result in a 65% increase in magnitude of the neutron
charge radius, a 19% increase in its magnetic radius, while the
proton charge radius increases by 6% and the magnetic radius
by 12%. All nucleon radii agree well with the empirical values
taken from Ref. [71]. A recent global fit to data [73] found the
proton charge and magnetic radius to be

rEp = 0.875 ± 0.008(exp) ± 0.006(fit) fm, (106)

rMp = 0.867 ± 0.009(exp) ± 0.018(fit) fm, (107)
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FIG. 23. (Color online) Results for the neutron Sachs electric
(top) and magnetic (bottom) form factors. In each case the dot-dashed
curve [superscript (bare)] is the results when the constituent quark
form factors are those of an elementary Dirac particle, the dashed
curve [superscript (bse)] includes the quark-photon vertex dressing
effects from the BSE, and the solid curve is the full result which also
includes pion loop effects. The dotted curve is the empirical result
from Ref. [71].

and a recent Mainz experiment found [74]

rEp = 0.879 (5)stat(4)syst(2)model(4)group fm, (108)

rMp = 0.777(13)stat(9)syst(5)model(2)group fm. (109)

Our proton results agree well with those of Ref. [73]. The
origin of the sizable discrepancy between the two experimental
results for the proton magnetic radius is discussed, for
example, in Ref. [75]. In addition, in view of the muonic
hydrogen controversy [10], the experimental errors quoted in
both places appear to be rather low.

The flavor-sector nucleon form factors defined by the
dressed quarks, as given in Eqs. (100) and (101), do not satisfy
the standard charge symmetry relations, that is,

FU
ip

eu


= FD
in

ed

and
FD

ip

ed


= FU
in

eu

, (110)
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TABLE VI. Results for the nucleon magnetic moments and radii, with dressed quark form factors given by
Eqs. (61) and (105), labeled with a superscript (bse), and results that also include pion-cloud effects at the dressed
quark level (these results do not carry a superscript label). Experimental results, labeled with a superscript exp, are
taken from Ref. [71].

μ(bse) μ μexp r
(bse)
E rE r

exp
E r

(bse)
M rM r

exp
M

Proton 2.43 2.78 2.793 0.81 0.86 0.863 ± 0.004 0.76 0.84 0.848 ± 0.003
Neutron −1.25 −1.81 −1.913 −0.20 −0.34 −0.335 ± 0.055 0.74 0.88 0.907 ± 0.016

where i = (1, 2).14 The reason for this lies not with the nucleon
body form factors, cf. Eq. (104), but with the form factors of the
dressed quarks. Dressed quarks are quasiparticles that contain
an infinite number of u and d current quarks. Hence, a dressed-
up quark form factor, for example, contains contributions from
both u and d current quarks. To obtain the nucleon quark-sector
form factors, defined, in general, in Eq. (43), the dressed quark
form factors must be expressed in their quark-sector form as
given in Eqs. (77)–(80). The nucleon quark-sector form factors

14Here we must divide out the quark charges because they are
included in the definition of the dressed quark form factor; see
Eqs. (100) and (101).
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FIG. 24. (Color online) Proton up-quark-sector Dirac and Pauli
form factors. The empirical results are obtained using Ref. [71] and
Eq. (47).

are therefore given by

F
q
ip = F

q
1Q f

Q,V
ip + F

q
2Q f

Q,T
ip , (111)

F
q
in = F

q
1Q f

Q,V
in + F

q
2Q f

Q,T
in , (112)

where i = (1, 2), q = (u, d), and there is an implied sum
over Q = (U,D). These results satisfy the charge symmetry
constraints

Fu
in = Fd

ip and Fd
in = Fu

ip. (113)

Quark-sector proton form-factor results are presented in
Figs. 24 and 25 for the three stages of sophistication in
the description of the dressed quark form factors. Empirical
results, shown by the dotted lines, were obtained from
Ref. [71] using Eq. (47). While the agreement between our
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FIG. 25. (Color online) Proton down-quark-sector Dirac and
Pauli form factors. The empirical results are obtained using Ref. [71]
and Eq. (47).
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TABLE VII. Results for the quark-sector contribution to the proton anomalous magnetic moments and radii, with
constituent quark form factors given by Eqs. (61) and (105) [labeled with (bse)] and results that also include the pion
cloud. The experimental values for the quark-sector anomalous magnetic moments and radii are obtained from from
Ref. [71] using Eq. (47).

q κq,(bse) κq κq,exp r
q,(bse)
E r

q
E r

q,exp
E r

q,(bse)
M r

q
M r

q,exp
E

u sector 1.61 1.74 1.673 0.79 0.82 0.829 ± 0.097 0.77 0.83 0.816 ± 0.087
d sector −1.07 −1.85 −2.033 0.75 0.71 0.720 ± 0.118 −0.53 0.98 1.048 ± 0.319

full results, which include pion loop effects, and the empirical
parametrization is very good, for the u-quark sector we
find that our Dirac form factor is slightly too soft and the
Pauli form factor a little too hard. For the d quark sector
the Dirac form factor is in excellent agreement with the
empirical parametrization, whereas the Pauli form factor is
slightly too soft. As we shall see, such small differences can
produce apparently large effects in the combination required to
compute GE .

An interesting feature of these results is the role of the
pionic corrections to the quark-sector Pauli form factors. In
contrast to the usual proton and neutron Pauli form factors,
which each receive significant corrections from the pion cloud,
for the quark-sector form factors only Fd

2p receives sizable
pionic corrections. For example, pion loop effects increase
the magnitude of the d-sector anomalous magnetic moment
by 73%, whereas the u quark sector only receives an 8%
correction. This result is a consequence of the Pauli quark-
sector form factors for the dressed quarks, where from Eq. (82)
we see that the d-quark-sector contribution to the dressed-up
quark anomalous magnetic moment has a magnitude 12 times
larger than the u-sector contribution, and the proton consists
of two dressed-up quarks and one dressed-down quark.
When compared with experiment the d-sector anomalous
magnetic moment is 10% too small and the u-sector 4% too
large.

Table VII presents results for the quark sector contribution
to the proton anomalous magnetic moments and radii. We
find that the pion cloud has only a minor impact on the
d-sector charge radius and the u-sector radii, whereas the
d-sector magnetic radius actually changes sign once pion loop
effects are included. Again, the origin of this lies with the large
value of κd

U in Eq. (82). With pion cloud corrections included,
all our results for the charge and magnetic quark-sector radii
agree well with experiment.

Table VIII gives results for the Dirac and Pauli radii, defined
by Eq. (48), for the proton and neutron and, for the proton,
the corresponding quark-sector radii. The agreement with the
empirical results of Ref. [71] is very good for the proton and

neutron radii. For the proton quark-sector radii, the Dirac radii
results are in good agreement; however, the u-quark-sector
Pauli radius is slightly larger than experiment and the d-quark
sector is 7% smaller.

Figures 26 and 27 present results for the total contribution of
each diagram in Fig. 4 to the proton quark-sector form factors.
That is, the proton quark-sector form factors are decomposed
into

F
q
ip = F

s,q
iQ,p + F

a,q
iQ,p + F

s,q
iD,p + F

a,q
iD,p + F

sa,q
iD,p, (114)

where i = (1, 2), q = (u, d) and each function represents
the total contribution to each quark sector for the Feynman
diagrams in Fig. 4. Table IX gives results for the quark-sector
diagrams of Fig. 4 evaluated at Q2 = 0. For the Dirac form
factors we see the dominance of the scalar diquark in the proton
wave function, where these diagrams carry 69% of both the
u and d quark-sector charges. Axial-vector diquarks also play
an important role for the u-quark-sector form factors, carrying
26% of the charge and 35% of the anomalous magnetic
moment. In the d-quark sector, F s,d

2Q,p would be zero without the
effect of the pion cloud. The latter produces a contribution that
constitutes 20% of the d-sector anomalous magnetic moment.

Recent accurate neutron form-factor data has enabled a
precise experimental determination of the quark-sector proton
form factors, using Eq. (44). The experimental quark-sector
results from Ref. [56], along with our results, are presented
in Fig. 28 for the Dirac form factors and in Fig. 29 for the
Pauli form factors. Prima facie, these experimental results are
remarkable. For Q2 beyond 1–2-GeV2 the d-quark sector of
the proton Dirac form factor is much softer than the u quark
sector. However, for the Pauli quark-sector form factors, it is
the u-quark sector that is softer for low Q2. However, at around
Q2 ∼ 1.5 GeV2 there is a crossover and the d-quark-sector
form factor starts approaching zero more rapidly.

The empirical results illustrated in Fig. 28 are straight-
forward to understand within our framework. The dominant
contributions to the quark-sector Dirac form factors come from
the two Feynman diagrams which involve only a quark and a

TABLE VIII. Results for radii defined by Eq. (48) for the proton and neutron Dirac and Pauli form factors and for the quark-sector proton
Dirac and Pauli form factors. In each case we show results where the dressed quark form factors are given by Eqs. (61) and (105) [labeled
with (bse)] and results that also include the pion cloud. The empirical values are obtained from Ref. [71] and for the quark-sector results using
Eq. (47).

r
(bse)
1 r1 r

exp
1 r

(bse)
2 r2 r

exp
2 r

q,(bse)
1 r

q
1 r

q,exp
1 r

q,(bse)
2 r

q
2 r

q,exp
2

Proton 0.75 0.79 0.791 0.77 0.85 0.879 u sector 0.76 0.79 0.795 0.77 0.88 0.841
Neutron 0.20 0.09 0.119 0.76 0.88 0.911 d sector 0.80 0.80 0.809 0.76 0.88 0.938
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FIG. 26. (Color online) Total contributions to the proton u-sector
form factors from each Feynman diagram in Fig. 4. These results
include both the vector and the tensor coupling contributions and the
sum gives the total u-sector Dirac and Pauli proton form factors (solid
lines in Fig. 24).

scalar diquark. This is clear from the top panels of Figs. 26
and 27. The top panel in Figs. 10 demonstrates that the current
d quarks that contribute to Fd

1p must primarily come from the
dressed-down quark, and these contributions are suppressed
by order 1/Q2 relative to the current u quarks from the quark
diagram that contributes to Fu

1p. Thus, the dominance of scalar
diquark correlations in the nucleon clearly provides a very
natural explanation of the data in Fig. 28.

The zero crossing in our result for Fd
1p at Q2 � 4.7 GeV2

is also straightforward to understand. We first note that the
large Q2 behavior of the form factors is governed by the quark
diagrams in Fig. 4, because when the photon couples to a
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FIG. 27. (Color online) Total contributions to the proton d-sector
form factors from each Feynman diagram in Fig. 4. These results
include both the vector and the tensor coupling contributions and the
sum gives the total d-sector Dirac and Pauli proton form factors (solid
lines in Fig. 25).

quark inside a diquark, the diquark form factors provide at least
an additional factor of 1/Q2 relative to the quark diagrams.
Considering only pointlike quarks, which is sufficient to study
the large Q2 behavior, we have for the proton quark-sector
form factors

Fu
ip

Q2→∞−→ f
s,V
iQ + 1

3f
a,V
iQ , (115)

Fd
ip

Q2→∞−→ 2
3f

a,V
iQ , (116)

where i = (1, 2); cf. Eqs. (102) and (103). Therefore, the large
Q2 behavior of Fd

1p is governed by the nucleon body form

factor f
a,V
1Q (see Fig. 18), which becomes negative at large Q2

TABLE IX. Contributions to the nucleon quark-sector form factors from the various diagrams at Q2 = 0. The vector contributions are
obtained from the appropriate body form factors at Q2 = 0 multiplied by isospin factors and quark charges. Therefore, these results do not
change with the various approximations for the dressed quark form factors. The tensor contributions are only nonzero if the dressed quarks
have an anomalous magnetic moment, and in this framework this occurs solely from pion loop effects. Rows with an entry of “0” are identically
zero because of charge conservation.

q F
s,q
1Q,p F

a,q
1Q,p F

s,q
1D,p F

a,q
1D,p F

sa,q
1D,p F

q
1p F

s,q
2Q,p F

a,q
2Q,p F

s,q
2D,p F

a,q
2D,p F

sa,q
2D,p F

q
2p

u sector 0.69 0.10 0.69 0.52 0 2 1.16 −0.15 −0.55 0.75 0.52 1.73
d sector 0 0.21 0.69 0.10 0 1 −0.37 −0.30 −0.55 −0.11 −0.52 −1.85
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FIG. 28. (Color online) Quark-sector contributions to the proton
Dirac form factor multiplied by Q4. Experimental data are taken from
Ref. [56].

and therefore Fd
1p has a zero crossing. Note that the empirical

parametrizations of Ref. [71] also have a zero in Fd
1p at Q2 �

7.9 GeV2.
Understanding the Q2 dependence of the proton Pauli

quark-sector form factors is more subtle within our model.
Analogous to the Dirac form-factor example, Fu

2p receives

a large contribution from the scalar quark diagram f
s,V
2Q ;

however, many other contributions are negative. In contrast,
all diagrams add constructively to the Fd

2p form factor, which
also receives a significant contribution from the pion cloud.
Therefore, at low to moderate Q2 we find Fu

2p/κu ∼ Fd
2p/κd ,

with reasonable agreement with the data. However, at larger
Q2 the two quark diagrams in Eq. (115) partially cancel, giving
Fu

2p/κu < Fd
2p/κd , which is opposite to the behavior observed

in the data. The suppression of Fd
2p with respect to Fu

2p at
large Q2 was found in Ref. [76], where a major difference
from the framework used here is that we make the static
approximation to the quark exchange kernel and therefore
exchange-type diagrams, as illustrated in Fig. 30, are absent
from our form-factor calculation. This is the likely reason
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FIG. 29. (Color online) Quark-sector contributions to the proton
Pauli form factor multiplied by Q4. Experimental data are taken from
Ref. [56].

p p

q

FIG. 30. (Color online) Exchange-type diagrams that do not
appear in our present form-factor calculation because the static
approximation is used for the quark exchange kernel.

for the discrepancy with experiment at large Q2 observed in
Fig. 29.

Detailed results for the proton and neutron Sachs form
factors are given in Appendix C. Of contemporary interest
is the proton Sachs form-factor ratio, GEp/GMp, for which
our result is presented in Fig. 31. We find that this ratio
decreases almost linearly with Q2 but the slope we obtain
is significantly larger than the experimental results obtained
via the polarization transfer experiments, leading to a zero
crossing at Q2 ≈ 3.7 GeV2. So far no such zero crossing has
been seen in the data but if it were to occur it would have to
be in the domain Q2 � 8 GeV2. The zero in the GEp/GMp

ratio found here results from a zero in GEp and, as we have
already noted, the cancellation between F1 and F2 in the linear
combination needed for GE means that even relatively small
differences between the experimental and theoretical values
of the individual from factors can be magnified there. We
find that this zero actually arises from the u quark sector, as
illustrated in the top panel of Fig. 33. This zero has its origin
in the quark diagram with the scalar diquark spectator, which
becomes negative at around Q2 � 1.8 GeV2 and dominates at
large Q2. This can be seen in the top panel of Fig. 35. A possible
reason for the discrepancy with data for the GEp/GMp ratio is
the omission of exchange diagram contributions (illustrated in
Fig. 30), which do not appear in the model described herein.
The running of the quark mass function in QCD may also play
an important role [77].

Results for the neutron Sachs form-factor ratio, GEn/GMn,
are presented in Fig. 32. For Q2 � 1.5 GeV2 our results that
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FIG. 31. (Color online) Proton Sachs form-factor ratio. Data are
from Refs. [1–6].
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FIG. 32. (Color online) Neutron Sachs form-factor ratio. Data
are from Ref. [78].

include pion loop corrections agree well with data. However,
at larger Q2 our ratio continues to grow too rapidly to
be consistent with data. Our result for GEn/GMn does not
possess a zero crossing for any Q2 value. This is in contrast
to the results of Ref. [76], which find a zero crossing at
Q2 � 11 GeV2.

VII. CONCLUSION

We have presented calculations of the nucleon form factors
using a covariant and confining NJL model, which is a Poincaré
covariant quantum field theory with many of the properties of
QCD at low to moderate energies. The model satisfies current
conservation exactly and because the framework is covariant
the form factors are determined without the need to specify
a reference frame. Poincaré covariance also demands nonzero
quark orbital angular momentum in the proton wave function,
and this is reflected in our results by large contributions to the
nucleon Pauli form factors from quark-diquark components of
the nucleon wave function that only carry charge (see Fig. 18
and related discussion).

A unique feature of these results is the parameter-free
self-consistent inclusion of pion loop effects, as a perturbation
to the “quark core” results obtained from the solution of a
relativistic Faddeev equation. We find that these pion-cloud
effects play a vital role for Q2 � 1 GeV2, which is consistent
with earlier studies using chiral perturbation theory [79–85]
and chiral extrapolation of lattice QCD data [86–89]. For
example, in our calculation the pion cloud increases the
magnitude of the proton and neutron anomalous magnetic
moments by 25% and 45%, respectively, giving final results
of κp = 1.78 and κn = −1.81, which are in rather good
agreement with the empirical values.

In the limit of equal current quark masses our model satisfies
charge symmetry and therefore the proton quark-sector form
factors can be unambiguously determined. For the quark-
sector radii we find that ru

E is 16% larger than rd
E , whereas for

the magnetic radii rd
M is 18% larger than ru

M . The quark-sector
magnetic radius result can be understood because pion loop
effects induce a d-quark-sector anomalous magnetic moment
for the dressed-up quark 12 times larger than the u quark-sector

contribution. For the quark-sector form factors, pion-cloud
effects are largely concentrated in the d-quark sector. For
example, rd

M actually changes sign when pionic effects are
included and the value of Gd

Mp(0) increases by a factor of ten
because of pion loop effects.

An area of particular interest which has been identified
in our study is the interplay between the respective roles of
diquark correlations and pion effects. This is most dramatically
illustrated by the comparison of Figs. 28 and 29. In the first
we see the crucial importance on the behavior of the Dirac
form factor of the dominance of scalar diquarks, when they
can contribute. The smaller role of these scalar diquarks in
the d-quark case naturally explains the suppression of the
d-quark sector at larger values of the momentum transfer.
On the other hand, in the case of the Pauli form factor the
axial-vector diquarks and pion make significant contributions
to the d-quark sector and this effectively counteracts the effect
of the scalar diquark correlations. These are subtle but crucial
aspects of the observed form factors.

Finally, looking to the future, an important near-term goal
must be to apply the framework developed here to the study
of nucleon transition form factors, for example, nucleon to �
and nucleon to Roper transitions. This will elucidate the role
of pion loop effects in these transitions and help to expose
the nature of diquark correlations in the structure of baryons.
The results presented herein and earlier work on nucleon
PDFs [31,33] will also serve an a critical starting point for
forthcoming studies of generalized PDFs [90,91].
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APPENDIX A: CONVENTIONS

We use the conventions of Ref. [92]. For example, the metric
tensor has the form

gμν = diag [1,−1,−1,−1] (A1)

and the totally antisymmetric Levi-Civita tensor is normalized
such that ε0123 = 1. Some important Dirac matrices are defined
as

γ5 = iγ 0γ 1γ 2γ 3 = − i

4
εμνρσ γ μγ νγ ργ σ , (A2)

σμν = i

2
[γ μ, γ ν], (A3)

and therefore

Tr[γ5γ
μγ νγ ργ σ ] = −4i εμνρσ = 4i εμνρσ . (A4)
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APPENDIX B: PROOF OF ELECTROMAGNETIC
GAUGE INVARIANCE

Electromagnetic gauge invariance manifests as electromag-
netic current conservation, which for the nucleon is embodied
in the statement

qμ j
μ
N (p′,p) = 0, (B1)

where q = p′ − p and j
μ
N (p′,p) is the nucleon electromag-

netic current. The nucleon electromagnetic current is given by
the six Feynman diagrams represented by Fig. 4 and therefore
has the form

j
μ
N (p′,p) = j

s,μ
Q (p′,p) + j

a,μ
Q (p′,p) + j

s,μ
D (p′,p)

+ j
a,μ
D (p′,p) + j

s→a,μ
D (p′,p) + j

a→s,μ
D (p′,p),

(B2)

where the nomenclature is explained in Sec. VI. The individual
Feynman diagram contributions to the nucleon electromag-
netic current are

j
s,μ
Q (p′,p) = −ZN �s

∫
d4k

(2π )4

× S(�′) �
μ
γQ(�′,�) S(�) τs(k) �s, (B3)

j
a,μ
Q (p′,p) = −ZN �

α

a

∫
d4k

(2π )4

× S(�′) �
μ
γQ(�′,�) S(�) τa,αβ (k) �β

a , (B4)

j
s,μ
D (p′,p) = −ZN i�s

∫
d4k

(2π )4

× S(k) τs(�
′) �μ

s (�′,�) τs(�) �s, (B5)

j
a,μ
D (p′,p) = −ZN i�

λ

a

∫
d4k

(2π )4

× S(k) τa,λβ (�′) �μ,αβ
a (�′,�) τa,ασ (�) �σ

a , (B6)

j
s→a,μ
D (p′,p) = −ZN i�

λ

a

∫
d4k

(2π )4

×S(k) τa,λα(�′) �μ,α
s→a(�′,�) τs(�) �s, (B7)

j
a→s,μ
D (p′,p) = −ZN i�s

∫
d4k

(2π )4

× S(k) τs(�
′) �μ,α

a→s(�
′,�) τa,αλ(�) �λ

a , (B8)

where �′ = p′ − k, � = p − k and we have also dropped the
momentum dependence of the Faddeev vertices. The quark-
photon vertex is labeled by �

μ
γQ and the various diquark-

photon vertices are represented by �
μ
s , �

μ,αβ
a , �

μ,α
s→a , and

�
μ,α
a→s . These vertices satisfy the following Ward-Takahashi

identities:

qμ �
μ
γQ(�′,�) = Q̂q[S−1(�′) − S−1(�)], (B9)

qμ �μ
s (�′,�) = −iQ̂s

[
τ−1
s (�′) − τ−1

s (�)
]
, (B10)

qμ �
μ,αβ
a,ij (�′,�) = −iQ̂ij

a

[
τ−1,αβ
a (�′) − τ−1,αβ

a (�)
]
, (B11)

qμ �μ,α
s→a(�′,�) = 0, (B12)

qμ �μ,α
a→s(�

′,�) = 0, (B13)

where the charge operators have the form

Q̂q = 1

6
+ τ3

2
, Q̂s = 1

3
, Q̂ij

a = 1

3
δij + iεij3. (B14)

The indices on Q̂
ij
a represent isospin, where i is the initial

diquark and j the final diquark. The contraction of the current
with qμ therefore gives

qμ j
s,μ
Q = −Q̂q �s

∫
k

[S(�′) − S(�)]τs(k) �s, (B15)

qμ j
a,μ
Q = −Q̂q �

α

a

∫
k

[S(�′) − S(�)]τa,αβ(k) �β
a , (B16)

qμ j
s,μ
D = −Q̂s�s

∫
k

S(k)[τs(�
′) − τs(�)] �s, (B17)

qμ j
a,μ
D = −Q̂ij

a �
α,j

a

∫
k

S(k)[τa,αβ(�′) − τa,αβ (�)] �β,i
a ,

(B18)

where we have used τa,αβ τ−1,λσ
a = δαλδβσ . Therefore,

qμ j
s,μ
Q + qμ j

s,μ
D

= −(Q̂q + Q̂s)�s(p
′)[�Ns(p

′) − �Ns(p)]�s(p),

(B19)

qμ j
a,μ
Q + qμ j

a,μ
D

= −(
Q̂q δij + Q̂ij

a

)
�

α,j

a (p′)[�Na,αβ(p′)

−�Na,αβ (p)]�β,i
a (p), (B20)

qμ j
s→a,μ
D + qμ j

a→s,μ
D = 0. (B21)

In matrix notation we therefore have

qμ j
μ
N = �N (p′) Q̂N [�N (p′) − �N (p)]�N (p), (B22)

where

Q̂N =
[
Q̂q + Q̂s 0

0 Q̂q δij + Q̂
ij
a

]
, (B23)

and �N (p) is defined in Eq. (37). It is straightforward to show

Q̂N �N (p) = QN �N (p), (B24)

where

QN =
{

1 proton,

0 neutron.
(B25)

Therefore,

qμ j
μ
N = QN �N (p′)[�N (p′) − �N (p)]�N (p). (B26)

The Faddeev equations for �N (p) and �N (p) are

�N (p) = Z �N (p) �N (p), (B27)

�N (p) = �N (p) �N (p) Z, (B28)
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FIG. 33. (Color online) Proton up-quark-sector Sachs form fac-
tors. The empirical results are obtained using Ref. [71] and Eq. (47).

where Z is the quark exchange kernel. Therefore,

qμ j
μ
N = QN �N (p′)[Z−1 − Z−1]�N (p) = 0, (B29)

as required by current conservation.

APPENDIX C: SACHS FORM FACTORS

In the nonrelativistic limit the electric and magnetic Sachs
form factors are rigorously related to the charge and magneti-
zation densities via a three-dimensional Fourier transform. In
a Poincaré covariance quantum field theory this relation breaks
down, but such a correspondence may still be a useful tool,
at least for large distances. The Sachs form factors appear
in the Rosenbluth parametrization of the elastic scattering
differential cross section, given by

dσ

d�
= σMott

1 + τ

[
G2

E(Q2) + τ

ε
G2

M (Q2)
]
, (C1)

where τ = Q2/(4 M2
N ), σMott represents that cross section for

the scattering of the electron from a pointlike scalar particle,
and ε is the longitudinal polarization of the virtual photon
that mediates the interaction in Born approximation. For the
Rosenbluth separation technique one considers the reduced
cross section, namely,

σR ≡ ε
dσ

d�

1 + τ

σMott
= ε G2

E(Q2) + τ G2
M (Q2). (C2)
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FIG. 34. (Color online) Neutron up-quark-sector Sachs form fac-
tors. The empirical results are obtained using Ref. [71] and Eq. (47).

Therefore, σR is linearly dependent on ε, so a linear fit to the
reduced cross section at fixed Q2 but a range of ε values gives
G2

E(Q2) as the slope and τ G2
M (Q2) as the y-axis intercept. At

large Q2 the reduced cross section is dominated by τ G2
M (Q2),

making an accurate extraction of G2
E(Q2) increasingly more

difficult.
Our results for the proton and neutron Sachs form factors

are presented in Figs. 22 and 23, where in each case we have
used the three variants of dressed quark form factor discussed
in Sec. IV. Empirical results from Ref. [71] are shown as the
dotted lines. After including the vertex dressing from the BSE
and also pion loop effects, the agreement with experiment is
good. The proton electric form factor is slightly too soft and, as
already discussed, possess a zero at Q2 � 3.7 GeV2. For the
proton magnetic form factor there is excellent agreement with
the empirical results of Ref. [71]. Our result for the neutron
electric form factor drops too slowly for Q2 � 1 GeV2 and the
magnetic form factor lacks a little strength for Q2 � 1 GeV2.
However, overall the agreement with data is very good.

Results for the the proton quark sector Sachs form factors
are given in Fig. 33 for the u-quark sector and Fig. 34 for the
d-quark sector. Empirical results are obtained from Ref. [71]
using the identities

Gu
ip = 2 Gip + Gin, Gd

ip = Gip + 2 Gin, (C3)
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FIG. 35. (Color online) Total contributions to the proton u-sector
Sachs form factors from each Feynman diagram in Fig. 4. These
results include both the vector and the tensor coupling contributions
and the sum gives the total u-sector Sachs proton form factors.

where i = (E,M). Overall, the agreement with experiment
is very good. Interestingly, however, the pion loop effects
have little influence on the quark-sector Sachs form factors
with the notable exception of Gd

Mp(Q2). Here the pion
cloud results in a tenfold increase in the magnitude of the
d-quark-sector magnetic moment, from μ

(bse)
d = −0.075 μN

to μd = −0.85 μN . There are a number of effects that all add
to give this very large pion loop correction; most importantly,
however, is the large d-quark-sector anomalous magnetic
moment of a dressed-up quark [Eq. (82)] generated by the pion
cloud. This results in a large contribution to Gd

Mp(Q2) from the
quark diagram where the photon couples to a dressed-up quark,
with a scalar diquark as spectator. Another notable result is that
the zero in GEp(Q2) resides solely in the u-quark sector, as
illustrated by the top panels of Figs. 33 and 34.

To understand these results better, we give the total
contribution from each diagram, including both the BSE vertex
dressing and pion loop effects in Fig. 35 for the u-quark sector
and Fig. 36 for the d-quark sector. For the top panel in Figs. 35
it is clear that the zero in Gu

Ep(Q2) and therefore GEp(Q2)
has its origin solely in G

s,u
EQ,p, the u-quark-sector contribution

from quark diagrams with a spectator scalar diquark. We
also find the interesting result that the diagrams associated
with transitions between scalar and axial-vector diquarks are
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FIG. 36. (Color online) Total contributions to the neutron u-
sector Sachs form factors from each Feynman diagram in Fig. 4. These
results include both the vector and the tensor coupling contributions
and the sum gives the total u-sector Sachs neutron form factors.

identically zero for the Sachs electric form factors but do
contribute sizeably to the Sachs magnetic form factors.

APPENDIX D: ANALYSIS OF PION-CLOUD EFFECTS

A deeper understanding of our results is gained by decom-
posing the form factors in Figs. 20 and 21 into the various total
contributions arising from each of the six diagrams represented
in Fig. 4, for both the vector and tensor coupling to the dressed
quarks. In this case the nucleon form factors are expressed as

Fip(Q2) = FV
ip (Q2) + FT

ip(Q2), (D1)

Fin(Q2) = FV
in (Q2) + FT

in(Q2), (D2)

where i = (1, 2). In terms of the six diagrams contained in
Fig. 4 we have

FV
ip = F

s,V
iQ,p + F

a,V
iQ,p + F

s,V
iD,p + F

a,V
iD,p + F

sa,V
iD,p , (D3)

FT
ip = F

s,T
iQ,p + F

a,T
iQ,p + F

s,T
iD,p + F

a,T
iD,p + F

sa,T
iD,p , (D4)

and neutron expressions are obtained by p → n. All terms in
Eqs. (D3) and (D4) include the isospin coefficients and the
dressed quark form factors.

Figures 37 and 38 illustrate the results for the total
contributions from each diagram in Fig. 4 to the proton
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FIG. 37. (Color online) Total contributions to the proton Dirac
form factor from each Feynman diagram in Fig. 4 for a vector coupling
(top) and tensor coupling (bottom) to the dressed quarks. The sum
of these ten contributions gives the total proton Dirac form factor
illustrated in Fig. 20 (solid curve).

form factors, where the contribution from the vector and
tensor quark-photon couplings are shown separately. Results
for the various contributions at Q2 = 0 are also listed in
rows 1 and 2 of Table X. These results demonstrate the
dominance of the scalar diquark component in the proton
wave function. For example, diagrams which contain only
a scalar diquark carry 69% of the proton charge and 40% of
its anomalous magnetic moment, while diagrams that contain
only axial-vector diquarks carry 31% of the proton charge and
30% of its anomalous magnetic moment. The remainder of
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FIG. 38. (Color online) Total contributions to the proton Pauli
form factor from each Feynman diagram in Fig. 4 for a vector coupling
(top) and a tensor coupling (bottom) to the dressed quarks. The sum
of these ten contributions gives the total proton Pauli form factor
illustrated in Fig. 20 (solid curve).

the anomalous magnetic moment, 30%, is carried by diagrams
with both scalar and axial-vector diquarks. The contributions
that arise from the tensor coupling to the dressed quarks,
illustrated in the bottom panels of Figs. 37 and 38, diminish
rapidly with increasing Q2 because they are suppressed by the
dressed quark Pauli form factors, illustrated in Fig. 6, which
vanish monotonically for increasing Q2.

The coupling of the photon to the diquarks is not only
necessary for charge conservation, but is critical for a good
description of the experimental data. Here the axial-vector
diquarks play an important role. For a proton, the photon

TABLE X. Total contributions to the nucleon Dirac and Pauli form factors from the various diagrams at Q2 = 0.
The vector contributions are obtained from the appropriate body form factors at Q2 = 0 multiplied by isospin factors
and quark charges. Therefore, the vector results do not change with the various approximations for the dressed quark
form factors. The tensor contributions are only nonzero if the dressed quarks have an anomalous magnetic moment,
and in this framework this occurs solely from pion loop effects. Rows with an entry of “0” are identically zero because
of charge conservation.

F s,V
1Q F a,V

1Q F s,V
1D F a,V

1D F sa,V
1D F s,T

1Q F a,T
1Q F s,T

1D F a,T
1D F sa,T

1D Total

F1p 0.46 0 0.23 0.31 0 0 0 0 0 0 1
F2p 0.76 0 −0.18 0.47 0.38 0.14 0.0 0.0 0.07 0.14 1.78
F1n −0.23 0.10 0.23 −0.10 0 0 0 0 0 0 0
F2n −0.38 −0.15 −0.18 −0.16 −0.38 −0.25 0.0 0.0 −0.17 −0.14 −1.81
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FIG. 39. (Color online) Total contributions to the neutron Dirac
form factor from each Feynman diagram in Fig. 4 for a vector quark
coupling (top) and tensor quark coupling (bottom). The sum of these
ten contributions gives the total neutron Dirac form factor illustrated
in Fig. 21 (solid curve).

is twice as likely to couple to a {uu} type axial-vector
diquark than one of type {ud}. Furthermore, axial-vector
diquarks of type {uu} have a charge of 4/3 and a magnetic
moment of 3.27 μN (see Table III) and hence they provide
the second-largest contribution to the proton charge and
anomalous magnetic moment. The largest contribution in each
case comes from the quark diagram with a spectator scalar
diquark. With the exception of the diquark diagram with
an axial-vector diquark spectator, the Feynman diagrams of
Fig. 4, for the vector coupling, can only contribute to F2p(Q2)
if the quarks have nonzero orbital angular momentum. The
sizable contributions from all other diagrams (see Fig. 38)
indicate that there is significant quark orbital angular momen-
tum in the proton wave function [93,94].

Figures 39 and 40 and rows 3 and 4 of Table X give results
for the neutron form factors, broken down into the total vector
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FIG. 40. (Color online) Total contributions to the neutron Pauli
form factor from each Feynman diagram in Fig. 4 for a vector quark
coupling (top) and tensor quark coupling (bottom). The sum of these
ten contributions gives the total neutron Dirac form factor illustrated
in Fig. 21 (solid curve).

and tensor coupling contributions from the Feynman diagrams
of Fig. 4. For the Dirac form factor the diagram pairs with the
same quark-diquark structure cancel each other to give a charge
of zero, while diagrams that contain only scalar diquarks
carry 45% of the neutron anomalous magnetic moment and
diagrams containing only axial-vector diquarks carry 27%.
The remaining 28% is carried by diagrams with both scalar
and axial-vector diquarks. The tensor coupling contributions
to F1n(Q2) are much more significant compared to the proton
case, an indication of the particular sensitivity of the neutron
Dirac form factor to pion-cloud effects. Axial-vector diquarks
play a reduced role in neutron structure, compared to the
proton, because the {dd}-type axial-vector diquark has half
the charge and an anomalous magnetic moment 65% the size
of the {uu}-type diquark found in the proton.
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[32] I. C. Cloët, W. Bentz, and A. W. Thomas, Phys. Lett. B 642, 210

(2006).
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