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Nuclear symmetry energy with strangeness in heavy-ion collisions
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The role of antikaons in the symmetry energy to be determined in heavy-ion collisions as, for instance, in
such observables as the π−/π+ ratio is discussed using a simple chiral Lagrangian. It is shown, with some
mild assumptions, that kaons, when present in the system, can affect the equation of state appreciably for both
symmetric and asymmetric nuclear matter. For nuclear matter with small asymmetry, with which heavy-ion
collisions are studied, it may be difficult to distinguish a stiff symmetry energy and the supersoft symmetry
energy, even with kaons present. However, the effect of kaon is found to be significant such that μn − μp �= 0
near x = 1/2, at which the chemical potential difference is 0 without kaon amplitude. We present arguments
that, in order to make a more reliable calculation relevant for heavy-ion collisions, a much deeper understanding
of how the strangeness degrees of freedom such as kaons, hyperons, etc., figure in dense baryonic matter than is
presently available in the literature is needed.
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I. INTRODUCTION

The new degrees of freedom other than nucleons, such as
kaons, hyperons, and strongly coupled quarks, in the dense
baryonic matter are expected in heavy-ion collisions and at the
core of compact stars. The nuclear symmetry energy, denoted
Esym, in the literature figures importantly in nuclear physics
and in compact-star physics. The nuclear symmetry energy
plays an important role in determining the composition of
dense baryonic matter and controlling the fate of compacts
stars, which is one of the principal themes of our current
theoretical research into baryonic matter at high densities.
Although it is more or less controlled by experiments up to near
the nuclear matter density n0, it is almost completely unknown
at high densities relevant to the interior of compact stars, going
up to, e.g., ∼10n0 [1]. While there are a large number of
theoretical predictions for Esym that range widely above n0,
there has been practically no attention paid to the effect of new
degrees of freedom, in particular, strangeness, on the nuclear
symmetry energy. For a system of n nucleon number density,
the energy differences of states with different compositions
of protons and neutrons are encoded in what we call the
“asymmetry energy,” Easym, defined by subtracting the energy
of the state with symmetric compositions, np = nn = n/2,
from the energy of the system composed of np proton number
density and nn neutron number density,

Easym(n,x) ≡ E(n,x) − E(n,x = 1/2), (1.1)

with x = np/n. Empirically it is found that it obeys a parabolic
law in the asymmetry factor δ = (1 − 2x) as given by

Easym(n,x) = S(n)δ2, (1.2)

where S(n) is what is referred to as the “symmetry energy”
and conventionally denoted in the literature Esym(n).1

*hyunkyu@hanyang.ac.kr
1We use the notation S(n) for the symmetry energy to avoid

confusion with the “asymmetry energy,” denoted Easym.

In the presence of strange hadrons, the asymmetry energy
should depend on the strangeness content in the baryonic
matter, since there should be nontrivial interactions between
nucleons and strange hadrons. Denoting the strangeness num-
ber fraction relative to the nucleon number density xS = nS/n,
the asymmetry energy can be modified as

Easym(n,x,xS) ≡ E(n,x,xS) − E(n,x = 1/2,xS). (1.3)

One of the immediate questions is whether the empirical
parabolic law is valid in the presence of a strange degree of
freedom, which is one of the motivations of this work.

In this work, in contrast to the interior of compact stars, xS

is considered a “probe parameter,” similarly to x and n. While
inside the compact star one can assume weak equilibrium,
which would enable us to determine the strangeness content,
in heavy-ion collisions the transient time for the dense matter
phase is too short to activate weak interactions. This difference
between the hadronic matter in heavy-ion collisions and the
hadronic matter in weak equilibrium of stellar matter renders
the roles of the symmetry energy different from each other at
some high density. However, heavy-ion collisions are expected
to probe the same symmetry energy as in compact stars below
the density at which kaons start condensing. Here the strange
hadrons are produced via strong interactions. It is, therefore,
natural that we cannot expect to have nonzero net strangeness
number in an isolated hadronic system, since any process
involving net strangeness number production is suppressed.
Nevertheless, there may be possibilities of forming a lump
of dense baryonic matter with strangeness with hadrons with
compensating strangeness escaping from the lump such that
the total strangeness produced is 0. One possible scenario is
the production of K+ and K−. Suppose the K− is captured in
a bound state in a nuclear matter lump due to K−N attractive
interactions, but the K+ escapes out of the lump carrying
kinetic energies, thereby cooling the remaining baryon lump
and forming a baryonic lump with a finite strangeness number.
It is then expected that the nuclear symmetry energy of
the system (lump) will be modified because of the KN
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interactions [2]. This process may or may not occur under
the conditions provided by nature—some of the caveats are
given below—but it illustrates in a clear way how the presence
of strangeness can modify the nuclear asymmetry energy, even
in neutron-rich systems.

In heavy-ion collisions, the initial neutron-proton asymme-
try factor, δ (=1 − 2x)—which ranges from 0 for 12C to 0.198
for 197Au or 0.227 for 238U collisions [3]—does not change. It
is very likely that the baryonic lump with bound kaons has a
similar n-p asymmetry when it is formed. Hence the nuclear
symmetry energy around x = 1/2 is particularly of interest and
relevance to heavy-ion collisions. One may expect the extra
energy to be carried along to cool down the system. We assume
that the s-wave bound state of K− (that we simply refer to as a
“kaon” unless otherwise noted) is feasible with the amplitude
K and energy EK , similarly to kaon condensation:2

K− = K expiEK t . (1.4)

For nucleon-nucleon and kaon-nucleon interactions, we con-
sider a simple—toy—model given by the Lagrangian [2]

L = LKN + LNN, (1.5)

where

LKN = ∂μK−∂μK+ − m2
KK+K−

+ 1

f 2
�KN (ψ†

nψn + ψ†
pψp)K+K−

+ i

4f 2
(ψ†

nψn + 2ψ†
pψp)(K+∂0K

− − K−∂0K
+)

+ · · · , (1.6)

LNN = ψ†
ni∂0ψn + ψ†

pi∂0ψp

− 1

2mN

( �∇ψ†
n · �∇ψn + �∇ψ†

p · �∇ψp) − VNN + · · · ,

(1.7)

where the ellipses stand for higher derivatives, higher numbers
of local fields, and the interaction with higher excitations such
as � and hyperon degrees of freedom. mN (mK ) denotes the
nucleon (kaon) mass, f is a constant related to the pion decay
constant fπ , �KN is the KN � term encoding the explicit
breaking of chiral symmetry and VNN is an NN potential that
we need not specify for our purpose.

The Hamiltonian can be obtained,

H = HKN + HNN, (1.8)

where

HKN =
[
E2

K + m2
K − n

f 2
�KN

]
K+K−, (1.9)

HNN = 3

5
E0

F

(
n

n0

)2/3

n + V (n) + n(1 − 2x)2S(n). (1.10)

2Here we assume a uniform amplitude inside the lump but vanishing
outside, and we neglect the surface effect.

FIG. 1. (Color online) Density dependence of EK , with �KN =
0, 2f , and 3.2f denoted by dashed, dot-dashed, and thick solid lines,
respectively, for x = 0. 4S(n) (dotted line) and 4Sss(n) (thin solid
line), roughly the corresponding electron chemical potentials, are
plotted together to show the kaon condensation threshold densities in
weak equilibrium. With 4Sss(n) there is no kaon condensation.

The kaon number density (equivalently, the strange number
density, −nS) is given by

nK =
[

2EK + (1 + x)n

2f 2

]
K2. (1.11)

The kaon energy, EK , is determined by the KN interaction
given by

m2
K − E2

K − EK

(1 + x)n

2f 2
− n

f 2
�KN = 0. (1.12)

Then we get

EK = − (1 + x)n

4f 2

+ 1

2

√(
(1 + x)n

2f 2

)2

− 4

(
�KN

f 2
n − m2

K

)
, (1.13)

and the Hamiltonian density in a simplified form given by

HKN = EKnK. (1.14)

The density dependence for a given x of EK is determined
by the KN � term, �KN , and the pion decay constant f ≈
93 MeV. It is shown in Fig. 1 for �KN = 0, 2f , and 3.2f by
the dashed, dot-dashed, and thick solid lines,3 respectively, for
the pure neutron matter x = 0.

3The current lattice calculations put a bound on �KN �
250 MeV [4].
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Note the steeper slope for larger values of �KN . The
extreme case is for �KN = 0, where only the Weinberg-
Tomozawa term, the last term in Eq. (1.6), is effective.4 Note
that the x dependence of EK is strongly controlled by the
Weinberg-Tomozawa term for densities far below the critical
condensation density, nth = m2

Kf 2/�KN , which comes out to
be ∼6n0 if one uses the lattice value for the � term.5 This is
because the first term in the square root in Eq. (1.13), is much
smaller than the second term, −4(�KN

f 2 n − m2
K ) (which is non-

negative). For �KN considered in our model, the densities to be
probed by heavy-ion machines, n = 2 ∼ 3n0, are far from nth.

II. RESULTS

The chemical potentials of a neutron and a proton with
bound s-wave kaons are given by

μn = μ0
n −

[
EK

2f 2
+ �KN

f 2

]
K2, (2.1)

μp = μ0
p −

[
EK

f 2
+ �KN

f 2

]
K2, (2.2)

where

μ0
n − μ0

p = 4

(
1 − 2

np

n

)
SN (n). (2.3)

One can note that the effect of the kaon on the neutron
and proton chemical potentials has two parts, one from
the Weinberg-Tomozawa term and the other from the �KN

term. The latter contributes equally to the chemical potentials
since it does not depend on the n-p asymmetry,6 while
the former depends on the n-p asymmetry and induces
different contributions. Then we see that the chemical potential
difference μ0

n − μ0
p gets an additional contribution from the

s-wave kaon amplitude K through the Weinberg-Tomozawa
term as given by

μn − μp = 4(1 − 2x)SN (n) + EK

2f 2
K2. (2.4)

It should be noted that it is this quantity that one hopes to
determine in heavy-ion collisions (at an energy high enough
to produce kaon pairs), as, for example, in the ratio of π+/π−
and, in the future, in the K+/K0 ratio. (See [6]). Given this
quantity, then the asymmetry energy per nucleon with bound

4For kaon condensation in star matter in this case, we need a
relatively stiffer symmetry energy.

5This simple formula based on Eq. (1.5) for nth is perhaps too naive
even near—not to mention far away from—the equilibrium density of
nuclear matter. We are assuming that kaons condense from the state
of matter that can be described as a Fermi liquid. To do better, one
should approach it with the hidden local symmetry Lagrangian in the
mean field as mentioned in Sec. III. Such an approach—in a highly
oversimplified form—is discussed in [5], where nth was found to be
∼3n0.

6For the density we consider, we ignore the difference between �Kn

and �Kp .

s-wave kaons can be obtained in the form

Easym(n,x,xK ) = (1 − 2x)2SN (n)

+ [EK (n,x) − EK (n,1/2)]xK, (2.5)

where xK = nK/n is the kaon number fraction.
As a rough estimate of what is involved, we assume that

SN (n) does not get a substantial modification due to the
presence of kaons.7 Then we may make use of the energy
density and symmetry energy factor S of phenomenological
models. We take one simple approach, called the “momentum-
independent interaction” (MID), used by Li et al. [7].8 We can
rewrite the symmetry energy, S(n), from [7] as

S(n) = (22/3 − 1)
3

5
E0

F

(
n

n0

)2/3

+ F
n

n0

+ (18.6 − F )

(
n

n0

)C

. (2.6)

The parameters A, B, and γ determined by experiments are
A = −298.3 MeV, B = 110.9 MeV, γ = 1.21, and E0

F =
37.2 MeV, and we take F = 3.673 and C = 1.569. For
comparison we consider also a supersoft symmetry energy
given by

Sss(n) = 13.1

(
n

n0

)2/3

+ 107
n

n0
− 88.4

(
n

n0

)1.25

. (2.7)

In Fig. 2, the x dependence of the chemical potential differ-
ence, Eq. (2), at n = 2n0 are shown for two symmetry energy
factors. The results are very similar for n = 3n0. The range
of densities (2–3)n0 is appropriate for the purpose because it
comes before kaons could condense, and also the baryonic
matter could be considered to be in a Fermi-liquid state.9

One can see that the effect of the kaon is significant near
x = 1/2, at which the chemical potential difference, the first
term in Eq. (2.4), is 0 without the kaon amplitude. Thus it will
affect the ratios π−/π0, K+/K0, etc. In the above calculation,
we took xK = 1 for simplicity, which is, of course, too big. To

7There is a caveat to this in the case of kaon condensation. As
mentioned in Sec. III, condensed kaons—perhaps relevant in compact
stars, though not in heavy-ion collisions—could significantly modify
the baryon sector.

8The objective of heavy-ion experiments is to probe the symmetry
energy in the range of densities n � (2 − 3)n0. At such densities
and beyond, the detailed structure of interactions (i.e., tensor forces,
short-range repulsions, etc., the degrees of freedom involved, e.g.,
half-skyrmions, kaons, hyperons, strongly coupled quarks, etc.) is
crucial for understanding the physics of dense compact-star matter.
The simple model form we take here, though fit for experiments up
to n0, is just a parametrization and contains no information of what
takes place in the highly correlated matter involved at high densities.
We use it just to gain a rough idea of what might be going on in two
extreme cases.

9This is to avoid the possible half-skyrmion phase predicted in the
skyrmion crystal model, since heavy-ion measurements for the meson
ratio are not to probe the regime in which a topology change could
intervene.
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FIG. 2. (Color online) Chemical potential difference μn − μp vs
x for S(n) (solid line) and Sss(n) (dotted line). Here, for illustration,
we have taken n = 2n0 and the extreme case of xK = 1.

be realistic, we need to fix it dynamically with the collision
condition using a more sophisticated theory as mentioned
below. The simplest possibility is the charge-neutral baryon
lump, which would give xK ∼ x near x ∼ 1/2.

The asymmetry energy, Esym, at n = 2n0 for xK = 1 is
shown, for illustrative purposes, for two symmetry energy
factors S(n) and Sss(n) in Fig. 3.

We see that the neutron-proton permutation symmetry in
the nucleon sector, characterized by (1–2x)2, is significantly

FIG. 3. (Color online) Asymmetry energy per nucleon,
Easym(n,x,xK = 1), vs x for S(n) (solid line) and Sss (dotted line) for
n = 2n0 and xK = 1.

distorted in the presence of kaons. The effect is more prominent
in the supersoft case. It is interesting to note that the minima,
xmin, in Fig. 3 are shifted toward xmin > 1/2, which is
equivalent to the proton-rich configuration.10 So far the weak
equilibrium condition applicable in compact stars has not been
used, so the equilibrium threshold density for kaons has no
meaning. Kaons are produced by strong interactions. This is
the reason we can consider kaon amplitude even at a lower
density, n � 3n0, below the weak-equilibrium kaon threshold.

III. REMARKS AND CONCLUSION

A few remarks concerning the reliability and relevance of
what is discussed above are in order. The model Lagrangian
adopted here, (1.6), is limited to the chiral order O(p2) of
a chiral Lagrangian that arises from a flavor SU(3) chiral
Lagrangian that contains, in addition to octet baryons and
pseudo-Goldstone bosons, U(3) vector mesons, when the
hyperons and vector mesons are integrated out and only
the leading terms (in both derivatives and number of fields)
are retained. To that order, the kaon number density is quadratic
in the kaon-field amplitude. Now one may wonder what
happens if higher kaon fields figure in the Lagrangian as
expected in the derivative expansion in the integrating-out.
They would enter in nK . The question can be raised whether
kaon interactions mediated through coupling with nucleons
would not generate repulsion that would be limited to and
saturated at a finite nK [8].

This question can be addressed with a simple
renormalization-group argument with (1.6) for heavy-ion
systems, where the effective kaon mass cannot go down as
much. In terms of chiral perturbation theory, the leading-order
term in the KN interactions is the Weinberg-Tomozawa
term as used in the literature [8]. This term is “irrelevant”
in the renormalization-group flow [9]. Thus, at least in the
perturbative sense—which should be reliable for densities not
as high above n0—higher kaon field operators cannot do much.

For compact star matter, in contrast to the heavy-ion
collision process, the weak interaction becomes sufficiently
active to drive the star matter to be stabilized in weak
equilibrium. In weak equilibrium, the chemical potential of
kaons, μK , should be identical to the electron chemical
potential, μe:

μe = μK = μn − μp. (3.1)

When μK (=μe) crosses EK in Fig. 1, kaon conden-
sation can occur and it defines the threshold density
for kaon condensation, nth. The strange number fraction
after kaon condensation threshold should range from 0
(condensation threshold) to 1/2 (massless kaon) for lo-
cally neutral star matter in weak equilibrium. Since the
kaon number fraction is not larger than 1/2, the at-
tractive nature of KN interactions may remain domi-
nant over the repulsion between kaons such that it might
not be strong enough to destroy the KN attraction for

10In the realistic case, the minimum of Easym is expected to be further
modified when the electromagnetic interaction is included.
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kaon condensation. This could also be the case in heavy-
ion collisions for the formation of a kaon-bound baryon
lump.11

It is possible that the dynamics involved could very well
be inaccessible by the mean-field approach even at a density
that is not too high as suggested in [10] and [11]. For instance,
the smooth transition at about ∼2n0 from hadronic matter
to strongly interacting quark matter in compact star matter
that can accommodate ∼2M� stars [12] resembles the kaon
condensation scenario associated with the topology change
that takes place at ∼2n0 as suggested in [13] and [14] and
mentioned below. Furthermore, there is a strong indication
that kaon condensation and hyperon appearance should be
considered on the same footing [15]. In the literature, the two
processes have been treated separately with no connection
between the two. This point may also be pertinent for the
process in heavy-ion collisions discussed here.

In this work, we have investigated the effect of the
strangeness degree of freedom on the symmetry energy
assuming baryon lumps with kaons bound, which might be
produced in heavy-ion collisions. One possible scenario is
that the K− is captured in a bound state in a nuclear matter
lump due to K−N attractive interactions, but the K+ escapes
out of the lump carrying kinetic energies, thereby forming
a baryonic lump with a finite strangeness number. We take
the simplest Lagrangian to describe this system, Eq. (1.5).
It is then expected that the nuclear symmetry energy of
the system (lump) will be modified because of the KN

11In molecules or solids, most electrons are bound to their parent
nuclei, although interactions between electrons inside an atom or in
different atoms are repulsive electromagnetically. More speculatively,
as conjectured by Yamazaki [10], it may be that shared kaons mediate
more attractions between nucleons.

interactions. It is found that even in the presence of kaons, there
is little difference in the asymmetry energies with S and Sss

near x ∼ 1/2, which is roughly the initial condition of heavy-
ion collisions. Pertinent to experimental efforts, it should be
kept in mind that if our result is correct, the pion ratio could not
distinguish between a stiff symmetry energy and a supersoft
symmetry energy. The presence of kaons, however, distorts
the Fermi levels of neutrons and protons via the Weinberg-
Tomozawa term such that μn − μp �= 0 at x = 1/2, which
should vanish without kaons. It will affect the particle spectrum
including the pion ratio in the heavy-ion collision.

There are a few caveats. The scenario in this work is that K−
is bound to the nuclear matter, but K+ escapes from the nuclear
matter. Of course, the crucial question is then how to control
the kaon number, a problem yet to be worked out. Since we take
the simplest form of the Lagrangian in this work, the possible
roles of higher derivatives, higher dimension field operators,
and, moreover, the interaction with higher excitations, such
as �, 	(1405), and hyperons, should be discussed in detail,
which remains for future work.

A topic relevant to the above discussion is the possibility
and the effect of kaon condensation on compact star matter.
One possibility is that kaon condensation would produce
instability in the Fermi-liquid structure of the baryonic matter.
This phenomenon may be relevant perhaps only very near the
critical condensation density nth, but it indicates the possibility
of a variety of subtleties in the equation of state as one goes
above a few times the normal density n0.

ACKNOWLEDGMENTS

We are grateful for discussions with Bao-An Li and Won-Gi
Paeng. This work was partially supported by the WCU project
of National Research Foundation of Korea (R33-2008-000-
10087-0).

[1] P. Demorest, T. Pennucci, S. Ransom, M. Roberts, and J. Hessels,
Nature 467, 1081 (2010); J. Antoniadis et al., Science 340, 448
(2013).

[2] H. K. Lee and M. Rho, Int. J. Mod. Phys. E 22, 1330005 (2013).
[3] R. Cavagnoli, C. Providência, and D. P. Menezes, Phys. Rev. C

83, 045201 (2011).
[4] See, e.g., C. Alexandrou, arXiv:1404.5213 [hep-lat].
[5] G. E. Brown and M. Rho, Nucl. Phys. A 596, 503 (1996).
[6] Z.-G. Xiao et al., Eur. Phys. J. A 50, 37 (2014).
[7] B.-A. Li, L.-W. Chen, and C. M. Ko, Phys. Rep. 464, 113 (2008).
[8] See, for example, A. Gal, Int. J. Mod. Phys. E 19, 2301 (2010).

[9] W.-G. Paeng and M. Rho, arXiv:1407.1611 [nucl-th].
[10] T. Yamazaki, Hyperfine Interact. 211, 69 (2012).
[11] Y. Akaishi and T. Yamazaki, Phys. Rev. C 65, 044005 (2002).
[12] K. Masuda, T. Hatsuda and T. Takatsuka, Astrophys. J. 764, 12

(2013).
[13] H. K. Lee and M. Rho, Eur. Phys. J. A 50, 14 (2014); H. K. Lee

et al., in The Multifaceted Skyrmion, edited by G. E. Brown and
M. Rho (World Scientific, Singapore, 2010).

[14] M. Rho, Nucl. Phys. A, in press (2014); arXiv:1401.1741 [nucl-
th].

[15] H. K. Lee and M. Rho, arXiv:1301.0067 [nucl-th].

045201-5

http://dx.doi.org/10.1038/nature09466
http://dx.doi.org/10.1038/nature09466
http://dx.doi.org/10.1038/nature09466
http://dx.doi.org/10.1038/nature09466
http://dx.doi.org/10.1126/science.1233232
http://dx.doi.org/10.1126/science.1233232
http://dx.doi.org/10.1126/science.1233232
http://dx.doi.org/10.1126/science.1233232
http://dx.doi.org/10.1142/S0218301313300051
http://dx.doi.org/10.1142/S0218301313300051
http://dx.doi.org/10.1142/S0218301313300051
http://dx.doi.org/10.1142/S0218301313300051
http://dx.doi.org/10.1103/PhysRevC.83.045201
http://dx.doi.org/10.1103/PhysRevC.83.045201
http://dx.doi.org/10.1103/PhysRevC.83.045201
http://dx.doi.org/10.1103/PhysRevC.83.045201
http://arxiv.org/abs/arXiv:1404.5213
http://dx.doi.org/10.1016/0375-9474(95)00420-3
http://dx.doi.org/10.1016/0375-9474(95)00420-3
http://dx.doi.org/10.1016/0375-9474(95)00420-3
http://dx.doi.org/10.1016/0375-9474(95)00420-3
http://dx.doi.org/10.1140/epja/i2014-14037-6
http://dx.doi.org/10.1140/epja/i2014-14037-6
http://dx.doi.org/10.1140/epja/i2014-14037-6
http://dx.doi.org/10.1140/epja/i2014-14037-6
http://dx.doi.org/10.1016/j.physrep.2008.04.005
http://dx.doi.org/10.1016/j.physrep.2008.04.005
http://dx.doi.org/10.1016/j.physrep.2008.04.005
http://dx.doi.org/10.1016/j.physrep.2008.04.005
http://dx.doi.org/10.1142/S0218301310016752
http://dx.doi.org/10.1142/S0218301310016752
http://dx.doi.org/10.1142/S0218301310016752
http://dx.doi.org/10.1142/S0218301310016752
http://arxiv.org/abs/arXiv:1407.1611
http://dx.doi.org/10.1007/s10751-012-0601-z
http://dx.doi.org/10.1007/s10751-012-0601-z
http://dx.doi.org/10.1007/s10751-012-0601-z
http://dx.doi.org/10.1007/s10751-012-0601-z
http://dx.doi.org/10.1103/PhysRevC.65.044005
http://dx.doi.org/10.1103/PhysRevC.65.044005
http://dx.doi.org/10.1103/PhysRevC.65.044005
http://dx.doi.org/10.1103/PhysRevC.65.044005
http://dx.doi.org/10.1088/0004-637X/764/1/12
http://dx.doi.org/10.1088/0004-637X/764/1/12
http://dx.doi.org/10.1088/0004-637X/764/1/12
http://dx.doi.org/10.1088/0004-637X/764/1/12
http://dx.doi.org/10.1140/epja/i2014-14014-1
http://dx.doi.org/10.1140/epja/i2014-14014-1
http://dx.doi.org/10.1140/epja/i2014-14014-1
http://dx.doi.org/10.1140/epja/i2014-14014-1
http://arxiv.org/abs/arXiv:1401.1741
http://arxiv.org/abs/arXiv:1301.0067



