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Transport coefficients for bulk viscous evolution in the relaxation-time approximation
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We derive the form of the viscous corrections to the phase-space distribution function due to bulk viscous
pressure and shear stress tensor using the iterative Chapman-Enskog method. We then calculate the transport
coefficients necessary for the second-order hydrodynamic evolution of the bulk viscous pressure and the shear
stress tensor. We demonstrate that the transport coefficients obtained using the Chapman-Enskog method
are different than those obtained previously using the 14-moment approximation for a finite particle mass.
Specializing to the case of boost-invariant and transversally homogeneous longitudinal expansion, we show that
the transport coefficients obtained using the Chapman-Enskog method result in better agreement with the exact
solution of the Boltzmann equation in the relaxation-time approximation compared to results obtained in the
14-moment approximation. Finally, we explicitly confirm that the time evolution of the bulk viscous pressure is
significantly affected by its coupling to the shear stress tensor.
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I. INTRODUCTION

Relativistic hydrodynamics has been quite successful in
explaining a wide range of collective phenomena observed
in astrophysics, cosmology, and the physics of high-energy
heavy-ion collisions. The theory of relativistic hydrodynamics
is formulated as a gradient expansion where ideal hydrody-
namics is the zeroth order. The first-order relativistic Navier-
Stokes (NS) theory [1,2] leads to acausal signal propagation,
which is rectified in the second-order Israel-Stewart (IS)
theory [3]. The derivation of IS equations proceeds in a
variety of ways [4]. For instance, in the derivations based on
the second law of thermodynamics (∂μSμ � 0), where Sμ is
the generalized entropy four-current, the transport coefficients
related to relaxation times for shear and bulk viscous pressures
remain undetermined and have to be obtained from kinetic
theory [3,5]. On the other hand, the derivations based on kinetic
theory require the nonequilibrium phase-space distribution
function, f (x,p), to be specified. Consistent and accurate
determination of the form of the dissipative equations and the
associated transport coefficients is currently an active research
area [6–24].

The existence of thermodynamic gradients in a nonequi-
librium system gives rise to thermodynamic forces, which,
in turn, results in various transport phenomena. In order to
calculate the associated transport coefficients, it is convenient
to first specify the nonequilibrium single particle phase-
space distribution function f (x,p). The two most commonly
used methods to determine the form of f (x,p) when the
system is close to local thermodynamic equilibrium are
(1) Grad’s 14-moment approximation [25] and (2) the
Chapman-Enskog method [26]. While Grad’s moment method
has been widely used in the formulation of causal relativistic

dissipative hydrodynamics from kinetic theory [3–12], the
Chapman-Enskog method remains less explored [13–15].
Although both methods involve expanding f (x,p) around the
equilibrium distribution function f0(x,p), in Refs. [14,15] it
was demonstrated that the Chapman-Enskog method in the
relaxation-time approximation (RTA) gives better agreement
with both microscopic Boltzmann simulations and exact
solutions of the RTA Boltzmann equation. This seems to
stem from the fact that the Chapman-Enskog method does
not require a fixed-order Grad’s-moment expansion.

Relativistic viscous hydrodynamics has been used exten-
sively to study and understand the evolution of the strongly
interacting, hot and dense matter created in high-energy heavy-
ion collisions; see Ref. [27] for a recent review. While much
of the research on this topic is devoted to the extraction of the
shear viscosity to entropy density ratio η/s from the analysis of
the flow data [28–30], a systematic and self-consistent study
of the effect of bulk viscosity in numerical simulations of
heavy-ion collisions has not been performed. The relative
lack of effort in this direction may be attributed to the fact
that the bulk viscosity of hot QCD matter is estimated to be
much smaller compared to the shear viscosity. However, it is
important to note that, for the range of temperature probed
experimentally in heavy-ion collisions, the magnitude and
temperature dependence of bulk viscosity is unknown [31,32]
and could be large enough to affect the spatio-temporal
evolution of the QCD matter. Moreover, since QCD is a
nonconformal field theory, bulk viscous corrections to the
energy momentum tensor should not be neglected in order
to correctly understand the dynamics of a QCD system.

From a theoretical perspective, the second-order transport
coefficients that appear in the evolution equation for the
bulk viscous pressure are less understood compared to those
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of the shear stress tensor. In Refs. [10,11], it was shown
that the relaxation time for bulk viscous evolution can be
obtained by employing the second law of thermodynamics in
a kinetic theory setup. While, for finite masses, the transport
coefficients corresponding to bulk viscous pressure and shear
stress tensor have been explicitly obtained by employing
the 14-moment approximation [12,33], they still remain to
be determined using the Chapman-Enskog method. In this
paper, we calculate the transport coefficients appearing in the
second-order viscous evolution equations for nonvanishing
masses using the method of Chapman-Enskog expansion. We
compare the mass dependence of these coefficients with those
obtained using the 14-moment approximation. In the case of
one-dimensional scaling expansion of the viscous medium,
we demonstrate that our results are in better agreement
with the exact solution of the massive (0 + 1)-dimensional
Boltzmann equation in the relaxation-time approximation [24]
than those obtained using the 14-moment approximation. We
also confirm that generation of bulk viscous pressure is affected
more by its coupling to the shear stress tensor than to the
first-order expansion rate of the system, in agreement with
Ref. [33].

II. RELATIVISTIC HYDRODYNAMICS

The hydrodynamic evolution of a system having no net
conserved charges (vanishing chemical potential) is governed
by the local conservation of energy and momentum, ∂μT μν =
0. The energy-momentum tensor, T μν , characterizing the
macroscopic state of a system, can be expressed in terms of
a single-particle phase-space distribution function and tensor
decomposed into hydrodynamic degrees of freedom [34],

T μν =
∫

dP pμpνf (x,p) = εuμuν − (P + �)�μν + πμν.

(1)

Here dP ≡ gd3p/[(2π )3p0] is the invariant momentum-space
integration measure, where g is the degeneracy factor, pμ is
the particle four-momentum, and f (x,p) is the phase-space
distribution function. In the tensor decomposition, ε, P ,
�, and πμν are energy density, thermodynamic pressure,
bulk viscous pressure, and shear stress tensor, respectively.
The projection operator �μν ≡ gμν − uμuν is orthogonal to
the hydrodynamic four-velocity uμ defined in the Landau
frame: T μνuν = εuμ. The metric tensor is Minkowskian,
gμν ≡ diag(+1,−1,−1,−1).

The projection of ∂μT μν = 0 along and orthogonal to uμ

leads to the evolution equations for ε and uμ,

ε̇ + (ε + P + �)θ − πμνσμν = 0, (2)

(ε + P + �)u̇α − ∇α(P + �) + �α
ν ∂μπμν = 0. (3)

Here we have used the standard notation Ȧ ≡ uμ∂μA for
the co-moving derivative, θ ≡ ∂μuμ for the expansion scalar,
σμν ≡ 1

2 (∇μuν + ∇νuμ) − 1
3θ�μν for the velocity stress ten-

sor, and ∇α ≡ �μα∂μ for spacelike derivatives. The inverse
temperature, β ≡ 1/T , is determined by the matching con-
dition ε = ε0, where ε0 is the equilibrium energy density. In
terms of the equilibrium distribution function f0, the energy

density and the thermodynamic pressure can be written as

ε0 = uμuν

∫
dP pμpνf0, (4)

P0 = −1

3
�μν

∫
dP pμpνf0, (5)

respectively. For a classical Boltzmann gas with vanishing
chemical potential, the equilibrium distribution function is
given by f0 = exp(−β u · p), where u · p ≡ uμpμ.

From Eqs. (4) and (5) one obtains ε̇ and ∇αP in terms of
derivatives of β as

ε̇ = −I
(0)
30 β̇, ∇αP = I

(0)
31 ∇αβ, (6)

where

I (r)
nq ≡ 1

(2q + 1)!!

∫
dP (u · p)n−2q−r (�μνp

μpν)qf0. (7)

Here we readily identify I
(0)
20 = ε and I

(0)
21 = −P . The integrals

I (r)
nq satisfy the following relations:

I (r)
nq = I

(r−1)
n−1,q for n > 2q, (8)

I (r)
nq = 1

(2q + 1)

[
m2I

(r)
n−2,q−1 − I

(r)
n,q−1

]
, (9)

I (0)
nq = 1

β

[−I
(0)
n−1,q−1 + (n − 2q)I (0)

n−1,q

]
. (10)

The above relations lead to the following identities:

I
(0)
31 = − 1

β
(ε + P ), (11)

I
(0)
30 = 1

β
[3ε + (3 + z2)P ], (12)

where z ≡ βm with m being the mass of the particle.
Substituting the expressions for ε̇ and ∇αP from Eq. (6) in
Eq. (2), one obtains

β̇ = β(ε + P )

3ε + (3 + z2)P
θ + β(�θ − πργ σργ )

3ε + (3 + z2)P
, (13)

∇αβ = −βu̇α − β

ε + P

(
�u̇α − ∇α� + �α

ν ∂μπμν
)
. (14)

The above identities are used later to obtain the form of viscous
corrections to the distribution function and derive evolution
equations for shear and bulk viscous pressures.

Close to local thermodynamic equilibrium, the phase-space
distribution function can be written as f = f0 + δf , where
δf � f . From Eq. (1), the bulk viscous pressure � and
the shear stress tensor πμν can be expressed in terms of the
nonequilibrium part of the distribution function δf as [34]

� = −1

3
�αβ

∫
dP pαpβ δf, (15)

πμν = �
μν
αβ

∫
dP pαpβ δf, (16)

where �
μν
αβ ≡ 1

2 (�μ
α�ν

β + �
μ
β�ν

α) − 1
3�μν�αβ is a traceless

symmetric projection operator orthogonal to uμ. In the
following, we iteratively solve the RTA Boltzmann equation
to obtain δf up to first order.
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III. VISCOUS EVOLUTION EQUATIONS

The relativistic Boltzmann equation in the RTA is given
by [35]

pμ∂μf = −(u · p)
δf

τeq
, (17)

where τeq is the relaxation time. To ensure the straightforward
conservation of particle current and energy-momentum tensor,
τeq should be independent of momenta and uμ should be
defined in the Landau frame [35]. Rewriting Eq. (17) in the
form f = f0 − (τeq/u · p) pμ∂μf and solving iteratively, one
obtains [14,36]

f1 = f0 − τeq

u · p
pμ∂μf0, (18)

f2 = f0 − τeq

u · p
pμ∂μf1,

... , (19)

where fn = f0 + δf (1) + δf (2) + · · · + δf (n). To first order in
derivatives, we have

δf (1) = − τeq

u · p
pμ∂μf0. (20)

Using Eqs. (13) and (14) and consistently ignoring higher order
gradient correction terms, one obtains [36]

δf = βτeq

u · p

{
1

3

[
m2 − (

1 − 3c2
s

)
(u · p)2]θ + pμpνσμν

}
f0.

(21)

Here, the velocity of sound squared, c2
s ≡ dP/dε, can be

expressed as

c2
s = ε + P

3ε + (3 + z2)P
. (22)

We observe that the above expression reduces to c2
s = 1/3 in

the ultrarelativistic (z → 0) limit.
Substituting Eq. (20) in Eqs. (15) and (16), one obtains

� = −τeqβ�θ, (23)

πμν = 2τeqβπσμν, (24)

where

β� = 5
3β I

(1)
42 − (ε + P )c2

s , (25)

βπ = β I
(1)
42 . (26)

Replacing the velocity gradients appearing in Eq. (21) with
viscous pressures using Eqs. (23) and (24), one obtains

δf = − βf0

3(u · p)β�

[
m2 − (

1 − 3c2
s

)
(u · p)2]�

+ βf0

2(u · p)βπ

pμpνπμν. (27)

The above form of δf is analogous to the 14-moment
approximation and can be used in the Cooper-Frye prescription
for particle production [37].

To obtain second-order evolution equations for the bulk
viscous pressure and the shear stress tensor, we follow the
methodology discussed in Ref. [8]. We express the evolution of
bulk viscous pressure and shear stress tensor given in Eqs. (15)
and (16) as

�̇ = −1

3
�αβ

∫
dP pαpβδḟ , (28)

π̇ 〈μν〉 = �
μν
αβ

∫
dP pαpβδḟ , (29)

respectively. The co-moving derivative δḟ can be obtained by
rewriting Eq. (17) in the form

δḟ = −ḟ0 − 1

u · p
pγ ∇γ f − δf

τeq
. (30)

Using the above expression for δḟ in Eqs. (28) and (29), one
obtains

�̇ = − �

τeq
+ �αβ

3

∫
dP pαpβ

(
ḟ0 + 1

u · p
pγ ∇γ f

)
,

(31)

π̇ 〈μν〉 = −πμν

τeq
− �

μν
αβ

∫
dP pαpβ

(
ḟ0 + 1

u · p
pγ ∇γ f

)
.

(32)

It is clear from Eqs. (31) and (32) that there is only one
time scale to describe the relaxation of the viscous evolution
equations, i.e., τeq = τ� = τπ . This stems from the fact that
the RTA collision term in the Boltzmann equation (17) does
not entirely capture the microscopic interactions. However,
comparing the first-order equations, Eqs. (23) and (24), with
the relativistic Navier-Stokes equations for bulk and shear
pressures, � = −ζθ and πμν = 2ησμν , we obtain τ� = ζ/β�

and τπ = η/βπ . The first-order transport coefficients ζ and η
can be calculated independently, by taking into account the
full microscopic behavior of the system.

Substituting δf from Eq. (27) in Eqs. (31) and (32) and
performing the integrations, one obtains the second-order
evolution equations for the bulk viscous pressure and shear
stress tensor,

�̇ = − �

τ�

− β�θ − δ���θ + λ�ππμνσμν, (33)

π̇ 〈μν〉 = −πμν

τπ

+ 2βπσμν + 2π 〈μ
γ ων〉γ − τπππ 〈μ

γ σ ν〉γ

− δπππμνθ + λπ��σμν, (34)

where ωμν ≡ 1
2 (∇μuν − ∇νuμ) is the vorticity tensor. The

transport coefficients appearing above are

δ�� = −5

9
χ − c2

s , (35)

λ�π = β

3βπ

(
7I

(3)
63 + 2I

(1)
42

) − c2
s , (36)

τππ = 2 + 4β

βπ

I
(3)
63 , (37)
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δππ = 5

3
+ 7β

3βπ

I
(3)
63 , (38)

λπ� = −2

3
χ, (39)

where

χ = β

β�

[(
1 − 3c2

s

)(
I

(1)
42 + I

(0)
31

) − m2(I (3)
42 + I

(2)
31

)]
. (40)

Apart from I
(0)
31 = −(ε + P )/β [see Eq. (11)], we need to

determine the integrals I
(3)
63 , I (1)

42 , I (3)
42 , and I

(2)
31 . In the following,

we obtain expressions for these quantities in terms of modified
Bessel functions of the second kind.

IV. TRANSPORT COEFFICIENTS

The transport coefficients obtained in the previous section
can be expressed in terms of modified Bessel functions of the
second kind. We start from the integral representation of the
corresponding Bessel function,

Kn(z) =
∫ ∞

0
dθ cosh(nθ ) exp(−z cosh θ ). (41)

Using the above form of the Bessel function, one obtains the
following identities:∫ ∞

0
dθ cosh5 θ exp(−z cosh θ ) = 1

16
[K5 + 5K3 + 10K1],

(42)∫ ∞

0
dθ cosh3 θ exp(−z cosh θ ) = 1

4
[K3 + 3K1], (43)

where the z dependence of Kn is implicitly understood.
The thermodynamic integrals I (r)

nq can be cast in a similar
form,

I (r)
nq = g T n+2−rzn+2−r

2π2(2q + 1)!!
(−1)q

∫ ∞

0
dθ (cosh θ )n−2q−r

× (sinh θ )2q+2 exp(−z cosh θ ). (44)

By using the identity cosh2 θ − sinh2 θ = 1, the integral in I (r)
nq

can be expressed in terms of cosh θ only. Employing Eqs. (42)
and (43), one obtains

I
(3)
63 = −gT 5z5

210π2

[
1

16
(K5 − 11K3 + 58K1) − 4Ki,1 + Ki,3

]
,

(45)

I
(1)
42 = gT 5z5

30π2

[
1

16
(K5 − 7K3 + 22K1) − Ki,1

]
, (46)

I
(3)
42 = gT 3z3

30π2

[
1

4
(K3 − 9K1) + 3Ki,1 − Ki,3

]
, (47)

I
(2)
31 = −gT 3z3

6π2

[
1

4
(K3 − 5K1) + Ki,1

]
. (48)

Here the function Ki,n is defined by the integral

Ki,n(z) =
∫ ∞

0

dθ

(cosh θ )n
exp(−z cosh θ ), (49)

which has the following property:

d

dz
Ki,n(z) = −Ki,n−1(z). (50)

This identity can also be written in integral form as

Ki,n(z) = Ki,n(0) −
∫ z

0
Ki,n−1(z′)dz′. (51)

We observe that, by using the series expansion of Ki,0(z) =
K0(z), the above recursion relation can be employed to evaluate
Ki,n(z) up to any given order in z.

In the results section, we will use the exact expressions for
the various transport coefficients. However, before proceeding
to the numerical results it is possible to compare the analytic
small-mass expansions of the transport coefficients with the
results obtained using the 14-moment approximation. With
this in mind, we now present small-mass expansions of the
kinetic coefficients obtained in Eqs. (25), (26), and (35)–(39).
We begin by noting that the quantity χ that appears in the
transport coefficients (35)–(39) has the following small-mass
expansion:

χ = −9

5
− 9πz

50
+ O(z2 ln z). (52)

The small-mass expansions of the transport coefficients enter-
ing the bulk evolution equation are

β�

ε + P
= 5z4

432
+ O(z5),

δ�� = 2

3
+ πz

10
+ O(z2 ln z), (53)

λ�π = z2

18
− 5z4

144
+ O(z5).

Similarly, the small-mass expansions of the transport coeffi-
cients entering the shear tensor evolution equation are

βπ

ε + P
= 1

5
− z2

60
+ z4

96
+ O(z5),

δππ = 4

3
+ z2

36
− 25z4

864
+ O(z5),

(54)

τππ = 10

7
+ z2

21
− 25z4

504
+ O(z5),

λπ� = 6

5
+ 3πz

25
+ O(z2 ln z).

We observe that, while the expressions for β� and βπ in
Eqs. (53) and (54) are identical to those obtained using the
14-moment method [12,33], the other coefficients agree only
up to the constant term in their respective Taylor expansions
in powers of z.

Having established that the Chapman-Enskog transport
coefficients are different than the 14-moment transport coeffi-
cients even for small masses, we now turn to the exact numer-
ical evaluation of the transport coefficients for arbitrary mass.
In Fig. 1 we compare the exact transport coefficients obtained
herein using the Chapman-Enskog method (blue dashed line)
with those calculated using the 14-moment approximation
(brown dotted line). Figures 1(a) and 1(b) show the transport
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FIG. 1. (Color online) Comparison of the exact transport coef-
ficients obtained herein using the Chapman-Enskog method (blue
dashed line) with those calculated using the 14-moment approxima-
tion (brown dotted line). The two panels correspond to the transport
coefficients which enter (a) the bulk viscous pressure and (b) the shear
stress tensor evolution equations, as a function of the ratio of mass
and temperature. The inset in panel (a) shows the m/T dependence
of the transport coefficients δ�� and λ�π obtained by using the two
methods on a linear scale. Here P(0) is the pressure at vanishing mass;
i.e., P(0) ≡ P (m = 0,T ).

coefficients entering the evolution equations for the bulk
viscous pressure and the shear stress tensor, respectively. In
the inset of Fig. 1(a), we show the m/T dependence of the
transport coefficients δ�� and λ�π (multiplied by a factor of
10) obtained by using the two methods on a linear scale. We
observe that the two methods lead to very similar values of
the transport coefficients for small values of z = m/T . For
large values of z, the differences are significant for some
transport coefficients. For example, at z = 1, the values of
λπ�, δ��, and λ�π in the two cases differ by approximately
15%, 20%, and 25%, respectively.

Another quantity of interest is the square of the sound
velocity in the medium, c2

s , which for small masses is
approximately

1

3
− c2

s = z2

36
− 5z4

864
+ O(z6 ln z). (55)

In the RTA, by comparing the relativistic NS equations, � =
−ζθ and πμν = 2ησμν , with Eqs. (23) and (24), one obtains
ζ/η = β�/βπ . Using the series expansion in z, one obtains

ζ

η
= 75

(
1

3
− c2

s

)2

+ O(z5). (56)

The relation in Eq. (56) can also be obtained by using the
expressions for ζ and η presented in Ref. [24].1It is interesting
to note that the form of the above expression is similar
to the well-known relation ζ/η = 15(1/3 − c2

s )2 derived by

1We note that the factor 75 is different than the value obtained in
Ref. [12], which was 72.75.

Weinberg [38]. However, we find the proportionality constant
to be exactly five times larger than that obtained by Weinberg.

V. BOOST-INVARIANT (0 + 1)-DIMENSIONAL CASE

In the case of a transversely homogeneous and purely lon-
gitudinal boost-invariant expansion [39], all scalar functions
of space and time depend only on the longitudinal proper
time τ = √

t2 − z2. In terms of Milne coordinates, (τ,x,y,η),
the hydrodynamic four-velocity becomes uμ = (1,0,0,0). The
energy-momentum conservation equation together with equa-
tions (33) and (34) reduce to

ε̇ = − 1

τ
(ε + P + � − π ), (57)

�̇ + �

τ�

= −β�

τ
− δ��

�

τ
+ λ�π

π

τ
, (58)

π̇ + π

τπ

= 4

3

βπ

τ
−

(
1

3
τππ + δππ

)
π

τ
+ 2

3
λπ�

�

τ
, (59)

where π ≡ −τ 2πηη. We note that in this case the term
involving the vorticity tensor, 2π 〈μ

γ ων〉γ , vanishes and hence
has no effect on the dynamics of the fluid. We also note that
the first terms on the right-hand side of Eqs. (58) and (59)
are the first-order terms β�θ and 2βπσμν , respectively,
whereas the rest are of second order.

We solve Eqs. (57)–(59) simultaneously assuming an
initial temperature of T0 = 600 MeV at the initial proper
time τ0 = 0.5 fm/c, with relaxation times τeq = τ� = τπ =
0.5 fm/c corresponding to (η/s)τ=τ0 = 3/4π . We solve the
equations for two different initial pressure configurations,
ξ0 = 0, corresponding to an isotropic pressure configuration
π0 = �0 = 0, and ξ0 = 100, corresponding to a highly oblate
anisotropic configuration. Here ξ is the anisotropy parameter,
which is related to the average transverse and longitudinal
momentum in the local rest frame via ξ = 1

2 〈p2
T 〉/〈p2

L〉 − 1.
We consider two different masses, m = 300 MeV, roughly
corresponding to the constituent quark mass, and m = 1 GeV,
representing the approximate thermal mass of a gluon or quark.
For comparison, we also solve Eqs. (57)–(59) with transport
coefficients obtained by using the 14-moment method [12,33].

In Figs. 2–5 we show the proper-time evolution of the
pressure anisotropy PL/PT ≡ (P + � − π )/(P + � + π/2)
(top) and the bulk viscous pressure times the proper time (bot-
tom) for three different calculations: the exact solution of the
RTA Boltzmann equation [24] (red solid line), second-order
viscous hydrodynamics using the 14-moment method [12]
(brown dotted line), and the Chapman-Enskog method used
herein (blue dashed line). Figures 2 and 3 show the case for
which m = 300 MeV, while Figs. 4 and 5 show the case for
which m = 1 GeV. Figures 2 and 4 correspond to an isotropic
initial condition (ξ0 = 0), while Figs. 3 and 5 correspond to a
highly oblate anisotropic initial condition (ξ0 = 100).

From Figs. 2–5, we see that PL/PT is quite insensitive
to whether one uses the 14-moment or Chapman-Enskog
transport coefficients obtained herein. However, the result for
τ� using the Chapman-Enskog method is in better agreement
with the exact solution of the RTA Boltzmann equation than
that using the 14-moment method.

044908-5



JAISWAL, RYBLEWSKI, AND STRICKLAND PHYSICAL REVIEW C 90, 044908 (2014)

FIG. 2. (Color online) Time evolution of the pressure anisotropy
PL/PT (top) and the bulk viscous pressure times τ (bottom) for
three different calculations: the exact solution of the RTA Boltzmann
equation [24] (red solid line), second-order viscous hydrodynamics
using the 14-moment method [12] (brown dotted line), and the
Chapman-Enskog method used herein (blue dashed line). For both
panels we use T0 = 600 MeV at τ0 = 0.5 fm/c, m = 300 MeV, and
τeq = τπ = τ� = 0.5 fm/c. The initial spheroidal anisotropy in the
distribution function, ξ0 = 0, corresponds to isotropic initial pressures
with π0 = 0 and �0 = 0.

In Fig. 6 we plot the proper-time evolution of the
second-order terms scaled by the first-order term in the
evolution equation for bulk viscous pressure, Eq. (58).
We observe that, for m = 300 MeV (top panel), the relative
magnitude of the shear-bulk coupling term is greater than unity
for the proper-time interval 0.6 � τ � 3 fm/c, indicating that

FIG. 3. (Color online) Same as Fig. 2 except here we take
ξ0 = 100 corresponding to π0 = 51.11 GeV/fm3 and �0 =
0.85 GeV/fm3.

FIG. 4. (Color online) Same as Fig. 2 except here we take m =
1 GeV.

the evolution of bulk viscous pressure is dominated by its
coupling to the shear for a long time on the time scales relevant
to hydrodynamic evolution in relativistic heavy-ion collisions.
For the case of m = 1 GeV (bottom panel), although the
effect is not as prominent, the shear-bulk coupling term is still
almost as important as the first-order expansion scalar.

VI. CONCLUSIONS AND OUTLOOK

In this paper we applied the iterative Chapman-Enskog
method to the derive second-order viscous hydrodynamical
equations and the associated transport coefficients for a mas-
sive gas in the relaxation-time approximation. The resulting
dynamical equations (33) and (34) have precisely the same

FIG. 5. (Color online) Same as Fig. 3 except here we take m =
1 GeV, which for ξ0 = 100 implies π0 = 35.12 GeV/fm3 and �0 =
3.08 GeV/fm3.
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FIG. 6. (Color online) Proper time evolution of the second-order
terms scaled by the first-order term in the evolution equation for bulk
viscous pressure, Eq. (58). For both panels we use T0 = 600 MeV at
τ0 = 0.5 fm/c and τeq = τπ = τ� = 0.5 fm/c. The initial spheroidal
anisotropy in the distribution function, ξ0 = 0, corresponds to an
isotropic pressure configuration π0 = 0 and �0 = 0. For the top
panel, we show results for m = 300 MeV whereas the bottom panel
corresponds to m = 1 GeV.

form as those obtained using the 14-moment approxima-
tion [12]; however, some of the transport coefficients are
different than those obtained in the 14-moment approximation
when m > 0. The equivalence or inequivalence of the various
transport coefficients was established analytically by using
Taylor expansions in m/T and also by direct numerical
evaluation of the necessary integrals.

Having obtained the full set of dynamical equations
necessary to self-consistently evolve both the bulk pressure and
shear tensor, we then specialized to the case of a transversally
homogeneous and longitudinally boost-invariant system. In
this specific case it is possible to solve the RTA Boltzmann
equation exactly [24]. Using this solution as a benchmark, we
computed the pressure anisotropy and bulk pressure evolution
using both the Chapman-Enskog method presented herein and
the 14-moment method used in Ref. [12]. We demonstrated
that the Chapman-Enskog method is able to reproduce the

exact solution better than the 14-moment method. For the
pressure anisotropy both methods give very similar results, but
for the bulk pressure evolution the Chapman-Enskog method
better reproduces the exact solution.

Finally, we presented a comparison of the magnitude of
the shear-bulk coupling term in the dynamical equations for
the bulk pressure to the term proportional to the first-order
expansion scalar. We showed that, on the time scales relevant
for relativistic heavy-ion collisions, the shear-bulk coupling in
the bulk pressure evolution equation is equally as important
as the term involving the expansion scalar, in agreement with
previous findings [33]. We therefore conclude that, once the
second-order terms for the bulk pressure are taken into account,
at least in the relaxation-time approximation, we obtain very
good agreement with the exact solution of the RTA Boltzmann
equation. Since the latter does not rely on order-by-order
expansion of the distribution function about equilibrium, this
can be taken as evidence that in the RTA the second-order
terms capture the most important nonequilibrium corrections.

At this point, we would like to clarify that we are using the
exact solution of the RTA Boltzmann equation as a benchmark
to compare different hydrodynamic formulations and that our
minimal requirement for a viable nonconformal hydrodynamic
theory is that it should be able to describe the dynamics in
this simple case. It is true that the dynamics becomes more
complicated when realistic scattering kernels are considered.
These could, in fact, lead to a completely different parametric
behavior fore bulk viscosity [40,41]. Looking forward, since
the shear-bulk coupling term is as important as the first-order
term, we believe it would be interesting to determine its
impact in higher dimensional simulations. Moreover, from a
phenomenological perspective, a large negative bulk viscous
correction might lead to early onset of cavitation. It would
therefore be instructive to see how the second-order transport
coefficients obtained here influence cavitation. In addition,
it would also be interesting to see whether the second-order
results derived herein could be extended to third order. We
leave these questions for a future work.
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