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The process of formation of the participant system in heavy-ion collisions is investigated in the framework of
a simplified analytic Glauber-like model, which is based on the relativistic Boltzmann transport equation. The
key point lies in the time-dependent partition of the nucleon system into two groups: nucleons, which did not
take part in any interaction before a given time, and nucleons, which already have interacted. In the framework
of the proposed model we introduce a natural energy-dependent temporal scale tc, which allows us to remove all
dependencies of the model on the collision energy except for the energy dependence of the nucleon-nucleon cross
section. By investigating the time dependence of the total number of participants we conclude that the formation
process of the participant system becomes complete at t � 1.5tc. Time dependencies of participant total angular
momentum and vorticity are also considered and used to describe the emergence of rotation in the reaction plane.
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I. INTRODUCTION

From the very beginning of the collision of two nuclei,
some of the nucleons start to experience collisions and become
participants. The number of nucleons which have experienced
collisions increases with time and the number of the nucleons
which did not take part in collisions decreases. Finally, this
results in the partition of the total initial system of nucleons into
two subsystems: participants and spectators. In the framework
of the Glauber model [1–3] (optical limit) one can obtain aver-
age transverse distributions of the participants and spectators
at the end of this partition stage. These smooth distributions
have been used earlier as input to fluid dynamical models;
see e.g., Refs. [4,5]. The Monte Carlo Glauber (MC-Glauber)
approach allows one to simulate the initial partition stage
on an event-by-event level and can be used for determining
fluctuating initial conditions in event-by-event hydrodynamics
[6–8]. Fluctuations in the collective flow coefficients have been
attributed to initial spatial fluctuations [9,10] and thus can be
used to put constraints on the initial-state geometry [11,12]. On
the other hand, fluctuations can develop dynamically during
the fluid dynamical motion, especially if the matter undergoes
a phase transition [13–15]. While the transverse plane distri-
bution (and its fluctuations) of the formed participant system
has been investigated in literature in great detail by using the
Glauber approach, little attention was paid to the temporal
dynamics of the spectator-participant partition. This dynamics
can be of special interest in peripheral collisions where one
can study, for instance, the process of how participants gain
a nonzero total angular momentum, which in turn results in
the emergence of initial rotation in the reaction plane. In the
present work we develop an analytical Glauber-like model in
the framework of the relativistic Boltzmann equation (Sec. II)
and use it for the description of the process of partition into
spectator and participant subsystems. Calculations done in the
model for various time-dependent quantities are presented in
Sec. III and conclusions are given in Sec. IV.

II. THE MODEL

A. Initial conditions and the ballistic mode

In the simplest approximation of our description within the
relativistic Boltzmann equation we assume a ballistic mode,
i.e., we neglect all the reactions between hadrons and we
separate the total system of net nucleons into nucleons of the
target (A) and projectile (B) nuclei. The initial single-particle
distribution functions f

(0)
A (x,p) and f

(0)
B (x,p) [hereinafter

denoted f
(0)
A(B)(x,p)] of nucleons from corresponding nuclei are

described by the collisionless field-free relativistic Boltzmann
equation

pμ∂μf
(0)
A(B)(x,p) = 0. (1)

The solution to this equation is

f
(0)
A(B)(x,p) = FA(B)[r − v(t − t0),p], (2)

where FA(B)(r,p; t0) is the distribution function of nucleons at
the initial time t0, v = p/Ep is the velocity of particles, and
Ep = (m2 + p2)1/2. We adopt the system of units c = � =
1. The initial time t0 corresponds to the moment before any
interaction takes place, i.e., no collision and no internal change
within the two nuclei occurs between t = −∞ and t0.

We assume that the initial distribution function of nucleons
in the nucleus can be presented as a product of a spatial and
momentum distributions

FA(B)(r,p; t0) = ρA(B)(r; t0)gA(B)(p). (3)

Here, ρA(B)(r; t0) is the initial spatial distribution of nucleons
in the target (projectile), and gA(B)(p) is the initial momentum
distribution. Since the collider center-of-mass (c.m.) frame
and the local rest (LR) frame of a nucleus are connected via
the Lorentz transformation in (t,z) variables, we can write
the initial spatial density ρA(B)(r; t0) (which is the zeroth
component of the nucleon four-flow) in the collider c.m.
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system (c.m.s.) in terms of corresponding four-flow quantities
in terms of the local rest frame of the nucleus as

ρA(B)(r; t0) = γ0
{
ρLR

A(B)[x,y,γ0(z − vA(B)t0)]

+ vA(B)j
A(B),LR
z [x,y,γ0(z − vA(B)t0)]

}
, (4)

where vA = −vB = v0 is the initial nucleus velocity in the c.m.
frame, γ0 = (1 − v2

0)−1/2, ρLR
A(B)(x,y,z) is the initial spatial

distribution of nucleons in the local rest frame of the target
(projectile) nucleus, and jA(B),LR

z (x,y,z) is a z-component of
nucleon flow in the same local rest frame.

For the spatial distribution in the LR frame of the nucleus
we use the Woods–Saxon density profile so that

ρLR
A(B)(x,y,z) = ρWS (x ∓ b/2,y,z)

= cρ

{
1 + exp

[√
(x ∓ b/2)2 + y2 + z2 − R0

a

]}−1

, (5)

where a = 0.545 fm and R0 is the nuclear radius. The
normalization constant cρ is determined from the relation∫

drρWS (r) = A, where A is the mass number of the nucleus.
In the above equation we have already taken into account a
shift in the x coordinate due to the nonzero impact parameter
b. It should be noted that our approach is not restricted just
to the standard Woods–Saxon profile; other nuclear density
profiles, i.e., three-parameter Woods–Saxon, can also be used.
Assuming that the momentum distribution of nucleons in the
LR frame of the nucleus is isotropic, we get that the particle
flow jA(B),LR

z vanishes, and the initial density, ρA(B)(r; t0), in

the collider c.m. frame can be written as

ρA(B)(r; t0) = γ0ρWS [x ∓ b/2,y,γ0(z − vA(B)t0)]. (6)

Expression (6) corresponds to nuclear density in the moving
frame which has correct normalization, i.e.,

∫
drρA(B)(r; t0) =

A. To define the initial momentum distribution in the c.m.
frame we neglect the random Fermi motion in comparison
to the collective motion since we are dealing with ultrarela-
tivistic collision energies. In this case the initial momentum
distribution, gA(B)(p) reads as

gA(B)(p) = δ2(p⊥)δ(pz − pA(B)), (7)

where pA (pB) is the initial momenta of nucleons in the target
(projectile).

Finally, we write the initial distribution function
FA(B)(r,p; t0) as

FA(B)(r,p; t0) = γ0ρWS [x ∓ b/2,y,γ0(z − vA(B)t0)]

× δ2(p⊥)δ(pz − pA(B)). (8)

We can see that the target and projectile initially move
with opposite velocities and they are completely separated
spatially at t = t0, therefore indicating that the presented initial
conditions are consistent with the condition that there are no
reactions before the initial time t0.

It can be seen that, in this particular case of momentum
distribution (7), the expression (8) actually represents a
solution of the collisionless Boltzmann equation if we treat
t0 as the time variable. Indeed, using relation (2) we can write
the time-dependent ballistic nucleon distribution functions in
collider c.m. as

f
(0)
A(B)(t,r,p) = γ0ρWS

(
x ∓ b/2,y,γ0

[
z − pz

Ep

(t − t0) − vA(B)t0

])
δ2(p⊥)δ(pz − pA(B))

= γ0ρWS (x∓b/2,y,γ0[z−vA(B)t])δ
2(p⊥)δ(pz−pA(B)) = γ0cρδ

2(p⊥)δ(pz−pA(B))

1+ exp
{

1
a

[
√

(x ∓ b/2)2+y2+γ 2
0 (z − vAt)2 − R0]

} , (9)

where Ep ≡ p0 is the energy of particle with four-momentum p and pz/Ep = vz.
It can be shown that the solution of the Boltzmann transport equation (9) has precisely the same structure as the initial

condition (8). The presented ballistic distribution function corresponds to a uniform motion of a nucleus with a Woods–Saxon
nuclear density profile which is Lorentz contracted in the z direction. At the time moment t = 0, the colliding nuclei experience
maximum density overlap and the z coordinates of their centers coincide and are equal to zero. For better correspondence to
cascade models, it makes sense to employ a time axis where at time t = 0, we have the z coordinates of the centers of the
colliding nuclei separated by their Lorentz-contracted diameter 2R0/γ0 (see Fig. 1). In such a way, the time t = 0 approximately
corresponds to the time when the first reactions start to take place. For instance, in case of central collisions it means that
at t = 0 the colliding nuclei “touch” each other. The timescale introduced above yields for the time of the maximum overlap
tc = R0/(γ0v0). Consequently, we obtain the time-dependent ballistic nucleon distribution functions in their final form

f
(0)
A(B)(t,r,p) = ρ

(0)
A(B)(t,r)δ2(p⊥)δ(pz − pA(B)) = γ0cρδ

2(p⊥)δ(pz − pA(B))

1 + exp
{

1
a

[
√

(x ∓ b/2)2 + y2 + γ 2
0 (z ± R0/γ0 ∓ v0t)2 − R0]

} , (10)

where ρ
(0)
A(B)(t,r) = γ0ρWS (x ∓ b/2,y,γ0[z ∓ v0(t − tc)]).

B. Partition into spectators and participants

In this section we describe the process of partition of nucle-
ons into spectators and participants. We assume that nucleons

coming from the target (projectile) become participants in
collisions with nucleons from the projectile (target). We define
f S

A(B)(t,r,p) as the distribution function of nucleons from the
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FIG. 1. (Color online) Schematic drawing of the system evolution in the presented model. Open blue circles indicate nucleons which have
not interacted before present time moment while solid red circles indicate nucleons which already have interacted.

target (projectile), which had not taken part in any reactions
before time t in the collider c.m. frame. It is seen from the
definition that, at t → ∞, this distribution function describes
all spectators in the collision. Following this definition and
also the above-mentioned assumption about collisions where
nucleons become participants, we can describe the functions
f S

A(B)(t,r,p) by the Boltzmann transport equation by assuming
binary collisions, local molecular chaos, and collision integrals
containing only “loss” terms. For instance, for nucleons from
the target we have

pμ∂μf S
A (t,r,p) = −1

2

∫
d3p1

Ep1

d3p′

Ep′

d3p′
1

Ep′
1

f S
A (t,r,p)

× f
(0)
B (t,r,p1)W (p,p1|p′,p′

1), (11)

where W (p,p1|p′,p′
1) is the transition rate.

In order to perform integrations in Eq. (11) we will
use the transition rate W (p,p1|p′,p′

1) = sσ (s,θ )δ4(p + p1 −
p′ − p′

1) for elastic binary collisions, where s ≡ (p + p1)2

and σ (s,θ ) is the differential cross section of nucleon-nucleon
collision.

Since we are only considering loss terms, only the total
nucleon-nucleon cross section will be relevant for the final
result. After integrating Eq. (11) over outgoing particle
momenta p′ and p′

1, we get

pμ∂μf S
A (t,r,p) = −1

2

∫
d3p1

Ep1

d�σ (s,θ )
1

2

√
s(s − 4m2)

× f S
A (t,r,p)f (0)

B (t,r,p1). (12)

Taking into account that 1
2

∫
d�σ (s,θ ) = σ

NN
(s) and using

explicit expression for f
(0)
A (10) we perform the integration

over p1:

pμ∂μf S
A (t,r,p) = −σ

NN
(s)

Ep0

1

2

√
s(s − 4m2)

× f S
A (t,r,p)ρ(0)

B (t,r). (13)

Since f S
A (t,r,p) describes nucleons, which did not take part in

any reactions, it can be expressed as

f S
A (t,r,p) = ρS

A(t,r)δ2(p⊥)δ(pz − pA), (14)

where pA = −pB = p0 and ρS
A(t,r) is the time-dependent

spatial density of the spectator nucleons. Then, taking into
account that Ep0 =

√
s

2 and p0 = 1
2 (s − 4m2)1/2, we get the

equation for ρS
A(t,r):

p
μ
0 ∂μρS

A(t,r) = −2σ
NN

p0ρ
S
A(t,r)ρ(0)

B (t,r), (15)

ρS
A(t0,r) = ρ

(0)
A (t0,r). (16)

Here the expression on the right-hand side of Eq. (15) is
proportional to the number of binary collisions in the four-
volume element at (t,r), between any nucleons from projectile
(B) and those nucleons from target (A), which had not yet
interacted at time t . It is seen that this expression depends only
on spatial densities, relative velocity, and the nucleon-nucleon
cross section. Thus, if we regard σ

NN
as the total nucleon-

nucleon cross section, then Eq. (16) also describes the loss
of the noninteracting nucleons due to any binary reactions of
nucleons and not just due to elastic collisions. The solution of
Eq. (15) with initial condition (16) can be written as

ρS
A(t,r) = ρ

(0)
A (t,r) exp

{
−2σ

NN
v0

∫ t

t0

dt ′ρ(0)
B

× [t ′,r − vA(t − t ′)]
}
, (17)

where v0 = p0/Ep0 and vA = (0,0,v0). Similarly, for nucleons
from the projectile we have

ρS
B(t,r) = ρ

(0)
B (t,r) exp

{
−2σ

NN
v0

∫ t

t0

dt ′ρ(0)
A

× [t ′,r − vB(t − t ′)]
}
, (18)

where vB = (0,0, − v0).

C. Transverse distribution of spectators

It is easy to see similarities between our model and the
optical limit of the Glauber–Sitenko approach [1] applied for
the description of relativistic heavy-ion collisions. Indeed,
in our simplified kinetic approach we consider only binary
collisions between nucleons which always move in the
forward-backward direction, and the probability of binary
interaction is determined by the total nucleon-nucleon cross
section. One of the quantities which can be evaluated in that ap-
proach is the transverse distribution T part(x,y) of the wounded
nucleons (participants) [2,3], which is often used to define
initial conditions in fluid dynamical models assuming that the
transverse expansion of the interacting system is small during
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the initial pre-equilibrium phase. This distribution reads as

T part(x,y)

= T
part
A (x,y) + T

part
B (x,y)

= TA(x − b/2,y)

[
1 −

(
1 − σ

NN
TB(x + b/2,y)

A

)A]

+TB(x + b/2,y)

[
1 −

(
1 − σ

NN
TA(x − b/2,y)

A

)A]

≈ TA(x − b/2,y)[1 − exp{−σ
NN

TB(x + b/2,y)}]
+TB(x + b/2,y)[1 − exp{−σ

NN
TA(x − b/2,y)}], (19)

where TA(B)(x,y) = ∫
dzρWS (x,y,z) is the nuclear thickness

function (normalized to A). Consequently, the transverse
distribution of spectators can be written as

T spec (x,y) = T tot(x,y) − T part(x,y)

= TA(x − b/2,y)

(
1 − σ

NN
TB(x + b/2,y)

A

)A

+ TB (x + b/2,y)

(
1 − σ

NN
TA(x − b/2,y)

A

)A

≈ TA(x−b/2,y) exp{−σ
NN

TB(x+b/2,y)}
+ TB (x+b/2,y) exp{−σ

NN
TA(x−b/2,y)}.

(20)

To make a quantitative comparison of our model with
the above-mentioned approach we calculate the transverse
distribution of spectators within our model. To account for all
possible nucleon interactions we let the initial-time moment
t0 → −∞. Then the transverse distribution of spectators from
projectile T

spec
A (x,y) can be calculated as

T
spec
A (x,y) = lim

t→∞

∫
dp

∫
dzf S

A (t,r,p)

= lim
t→∞

∫
dzρ

(0)
A (t,r) exp

{
− 2σ

NN
v0

∫ t

−∞
dt ′ρ(0)

B

× [t ′,r − vA(t − t ′)]
}
. (21)

To perform the integration in the exponent we use

ρ
(0)
B [t ′,r − vA(t − t ′)]

= γ0ρWS [x + b/2,y,γ0(z − v0t + 2v0t
′ − v0tc)]

and make the transformation of the integration variable:

t ′ = 1

2v0γ0
[z′ − γ0z + v0γ0(t + tc)].

By using t → ∞ and also the definition of the nuclear
thickness function we can perform the integration over the
new variable z′ under the exponent and get

T
spec
A (x,y) = lim

t→∞

∫
dzρ

(0)
A (t,r) exp{−σ0TB(x + b/2,y)}.

(22)

By using
∫

dzρ
(0)
A (t,r) = TA(x − b/2,y) we finally get

T
spec
A (x,y) = TA(x − b/2,y) exp{−σ

NN
TB(x + b/2,y)}. (23)

Similarly, the transverse distribution of spectators from the
projectile reads

T
spec
B (x,y) = TB(x + b/2,y) exp{−σ

NN
TA(x − b/2,y)}. (24)

Comparing Eqs. (23) and (24) with Eq. (20) we can
conclude that our model is consistent with the Glauber-based
approach for describing heavy-ion collisions. Furthermore,
it provides the possibility of studying the time-dependent
features of the spectator-participant partition process in the
early stage of the nucleus-nucleus collision. Comparison of
our model with MC-Glauber is presented in Appendix A.

III. CALCULATION RESULTS

To study the temporal structure of the partition of spectators
and participants we consider the time-dependent transverse
distribution T s(t ; x,y) of the nucleons, which did not interact
before time t . This distribution reads

T s(t ; x,y) = T s
A(t ; x,y) + T s

B(t ; x,y), (25)

T s
A(B)(t ; x,y) =

∫
dp

∫
dzf S

A(B)(t,r,p)

=
∫

dzρ
(0)
A(B)(t,r) exp

{
−2σ

NN
v0

∫ t

−∞
dt ′ρ(0)

B(A)

× [t ′,r − vA(B)(t − t ′)]
}
. (26)

We can rewrite this expression in terms of the initial Woods–
Saxon distribution:

T s
A(B)(t ; x,y) =

∫
dzγ0ρWS (x ∓ b/2,y,γ0[z ∓ v0(t − tc)])

× exp

{
−2σ

NN
v0

∫ t

t0

dt ′γ0ρWS (x ± b/2,y,γ0

× [z ∓ v0(t+tc) ± 2v0t
′])

}
. (27)

It is useful to introduce the variables z̃ = γ0z and t̃ = t/tc
where, as previously defined, tc = R0/(γ0v0) is the time of the
maximum overlap of the colliding nuclei (see Fig. 1). Studies
within Monte Carlo cascade models have shown that this time
moment corresponds to the maximum of the nucleon-nucleon
collision frequency [16–18], and it appears to be a natural
energy-dependent temporal scale for the initial stage of the
collision. This time, tc, decreases with increasing collision
energy and lies in the range tc � 1 to 2 fm/c at energies of the
CERN Super Proton Synchrotron (SPS), tc � 0.1 to 0.8 fm/c
at energies of the BNL Relativistic Heavy Ion Collider (RHIC)
and tc ∼ 10−2 to 10−3 fm/c at energies of the Large Hadron
Collider (LHC). Equation (27) is then rewritten as

T s
A(B)(t̃ ; x,y) =

∫
dz̃ρWS [x ∓ b/2,y,z̃ ∓ R0(t̃ − 1)]

× exp

{
−2σ

NN
R0

∫ t̃

−∞
dt̃ ′ρWS

× [x ± b/2,y,z̃ ∓ R0(t̃ + 1) ± 2R0 t̃
′]
}
. (28)
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FIG. 2. (Color online) The time dependence of the total number of participant nucleons in Pb + Pb collisions at (a) SPS and RHIC energies
(σNN = 33 mb) and (b) LHC energy (σNN = 70 mb) for different values of impact parameter. Solid lines depict calculations in the proposed
model while dashed lines in panel (a) correspond to calculations from the UrQMD model at

√
sNN = 17.3 GeV.

A. Number of participants

The total number of participants (net baryon participant
number) at time t can be obtained as

Npart(t) = 2A −
∫

dxdy
[
T s

A(t ; x,y) + T s
B(t ; x,y)

]
. (29)

The time dependence of the total number of participant
nucleons in Pb-Pb collisions is depicted in Fig. 2 for (a) SPS
and RHIC energies (σNN = 33 mb) and (b) LHC energy (σNN =
70 mb) at three different centralities: b = 0, 0.4bmax, 0.7bmax,
where bmax = 2R0 and R0 = 6.53 fm. We can see that a
change in the nucleon-nucleon cross section, which roughly
corresponds to the increase of the collision energy from RHIC
to LHC, has little influence on the time dependence of Npart(t)
and only slightly increases the total number of participant
nucleon charge at the given impact parameter. It is seen from
Fig. 2 that the formation of the participant system is the
most intense in the time range t � 0.5tc to 1tc and becomes
complete at about t = 1.5tc.

It makes sense to make a comparison of predictions
regarding time dependence of our simplified analytic model
with a more complicated cascade model such as the ultra-
relativistic quantum molecular dynamics (UrQMD) transport
approach [19,20]. The time dependence of the average total
number of participant net nucleons (baryons) can be cal-
culated in UrQMD as event-by-event average of Npart(t) =
2A − Nspec(t), where Nspec(t) is determined in each event by
analyzing the collision history. UrQMD results for Npart(t) in
Pb + Pb collisions at top SPS energy of

√
sNN = 17.3 GeV

are depicted by dashed lines in Fig. 2(a). We note that the
temporal axis in UrQMD is specially aligned in Fig. 2(a)
with the one used in our model so that the time moment
t = 0 corresponds to two colliding nuclei “touching” each
other. The comparison of UrQMD with calculations of our
model (solid lines in Fig. 2) shows generally good agreement
between our model and UrQMD. One can see, however, that
the number of participants in UrQMD keeps increasing, albeit
insignificantly, also at times t > 1.5tc, which can be attributed
to the more complex collision dynamics of UrQMD compared
to our analytic model.

B. Angular momentum

Another important quantity, of which the time dependence
can be studied within the proposed model, is the total
angular momentum of the participant system. The total angular
momentum of the formed participant system is nonzero in
noncentral collisions [21,22] and can attain a significantly
large value (L ≈ 106

� for LHC energies [23]). The angular
momentum illustrates the initial rotation of the system of
participants, and it was shown that it depends strongly on
the initial nuclear density profile and leaves some freedom for
the assumed initial state of the participant system in fluid
dynamical and in molecular dynamics models. The time-
dependent total angular momentum, LP

tot(t), of the participant
system can be calculated in our model as the difference of
total angular momentum Ltot and the time-dependent angular
momentum LS

tot(t) of nucleons, which did not interact before
time t . These quantities can be written as

Ltot = pz
in

∫
dxdyx[TA(x − b/2,y) − TB(x + b/2,y)],

(30)

LS
tot(t) = pz

in

∫
dxdyx

[
T S

A (t ; x,y) − T S
B (t ; x,y)

]
, (31)

LP
tot(t) = Ltot − LS

tot(t), (32)

where pz
in = (s/4 − m2

N )1/2 is the initial momentum of a
nucleon.

The dependence of the total angular momentum of the
participant system on impact parameter at different times is
depicted in Fig. 3. The values of the angular momentum are
in units of �. It can be seen that, similarly to the case of
the total number of participants, the total angular momentum
of the participant system increases with time and reaches its
maximum value for each particular collision centrality at the
end of the spectator-participant partition process.

It is also interesting to consider the time evolution of the
angular momentum of participants per participant (per baryon
charge of participants). We note that the number of participants
also changes with time. Such a quantity contains information
about an average contribution of participant nucleons to the
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FIG. 3. (Color online) The dependence of the total angular mo-
mentum of the participant system on impact parameter at different
times for Pb + Pb collisions at

√
s = 2.76 TeV.

total angular momentum. The dependence of this quantity on
impact parameter at different times is depicted in Fig. 4. It
can be seen that, similarly to the total angular momentum of
participants, the angular momentum per participant increases
with time for any value of the impact parameter. This means
that, for any fixed value of impact parameter b, the rate of
increase of the total number of participants, Np, is smaller
than the rate of increase of the total angular momentum of
participants. Another similarity is that there is also maximum
in the dependence of this quantity on impact parameter which
is shifted in the direction of a larger b. One difference is that
the angular momentum per participant is nonvanishing for
large b, indicating that the initial rotation and local vorticity
are significant in the range of semicentral to even the most
peripheral collisions and needs to be accounted for.

It can be interesting to compare the rate of the increase with
time of the angular momentum of participants with a similar
rate concerning the total number of participant nucleons. In
order to do that, we compare the time dependencies of the
normalized quantities Npart(t)/Npart(∞) and LP

tot(t)/L
P
tot(∞),

where Npart(∞) and LP
tot(∞) are the values of the total

FIG. 4. (Color online) The dependence of the participant angular
momentum per participant on impact parameter at different times for
Pb + Pb collisions at

√
s = 2.76 TeV.

FIG. 5. (Color online) The time dependence of the total number
of participant nucleons and of the total angular momentum of
participants divided by their final values in Pb + Pb collisions.

number of participants and of the total angular momentum of
participants at the end of the spectator-participant separation
stage. The time dependence of the above-mentioned quantities
is depicted in Fig. 5.

It can be seen from Fig. 5 that the process of increase of
the angular momentum of participants happens at a somewhat
later time in comparison to the total number of participants,
and the most significant increase happens in time interval
t � 0.75tc to 1.25tc. The reason for this is that different
nucleons carry different contributions to the total participant
angular momentum, and most of the nucleons with the largest
contribution become participants at later times, which is also
evident from the time dependence of the angular momentum of
participants related to the number of participants (see Fig. 4).

C. Vorticity

The classical (nonrelativistic) vorticity of the participants
in the reaction plane (x,z) is defined as

ωy = ωxz = −ωzx = 1
2

(
∂zv

P
x − ∂xv

P
z

)
, (33)

where vP is the average three-velocity of participants. The
emergence of the vorticity in the reaction plane in heavy-ion
collisions is attributed to the initial angular momentum of the
participant system and studies within fluid dynamical models
had shown that vorticity still remains significant during the
freeze-out stage [24]. Along with angular momentum, such a
quantity can be used to study rotation in the reaction plane.
Another closely related quantity is 
 polarization which can
be detectable experimentally [25]. The possibility to detect
rotation via differential Hanbury Brown and Twiss (HBT) has
also recently been explored [26,27].

While in our simplified model we do not consider the
subsequent evolution of the formed participant system, most
importantly the equilibration process, we can still study the
emergence of the vorticity during the formation of this system.
To do this we assume that the transverse motion of participants
is small during the formation stage (“no-stopping” mode) and
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FIG. 6. (Color online) The (a) classical and (b) relativistic weighted participant vorticity �zx in units of c/fm, calculated in the reaction
plane, i.e., (xz) plane, at time moment t = 0.5tc in Pb + Pb collisions. The collision energy is

√
s

NN
= 2.76 TeV and b = 0.7bmax. The collision

axis z is scaled with the γ factor γ0, which corresponds to the collision energy.

their average velocity can be expressed as

vP
x (t,r) ≈ vP

y (t,r) ≈ 0, (34)

vP
z (t,r) ≈ v0

ρP
A (t,r) − ρP

B (t,r)

ρP
A (t,r) + ρP

B (t,r)
, (35)

ρP
A(B)(t,r) ≈ ρ

(0)
A(B)(t,r) − ρS

A(B)(t,r). (36)

Here, ρP
A(B)(t,x,y,z) is the time-dependent spatial density

of participant nucleons from the target (projectile). For the
relativistic case we follow the definition from Ref. [28]:

ωμ
ν = 1

2 (∇νu
μ − ∇μuν), (37)

where uμ = γ (1,v), ∇α = β
α∂β and μν = gμν − uμuν .

Similarly to Ref. [24] we neglect the collective acceleration
in comparison with rotation, i.e., |∂τu

μ|  |∂xu
z|, and get the

following expression for the relativistic vorticity ωx
z in the

reaction plane:

ωx
z = −ωz

x = − 1
2γ ∂xvz − 1

2vz∂xγ, (38)

where γ = (1 − v2
z )−1/2. Here we already take into account

that vx = vy = 0 in our model.
Similarly to Ref. [24], we also use the weights proportional

to the energy density to better reflect the collective dynamics.
The energy-density weighted vorticity for both classical and
relativistic cases is then

�zx = w(t,x,z)ωzx, (39)

where the weight w(t,x,z) is

w(t,x,z) = εP (t,x,y = 0,z)

〈εP (t,x,y = 0,z)〉 . (40)

Here, εP (t,x,y,z) =
√

s

2 (ρP
A + ρP

B ) is the energy density of
the participants and 〈εP (t,x,y = 0,z)〉 is the average energy
density in the reaction plane at time t . For averaging we use
the region −1.5R0 < x < 1.5R0, − 1.5R0 < γ0z < 1.5R0.

Results of the calculations of the classical and relativistic
weighted vorticity in the reaction plane at different time
moments are presented in Figs. 6–8.

The presented results illustrate the emergence of rotation
during the formation of the participant system. Also, it is
seen that there may exist substantial differences in results
when using different definitions of vorticity, indicating that
its relativistic generalization is not trivial. It should also be
noted, however, that the proposed model does not describe
the evolution of the participant system after its formation and
using the no-stopping assumption, Eq. (36), allows us to only
give a qualitative rather than quantitative picture, especially
for times t > tc.

IV. CONCLUSIONS

The identification of different stages of the initial state
is important if we want to discuss the results of multi-
module models or hybrid models. While the middle part
of a heavy-ion reaction is usually well described by the
fluid dynamical model, different initial states and different
final-state approximations are used in such kinds of combined
models.

In the Particle in Cell relativistic (PICR) fluid dynamical
model [29,30] the initial state assumes a dynamical evolution
in a Yang–Mills field theoretical model [31,32], which has
some features similar to the model presented here. The
time when the PICR calculation starts corresponds to a
configuration when the two nuclei have interpenetrated each
other and were near to being stopped by the Yang–Mills field.
In the timescale of this model this configuration corresponds
to a time moment not earlier than 2tc. The subsequent (3 + 1)-
dimensional fluid dynamical development led to increased
rotation due to the Kelvin–Helmholtz instability (KHI) in
certain favorable configurations. The initial-time moment
of the hydrodynamical evolution in the hybrid approach
based on the UrQMD model [33] is also closely related
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FIG. 7. (Color online) Same as Fig. 6, but for t = tc.

to the temporal scale tc of our model. There, 2tc is as-
sumed to be the earliest possible thermalization time and,
consequently, the earliest possible initial-time moment of the
hydrodynamical evolution, which should not be smaller than
1 fm/c.

The present model is based on a conserved nucleon picture.
For example, the angular momentum per nucleon assumes
conserved nucleons. At very high energies numerous hadron
pairs are created, including baryon pairs, so the concept of
the model should be implemented for the conserved baryon
charge.

Physically, the prehydrodynamical stage will remain nearly
the same; however, the high parton density may influence
the dynamics already after tc. Especially, collective force
fields may change the dynamics and may speed up equi-
libration, which then leads to collective effects like the
KHI.

The vorticity characteristics shown in Fig. 8 are interesting.
The participant domain has substantial positive vorticity.
This agrees well with the fluid dynamical calculations. The

spectators show negative vorticity, this is arising from the
particle loss due to collisions from the spectator domain.
Because the spectators are not considered at all in the
PICR calculations, this effect is not covered by these model
calculations.

Notice the large difference between the nonrelativistic and
relativistic vorticities in Figs. 7 and 8. This is due to the
relativistic γ factors, which are large in the present calculation
as there are only collisions, no collective forces or pressure.
In the PICR calculations these collective interactions decrease
velocity differences both in the initial-state model and in the
fluid dynamics; thus, the difference between the nonrelativistic
and relativistic vorticities is modest.

The initial-state model in the PICR calculations is domi-
nated by attractive collective Yang–Mills fields, which keep
the system more compact and uniform. Some versions of the
color-glass condensate (CGC) initial-state models have similar
features. Also, in the PICR model, sharp initial nuclear surfaces
are assumed instead of Woods–Saxon surface profiles. This
makes the typical times tc and 2tc shorter. On the other hand,

FIG. 8. (Color online) Same as Fig. 6, but for t = 1.5tc.
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for molecular dynamics models (or to some extent for hybrid
models) with MC-Glauber initialization the present model
provides a good estimate for the initial times. See Appendix A.

The formation of a quark-gluon plasma (QGP) leads to
more rapid equilibration and to critical fluctuations. These
also facilitate the equilibration of rotation especially in low-
viscosity fluid dynamical models like PICR with KHI. Before
the final hadronization the perturbative vacuum may keep the
participant system more compact and then rapid hadronization
from a supercooled QGP has the best chances to show
observable signs of rotation at the final freeze-out. To detect
the observable signs of global collective flow patterns these
should be separated from random fluctuations as described in
Ref. [34].

At the same time, for the development of the initial rotation
and vorticity the present model provides an excellent guidance
for all dynamical models of peripheral heavy-ion reactions.
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APPENDIX

1. Reaction density of binary collisions

Our model gives the possibility to calculate the density
�(t,r) of binary collisions between nucleons from colliding
nuclei, which describes the number of binary reactions per
unit volume per unit time. Since these binary collisions
are beam directed, the relative velocity of nucleons is 2v0.
Exploiting this and taking into account the ballistic distribution
functions f

(0)
A(B) of the colliding nucleons [see Eq. (10)],

one can write down the four-density of binary reactions
as

�coll(t,r) = σ
NN

2v0ρ
(0)
A (t,r)ρ(0)

B (t,r). (A1)

The total average number of binary collisions Ncoll is

Ncoll =
∫

dtdr�coll(t,r)

= σ
NN

2v0γ
2
0

∫
dtdrρWS (x − b/2,y,γ0[z − v0(t − tc)])

× ρWS (x + b/2,y,γ0[z + v0(t − tc)]). (A2)

Making a change of variables (t,z) → (z1,z2) as z1 = γ0[z −
v0(t − tc)], z2 = γ0[z + v0(t − tc)] we get

Ncoll = σ
NN

∫
dr⊥

∫
dz1ρWS (x − b/2,y,z1)

×
∫

dz2ρWS (x + b/2,y,z2)

= σ
NN

∫
dxdyTA(x − b/2,y)TB (x + b/2,y)

= σ
NN

A2t (b) , (A3)

FIG. 9. (Color online) The binary reaction density �̃coll(t,z) in
coordinates (t,z) in Pb + Pb collisions. The collision energy is√

s
NN

= 2.76 TeV and b = 0.7bmax. The collision axis z is scaled
with the γ factor γ0, which corresponds to the collision energy.

where t(b) is the nuclear overlap function, normalized to unity,
which depends on the impact parameter. Eq. (A3) coincides
with the expression for the average number of binary collisions
in the analytical Glauber model. Our model, however, allows
one to study also the temporal and longitudinal structure of the
binary collisions.

Let us consider the quantity �̃coll(t,z) = ∫
dxdy�coll(t,r),

which represents the two-dimensional spacetime structure of
the binary collisions. This quantity is depicted in Fig. 9. It is
instructive to compare the structure of two-dimensional binary
collisions given in Fig. 9 with spacetime reaction zones which
were investigated in Ref. [18] exploiting UrQMD: very similar
features of the distribution of collisions can be immediately
found at earlier times. Besides, it is explicitly seen in Fig. 9
how natural and useful for the description of the initial stage
is the time scale tc, which is a unit of a measuring the time
axis.

It is useful to make a comparison of our model to
MC-Glauber. In MC-Glauber one can take into account
correlations generated by the collision mechanism (dubbed
“twin” correlations in Ref. [35]), i.e., that nucleons can only
collide if they are close by in the transverse plane. In order
to make a comparison we consider the frequency of binary
reactions, νcoll(t) = ∫

dz�̃coll(t,z), which can be calculated in
our model and also in MC-Glauber. To calculate this quantity in
MC-Glauber we follow the usual procedure, recently described
in Ref. [36], but also add additional step to determine time
dependence:

(1) We generate the initial positions of nucleons in collid-
ing nuclei by using the Woods–Saxon distribution with
the same parameters that are used in our analytical
model.
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[

]

FIG. 10. The frequency of binary collisions νcoll(t) in Pb + Pb
collisions calculated in our model and in Glauber Monte Carlo. The
collision energy is

√
s

NN
= 2.76 TeV and b = 0.7bmax.

(2) We consider all possible binary collisions be-
tween the nucleons from different colliding nuclei
by calculating the distance, dtrans, between them
in the transverse plane. In case it satisfies the
inequality dtrans <

√
σ

NN
/π , we register a binary

collision.
(3) We calculate the time moment for each binary collision

as t = |z1 − z2|/(2v0), where z1 and z2 are the longitu-
dinal coordinates of the two colliding nucleons in the
collider center-of-mass frame at t = 0.

The frequency of binary reactions calculated in our
analytical model and in the MC-Glauber are depicted in
Fig. 10. It is seen that both graphs virtually coincide, which
further indicates that our model is consistent with Glauber
approach and also that event-by-event fluctuations and twin
correlations have negligible effect on a frequency of the binary
reactions.
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