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We compute the temporal evolution of the pressure anisotropy and bulk pressure of a massive gas using
second-order viscous hydrodynamics and anisotropic hydrodynamics. We then compare our results with an exact
solution of the Boltzmann equation for a massive gas in the relaxation time approximation. We demonstrate that,
within second-order viscous hydrodynamics, the inclusion of the full set of kinetic coefficients, particularly the
shear-bulk couplings, is necessary to properly describe the time evolution of the bulk pressure. We also compare
the results of second-order hydrodynamics with those obtained using the anisotropic hydrodynamics approach.
We find that anisotropic hydrodynamics and second-order viscous hydrodynamics including the shear-bulk
couplings are both able to reproduce the exact evolution with comparable accuracy.
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I. INTRODUCTION

Dissipative hydrodynamics plays a central role in the
phenomenology of the quark gluon plasma. Since quantum
mechanics implies that there is a lower bound on the shear
viscosity to entropy density ratio [1,2], one must include
dissipative viscous corrections in order to realistically model
the spatiotemporal evolution of the soft degrees of freedom of
the system. The application of ideal [3–5] and second-order
viscous hydrodynamics [6–32] now has a long history with re-
cent developments focusing on constructing complete and self-
consistent methods for deriving the fluid-dynamical equations
of motion and the associated transport coefficients. Following a
different strategy, another promising framework for describing
the soft dynamics of relativistic systems has recently been
developed called anisotropic hydrodynamics [33–48]. While
second-order hydrodynamics is constructed from an expansion
around a local equilibrium state, anisotropic hydrodynamics
originates from an expansion around a dynamically evolving
anisotropic background.

So far, fluid-dynamical theories that include only the
effects of shear viscous corrections have been considered
sufficient to describe the strongly interacting system created
in ultrarelativistic heavy-ion collisions. However, since QCD
is a nonconformal field theory, one should not neglect the
bulk viscous corrections to the ideal energy momentum tensor
if one wants a complete and self-consistent description of the
dynamics. While the accuracy of second-order and anisotropic
hydrodynamics has been investigated in the conformal and/or
massless limits [49,50], there have not been comparisons of
complete second-order formulations in the nonconformal case.

It was recently shown that Israel-Stewart theory [51], which
is the most widespread formulation of relativistic dissipative
fluid dynamics, is not able to reproduce exact solutions of the
massive 0+one-dimensional (1D) Boltzmann equation in the
relaxation time approximation [52]. Therefore, one is led to ask
whether more complete formulations of second-order viscous
hydrodynamics can better reproduce the exact solution.

In the past several months, some progress has been made in
the second-order viscous hydrodynamics framework within
the 14-moment approximation [32] and in the anisotropic
hydrodynamics framework [53]. Both of these formalisms
have been extended to provide a more accurate description
of massive and, consequently, nonconformal systems. In
Ref. [53] it was shown that inclusion of an explicit bulk degree
of freedom in the anisotropic hydrodynamics framework
results in a quite reasonable agreement with the exact kinetic
solutions. In this paper we take another step in this direction
and compare the solutions of second-order hydrodynamics
obtained using the 14-moment approximation [32] with the
exact kinetic solution from Ref. [52]. We demonstrate that
the failure of Israel-Stewart theory in reproducing solutions of
the Boltzmann equation in the massive case occurs because
this theory does not take into account the coupling between
bulk viscous pressure and the shear-stress tensor. We find
that, for the case of the bulk viscous pressure, such coupling
terms become as important as the corresponding first-order
Navier-Stokes term and must be included in order to obtain a
reasonable agreement with the microscopic theory. This indi-
cates that the coupling between the two viscous contributions
can be relevant in the description of nonconformal fluids.
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We further compare the recent solutions of anisotropic
hydrodynamics derived in Ref. [53] with those of second-
order viscous hydrodynamics. We find that both are able to
reproduce the exact solution with comparable accuracy. Such
good agreement found between anisotropic hydrodynamics
and solutions of the Boltzmann equation is encouraging since
in anisotropic hydrodynamics the shear-bulk couplings do not
need to be included explicitly but are instead implicit in the
formalism.

The structure of this paper is as follows. In Sec. II we present
the recently obtained second-order viscous hydrodynamics
equations of motion obtained using the 14-moment approxi-
mation. In Sec. III we present the necessary 0+1D anisotropic
hydrodynamics equations including the bulk degree of free-
dom. In Sec. IV we briefly review the method for solving
the 0+1D massive Boltzmann equation exactly. In Sec. V
we present our numerical results. In Sec. VI we present our
conclusions and an outlook for the future. In the appendix, we
collect expressions for the necessary thermodynamic integrals
and their asymptotic expansions.

A. Notation and conventions

We use natural units with � = c = kB = 1. The metric
tensor has the form gμν = diag(1, − 1, − 1, − 1). The space-
time coordinates are denoted as xμ = (t,x,y,z), and the
longitudinal proper time is τ = √

t2 − z2.

B. Bulk variables

In order to compare the various approximation schemes
considered herein, we will specialize in the end to the
case that the equilibrium distribution is a classical massive
Boltzmann distribution. In this case, the isotropic equilibrium
bulk variables are

neq(T ,m) = 4πÑT 3 m̂2
eqK2(m̂eq), (1)

Seq(T ,m) = 4πÑT 3 m̂2
eq[4K2(m̂eq) + m̂eqK1(m̂eq)], (2)

Eeq(T ,m) = 4πÑT 4 m̂2
eq[3K2(m̂eq) + m̂eqK1(m̂eq)], (3)

Peq(T ,m) = neq(T ,m) T , (4)

where neq,Seq,Eeq, andPeq are the equilibrium number density,
entropy density, energy density, and pressure, respectively,
m̂eq = m/T , and Ñ = Ndof/(2π )3 with Ndof being the number
of degrees of freedom.

II. 14-MOMENT APPROXIMATION APPROACH
TO FLUID DYNAMICS

Using the 14-moment approximation one can derive the
equations of motion for a relativistic fluid from the relativistic
Boltzmann kinetic equation. In this way, the continuity
equations for the energy-momentum tensor

∂μT μν = 0, (5)

have to be solved together with the relaxation-type equations
for the bulk viscous pressure � and the shear-stress tensor

πμν [32],

τ��̇ + � = −ζθ − δ���θ + ϕ1�
2 + λ�ππμνσμν

+ϕ3π
μνπμν, (6)

τπ π̇ 〈μν〉 + πμν = 2ησμν + 2τππ 〈μ
α ων〉α − δπππμνθ

+ϕ7π
〈μ
α πν〉α − τπππ 〈μ

α σ ν〉α + λπ��σμν

+ϕ6�πμν. (7)

Here we have neglected the effect of net-charge diffusion.
Above, we introduced the vorticity tensor ωμν ≡ (∇μuν −
∇νuμ)/2, the shear tensor σμν ≡ ∇〈μuν〉, and the expansion
scalar θ ≡ ∇μuμ, where uμ is the fluid four-velocity and
∇μ ≡ �ν

μ∂ν is the projected spatial gradient. We use the
notation A〈μν〉 ≡ �

μν
αβAαβ , with �

μν
αβ ≡ (�μ

α�ν
β + �

μ
β�ν

α −
2/3�μν�αβ)/2, where �μν ≡ gμν − uμuν . In Eqs. (6) and (7)
we have also introduced the shorthand notation for the proper-
time derivative ˙( ) ≡ d/dτ .

The terms multiplying different tensor structures in (6)
and (7) are transport coefficients. They are complicated
functions of temperature and the particle’s mass, and their form
should be found by matching (6) and (7) with the underlying
microscopic theory. As shown in Ref. [54], the terms ϕ1�

2,
ϕ3π

μνπμν , ϕ6�πμν , and ϕ7π
〈μ
α πν〉α appear only because the

collision term is nonlinear in the single-particle distribution
function. In the case of the relaxation time approximation,
which will be employed throughout this paper, the collision
term is assumed to be linear in the nonequilibrium single-
particle distribution function and one can explicitly show
that ϕ1 = ϕ3 = ϕ6 = ϕ7 = 0. One should stress, however, that
Eqs. (6) and (7) include a coupling between the shear and bulk
relaxation equations (the terms λ�π and λπ�), which are absent
in the traditional Israel-Stewart viscous hydrodynamics. One
can find a plot of the various transport coefficients in Fig. 1
of Ref. [32]. There have been some prior works that have
considered shear-bulk couplings in viscous hydrodynamics,
see, e.g., Refs. [55–57], but for the most part, the existence of
these types of couplings has been ignored in the literature.

In the 0+1D case describing one-dimensional and boost-
invariant expansion, the formulas (5)–(7) reduce to

Ė = −E + P + � − π

τ
, (8)

τ��̇ + � = −ζ

τ
− δ��

�

τ
+ λ�π

π

τ
, (9)

τπ π̇ + π = 4

3

η

τ
−

(
1

3
τππ + δππ

)
π

τ
+ 2

3
λπ�

�

τ
, (10)

where E and P are the energy density and thermodynamic
pressure, respectively. We note that in 0+1D the vorticity
tensor vanishes and the term 2τππ 〈μ

α ων〉α has no effect on
the dynamics of the fluid. The coefficients appearing in the
equation for the bulk pressure are the following:

ζ

τ�

=
(

1

3
− c2

s

)
(E + P) − 2

9
(E − 3P) − m4

9
I−2,0, (11)

δ��

τ�

= 1 − c2
s − m4

9
γ

(0)
2 , (12)
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FIG. 1. (Color online) Time evolution of the pressure anisotropy
PL/PT (a) and the bulk pressure (b). Three lines describe three
different results: the exact solution of the Boltzmann equation [52]
(black solid line), the result of the full second-order viscous
hydrodynamics [32] including the shear-bulk couplings λ�π and λπ�

(red dashed line), and the result of the second-order hydrodynamics
with λ�π = λπ� = 0 (blue dot-dashed line). For both panels we
use m = 30 MeV, τ0 = 0.5 fm/c, τeq = τπ = τ� = 0.5 fm/c, and
T0 = 600 MeV. The initial spheroidal anisotropy parameter fixing
the initial distribution function equals ξ0 = 0, correspondingly, we
use π0 = 0 and �0 = 0.

λ�π

τ�

= 1

3
− c2

s + m2

3
γ

(2)
2 . (13)

On the other hand, the coefficients in the equation for the shear
pressure are

η

τπ

= 4

5
P + 1

15
(E − 3P) − m4

15
I−2,0, (14)

δππ

τπ

= 4

3
+ 1

3
m2γ

(2)
2 , (15)

τππ

τπ

= 10

7
+ 4

7
m2γ

(2)
2 , (16)

λπ�

τπ

= 6

5
− 2

15
m4γ

(0)
2 , (17)

where we have introduced the sound velocity squared,

c2
s = E + P

β0I3,0
, (18)

and β0 = I1,0/P . The coefficients γ (0)
n and γ (2)

n are complicated
functions of T and m given by

γ (0)
n = (E0 + B0m

2)I−n,0 + D0I1−n,0 − 4B0I2−n,0, (19)

γ (2)
n = I4−n,2

I4,2
, (20)

where

D0

3B0
= −4

I3,1I2,0 − I4,1I1,0

I3,0I1,0 − I2,0I2,0
≡ −C2, (21)

E0

3B0
= m2 + 4

I3,1I3,0 − I4,1I2,0

I3,0I1,0 − I2,0I2,0
≡ −C1, (22)

B0 = − 1

3C1I2,1 + 3C2I3,1 + 3I4,1 + 5I4,2
. (23)

Here we make use of the thermodynamic functions In,q defined
by the integrals

In,q(T ,m) = 1

(2q + 1)!!

∫
dK(uμkμ)n−2q(−�μνk

μkν)qf0k,

(24)

where, herein, the equilibrium distribution function is assumed
to be a classical Boltzmann distribution f0k = exp(−uμkμ/T ),
and the integration measure is dK = Ndof d3k/((2π )3k0).
The relevant integrals In,q(T ,m) are expressed in terms of
special functions in the appendix. Finally, in this paper we
only consider the Boltzmann equation in the relaxation time
approximation. In this case, the shear and bulk relaxation
times, τπ and τ�, respectively, are equal to the microscopic
relaxation time τeq, i.e., τ� = τπ = τeq [32].1

We note here that there are other formulations of second-
order hydrodynamics which have different values for the
various transport coefficients listed above. For example, if
one uses the naive Israel-Stewart theory one has τππ = 0.
In addition, even using the method of moments one finds
that the coefficients depend on the number of moments
considered. For example, for a gas of massless particles
with constant cross sections, one has τππ = 134/77 in the
23-moment approximation and τππ � 1.69 in the 32- and
41-moment approximations [28]. In this paper, we will use
the coefficients calculated in the 14-moment approximation
using the relaxation time approximation [32]. We note that,
for the case of the relaxation time approximation, the trans-
port coefficients of hydrodynamics have not been calculated
beyond the 14-moment approximation.

Finally, in this context we note that even the form of the
bulk pressure evolution equations put forward by different
authors differ and, generally speaking, until the recent papers
of Denicol et al., no authors included explicit shear-bulk cou-
plings, see, e.g., Refs. [7,9,51,58–61]. As shown in Ref. [52],
approaches that do not explicitly include the shear-bulk cou-
plings do not agree with the bulk pressure evolution obtained
via exact solution of the Boltzmann equation. The complete
14-moment second-order viscous hydrodynamics equations
presented in this section include shear-bulk couplings, λπ�

and λ�π . As we will see in the results section, including
these couplings results in much better agreement with the
exact kinetic solution compared to Israel-Stewart second-order
viscous hydrodynamics.

III. ANISOTROPIC HYDRODYNAMICS APPROACH

Anisotropic hydrodynamics (aHydro) is an alternative
framework for obtaining the necessary nonequilibrium

1In a more general case the relaxation times for the shear and bulk
pressures may differ from each other.
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FIG. 2. (Color online) Same as Fig. 1 except here we take m = 300 MeV [(a) and (b)] and m = 1 GeV [(c) and (d)].

evolution equations. In contrast to traditional viscous hy-
drodynamics approaches, which make an expansion around
the equilibrium state, anisotropic hydrodynamics expands the
underlying distribution function around a momentum-space
anisotropic state. In this way, the potentially large degree
of momentum-space anisotropy in the system is included in
the leading order of expansion and treated nonperturbatively.
Moreover, in this framework one is not restricted by the
condition of being close to the equilibrium state since the
dynamical background is allowed to possess even large
momentum-space anisotropies.

In its newest formulation [53], the framework of anisotropic
hydrodynamics allows for a degree of freedom associated with
the bulk pressure of the system. This is accomplished using
the following form for the underlying distribution function:

f (x,p) = fiso

(
1

λ

√
pμ�μνpν

)
, (25)

with �μν = uμuν + ξμν − �μν�, where uμ is the four-
velocity associated with the local rest frame, ξμν is a symmetric
and traceless tensor, and � is the bulk degree of freedom. The
quantities uμ, ξμν , and � are understood to be functions of
space and time and obey uμuμ = 1, ξμ

μ = 0, and uμξμν = 0.
Taking the isotropic distribution fiso to be a Boltzmann

distribution and assuming 0+1D boost-invariant evolution, the
dynamics of the system is determined by the three aHydro
equations [53]

∂τ log α2
xαz +

[
3 + m̂

K1(m̂)

K2(m̂)

]
∂τ log λ + 1

τ

= 1

τeq

[
1

α2
xαz

T

λ

K2(m̂eq)

K2(m̂)
− 1

]
a, (26)

(4H̃3 − �̃m)∂τ log λ + �̃T ∂τ log α2
x + �̃L∂τ log αz

= − 1

τ
�̃L, (27)

∂τ log

(
αx

αz

)
− 1

τ
+ 3

4τeq

ξz

α2
xαz

(
T

λ

)2
K3(m̂eq)

K3(m̂)
= 0, (28)

where τeq is the microscopic relaxation time. Above the vari-
ables αi are a particular combination of the traceless (ξi) and
traceful component (�) parts of the underlying momentum-
space anisotropy tensor with αi = (1 + ξi + �)−1/2. The
variable λ is the nonequilibrium energy scale in the distribution
function (25) and we have defined two dimensionless mass
scales, m̂eq = m/T and m̂ = m/λ. The integrals H̃3, �̃T , �̃L,
and �̃m are defined in Eqs. (A3) and (59) of Ref. [53].

Equations (26)–(28) determine the proper-time evolution
of αx , αz, and λ. The temperature, or, more accurately,
the effective temperature appearing above, is determined by
requiring energy conservation at all proper times. This results
in the dynamical Landau matching condition

H̃3λ
4 = 4πÑT 4m̂2

eq[3K2(m̂eq) + m̂eqK1(m̂eq)]. (29)
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FIG. 3. (Color online) Same as Fig. 1 except here we take
ξ0 = 100.
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When the system is transversely homogeneous, the longitudi-
nal and transverse pressure can be expressed as

PT = H̃3T (ξ ,�,m̂) λ4, (30)

PL = H̃3L(ξ ,�,m̂) λ4, (31)

where ξ = (ξx,ξy,ξz) are the diagonal components of the ξμν .
The H̃3T and H̃3L functions appearing above are defined by
Eqs. (A8) and (A13) in Ref. [53]. Likewise, the bulk pressure
can be computed using

�(τ ) = 1
3 [PL(τ ) + 2PT (τ ) − 3P(τ )] . (32)

IV. EXACT SOLUTIONS OF BOLTZMANN KINETIC
EQUATION IN THE RELAXATION TIME

APPROXIMATION

Herein we focus on a transversely homogeneous boost-
invariant system. In this case the hydrodynamic flow uμ

should have the Bjorken form in the lab frame uμ =
(t/τ,0,0,z/τ ) [62]. This implies that the distribution function
f (x,p) can depend only on τ , w, and pT with w = tpL −
zE [63,64] . Using w and pL one can define another boost-
invariant variable v = Et − pLz =

√
w2 + (m2 + �p 2

T )τ 2. Us-
ing the boost-invariant variables introduced above, the relax-
ation time approximation kinetic equation may be written in a
simple form,

∂f

∂τ
= feq − f

τeq
, (33)

where the boost-invariant form of the equilibrium distribution
function is

feq(τ,w,pT ) = exp

⎡
⎣−

√
w2 + (

m2 + p2
T

)
τ 2

T (τ )τ

⎤
⎦ . (34)

The general form of solutions of Eq. (33) can be expressed
as [49,50,52,65–68]

f (τ,w,pT ) = D(τ,τ0)f0(w,pT )

+
∫ τ

τ0

dτ ′

τeq(τ ′)
D(τ,τ ′) feq(τ ′,w,pT ), (35)

where we have introduced the damping function,

D(τ2,τ1) = exp

[
−

∫ τ2

τ1

dτ ′′

τeq(τ ′′)

]
. (36)

For the purposes of this paper, we will assume that at τ = τ0

the distribution function f can be expressed in spheroidal
Romatschke-Strickland form [69] with the underlying Boltz-
mann distribution being an isotropic distribution

f0(w,pT ) = exp

⎡
⎣−

√
(1 + ξ0)w2 + (

m2 + p2
T

)
τ 2

0

�0τ0

⎤
⎦ , (37)

where ξ0 measures the initial momentum-space anisotropy
and �0 is the initial spheroidal momentum scale. This
form simplifies to an isotropic Boltzmann distribution if the
anisotropy parameter ξ0 is zero, in which case the transverse
momentum scale �0 can be identified with the system’s initial
temperature T0. Using Eq. (35) one can derive an integral
equation satisfied by the energy density [52]

2m2T (τ )[3T (τ )K2(m̂eq(τ )) + mK1(m̂eq(τ ))]

= D(τ,τ0)�4
0H̃2

[
τ0

τ
√

1 + ξ0
,
m

�0

]
+

∫ τ

τ0

dτ ′

τeq(τ ′)
D(τ,τ ′)T 4(τ ′)H̃2

[
τ ′

τ
,m̂eq(τ ′)

]
, (38)

where T is the effective temperature which is related to the
energy density via Eq. (3). The function H̃2(y,z) above is
defined by the integral

H̃2(y,z) =
∫ ∞

0
du u3 H2

(
y,

z

u

)
exp(−

√
u2 + z2), (39)

with

H2(y,ζ ) = y

⎛
⎝√

y2 + ζ 2 + 1 + ζ 2√
y2 − 1

tanh−1

√
y2 − 1

y2 + ζ 2

⎞
⎠ .

(40)

Equation (38) can be solved numerically using the method
of iteration. Using this method, one makes an initial guess for
the proper time dependence of the effective temperature, e.g.,
the ideal hydrodynamics, plugs this into the right-hand side
of Eq. (38), and then one solves for the effective temperature
necessary to make the left- and right-hand sides equal using a
root finder. The resulting effective temperature “profile” is then

used as the new “initial guess” and one repeats this process
iteratively until the effective temperature profile converges to
a given accuracy within the proper-time interval of interest.
Once the effective temperature is determined via iterative
solution, one can use this to determine the transverse pressure,
longitudinal pressure, full distribution function, and so on. For
further details, we refer the reader to Ref. [52].

V. RESULTS

In this section we present and discuss our results for
the proper-time evolution of the system using different
approaches. The results obtained within 14-moment second-
order viscous hydrodynamics and anisotropic hydrodynamics
are compared with the exact solution. We begin by emphasiz-
ing the importance of including the full set of kinetic coeffi-
cients in the second-order viscous relativistic hydrodynamics
in order to describe the bulk pressure evolution obtained via
exact solution of the relaxation time approximation (RTA)

044905-5
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FIG. 4. (Color online) Same as Fig. 2 except here we take ξ0 = 100.

Boltzmann equation. In order to illustrate this point, below
we will compare the second-order viscous hydrodynamics
predictions with and without the shear-bulk couplings. After
making this point, we then compare the results obtained using
full second-order viscous hydrodynamics with those obtained
within the anisotropic hydrodynamics. We find that the two
approaches reproduce the exact solution with comparable
accuracy. In all cases we use a fixed relaxation time of
τeq = τπ = τ� = 0.5 fm/c, an initial time of τ0 = 0.5 fm/c,
and an initial temperature of T0 = 600 MeV. We will consider
two different initial pressure anisotropies corresponding to an
isotropic initial condition (ξ0 = 0) and a highly oblate initial
anisotropy (ξ0 = 100). For the particle mass, we will consider
three different cases corresponding to m = 30 MeV, 300 MeV,
and 1 GeV.

A. Shear-bulk couplings in the second-order viscous
hydrodynamics

In this section we solve the second-order hydrodynamic
equations discussed in Sec. II and compare the obtained
solutions with the exact results. In order to have an overlap
with our previous results available in the literature, the initial
temperature at τ0 = 0.5 fm/c has been set equal to T0 =
600 MeV. By solving the kinetic equation in the relaxation
time approximation using Eq. (38) we obtain the effective
temperature T (τ ). As mentioned previously, knowing T (τ ) we
can then calculate the exact pressures PL(τ ) and PT (τ ). We
then use Eq. (32) to obtain the exact bulk pressure �(τ ). The
exact bulk pressure computed in this manner can be compared
directly with the second-order hydrodynamic result for �(τ ),
which follows from Eqs. (8)–(10).

In addition, the second-order hydrodynamics results for P ,
�, and π can be used to determine PT and PL via

PL = P + � − π,
(41)

PT = P + � + π/2,

In Figs. 1–4 we compare the proper-time evolution of the
pressure anisotropy PL/PT (top panels) and the bulk pressure

� multiplied by proper-time τ (bottom panels) obtained from
the exact solution of the Boltzmann equation (black solid line),
the full second-order viscous equations including the shear-
bulk couplings λ�π and λπ� (red dashed line), and second-
order viscous equations with λ�π = λπ� = 0 (blue dot-dashed
line). We show the results for two different initial values of
the anisotropy parameter ξ0 ∈ {0,100} and three values of the
particle mass m ∈ {0.03,0.3,1} GeV.
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FIG. 5. (Color online) Proper-time evolution of pressure
anisotropy PL/PT (a) and bulk pressure (b). The three lines
correspond to the exact solution of the Boltzmann equation [52]
(black solid line), the full second-order viscous equations including
the shear-bulk couplings λ�π and λπ� [32] (blue dot-dashed line),
and anisotropic hydrodynamics [53] (red dashed line). For both
figures we used m = 30 MeV, τ0 = 0.5 fm/c, τeq = τπ = τ� = 0.5
fm/c, and T0 = 600 MeV. The initial spheroidal anisotropy parameter
for initial distribution function of the exact solution of Boltzmann
equation is taken to be ξ0 = 0; in consequence π0 = 0 and �0 = 0.
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FIG. 6. (Color online) Proper-time evolution of PL/PT [(a) and (c)] and bulk pressure [(b) and (d)]. Parameters and descriptions are the
same as in Fig. 5 except here we take m = 300 MeV [(a) and (b)] and m = 1 GeV [(c) and (d)].

As one can see from Figs. 1 and 3, which both assume
m = 30 MeV, the 14-moment second-order viscous hydrody-
namical result (DNMR) including the shear-bulk couplings
works quite well in reproducing the exact solution for small
masses. For the larger masses shown in Figs. 2 and 4
(m = 300 MeV and m = 1 GeV), we see somewhat larger
deviations from the exact solution. Note importantly that in all
cases shown, when one turns off the shear-bulk couplings by
setting λ�π = λπ� = 0, the resulting bulk pressure evolution
does not agree well with the exact solution demonstrating
the importance of these couplings for early time dynamics.
Additionally, one notices that inclusion of these couplings has
a larger relative effect on the bulk pressure evolution than the
pressure anisotropy with the effect on the pressure anisotropy
increasing as the mass increases.

B. Comparison with anisotropic hydrodynamics

In this section we compare the results of the second-
order viscous hydrodynamics and anisotropic hydrodynamics
with the exact solutions of the RTA Boltzmann equation.
In the framework of anisotropic hydrodynamics the system
is characterized by a set of nonequilibrium parameters and
one does not deal explicitly with the kinetic coefficients.
Interestingly, one may demonstrate that both the second-order
viscous hydrodynamics and anisotropic hydrodynamics lead
to similar description of the system and the two approaches
agree reasonably well with the exact kinetic solution.

Working within the anisotropic hydrodynamics framework,
we numerically solve Eqs. (26)–(28) for the nonequilibrium
parameters αx , αz, and λ. We fix the initial conditions for αx , αz,
and λ such that the initial energy density, pressure anisotropy,
and bulk pressure are the same as those used in the exact so-
lution and the second-order viscous hydrodynamics solution.
At each step of the numerical integration we use Eq. (29) to
self-consistently determine the effective temperature T which
appears in the equations of motion.

Our comparisons between second-order viscous hydro-
dynamics and anisotropic hydrodynamics are presented in
Figs. 5–8. The parameters are chosen to be the same as
in the previous section. From these figures, one sees that
anisotropic hydrodynamics provides a comparable description
of bulk and shear pressure as complete second-order viscous
hydrodynamics. However, in the small mass case it seems
that second-order viscous hydrodynamics does a better job
in reproducing the evolution of the bulk pressure for large
initial anisotropies. In most cases, however, anisotropic hydro
does a slightly better job in reproducing the exact solution for
the pressure anisotropy. Note, however, that herein we have
assumed τeq = 0.5 fm/c in all figures. If one were to take
larger values of τeq or smaller initial temperatures, then one
would have to reconsider this comparison.
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FIG. 7. (Color online) Proper-time evolution of PL/PT (a) and
bulk pressure (b). Parameters and descriptions are the same as in
Fig. 5 except here we take ξ0 = 100.
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FIG. 8. (Color online) Proper-time evolution of PL/PT [(a) and (c)] and bulk pressure [(b) and (d)]. Parameters and descriptions are the
same as in Fig. 6 except here we take ξ0 = 100.

VI. CONCLUSIONS AND OUTLOOK

In this paper we have demonstrated the importance of
shear-bulk coupling in the early time dynamics of the quark-
gluon plasma. These couplings are important because there
are large shear corrections at early times and these seem to
have a marked effect on the evolution of the bulk viscous
pressure. The reverse effect of bulk pressure on the shear
pressure, measured here in terms of the pressure anisotropy,
was found to be small. To reach this conclusion, we compared
the results of second-order viscous hydrodynamics using a
complete 14-moment approximation with exact solutions to
the 0+1D kinetic equations in relaxation time approximation.
We found that without the shear-bulk coupling one is not able
to reproduce the behavior exhibited by the exact solution.

Following this, we then compared the resulting full 14-
moment second-order viscous hydrodynamics results with
recently obtained anisotropic hydrodynamics evolution equa-
tions which include a bulk degree of freedom. We demon-
strated that both the complete second-order viscous hydro-
dynamics framework and anisotropic hydrodynamics were
able to reproduce the exact result with comparable accuracy.
For small masses, the 14-moment approximation has better
agreement with the bulk pressure evolution than anisotropic
hydrodynamics; however, anisotropic hydrodynamics was
found to better reproduce the pressure anisotropy in this case.
For larger masses, both approaches had comparable accuracy.

Looking forward, herein we showed explicitly that shear-
bulk couplings can be important for the early time dynamics
of the bulk pressure in simulations of relativistic heavy-
ion collisions. It will be interesting to extend the results
contained herein to higher-dimensional systems in order to
gauge the full impact that shear-bulk couplings have on the
dynamical evolution of the system. In the case of anisotropic
hydrodynamics, the full 1+1D equations including the effects
of the bulk pressure have already appeared in the literature [53].
For 14-moment second-order viscous hydrodynamics, the
general equations are known even for 3+1D including bulk
viscous effects [32]. It will be interesting to see what the
impact shear-bulk couplings will be in both cases. We leave
this for future work.
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APPENDIX: THERMODYNAMIC INTEGRALS

The integrals defined in Eq. (24) can be written in the following form:

Inq(T ,m) = Ndof

2π2(2q + 1)!!

∫ ∞

m

e− t
T (t2 − m2)

1
2 (2q+1)tn−2q dt, (A1)

which leads to the following results:

I−2,0(T ,m) = 4πÑ [K0(m̂eq) − m̂eq(K1(m̂eq) − Ki1(m̂eq))], (A2)

I−1,0(T ,m) = 4πÑT m̂eq[K1(m̂eq) − Ki1(m̂eq)], (A3)
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I0,0(T ,m) = 4πÑT 2m̂eqK1(m̂eq), (A4)

I1,0(T ,m) = 4πÑT 3m̂2
eqK2(m̂eq), (A5)

I2,0(T ,m) = 4πÑT 4m̂2
eq(m̂eqK1(m̂eq) + 3K2(m̂eq)), (A6)

I2,1(T ,m) = 4πÑT 4m̂2
eqK2(m̂eq), (A7)

I2,2(T ,m) = 4πÑ
T 4m̂2

eq

30

[(
6 − m2

eq

)
K2(meq) + m2

eq

(
3K0(meq)

− 2meq(K1(meq) − Ki,1(meq))
)]

, (A8)

I3,0(T ,m) = 4πÑT 5m̂eq
(
m̂eq

(
m̂2

eq + 12
)
K0(m̂eq) + (

5m̂2
eq + 24

)
K1(m̂eq)

)
, (A9)

I3,1(T ,m) = 4πÑT 5m̂3
eqK3(m̂eq), (A10)

I4,1(T ,m) = 4πÑT 6m̂eq
(
m̂eq

(
m̂2

eq + 20
)
K0(m̂eq) + (

7m̂2
eq + 40

)
K1(m̂eq)

)
, (A11)

I4,2(T ,m) = 4πÑT 6m̂3
eqK3(m̂eq), (A12)

where I2,1 = P , I2,0 = E , and I3,0 = T 2(∂E/∂T ). The function Ki,1(z) is defined by the integral

Ki,1(z) =
∫ ∞

0

e−z cosh t

cosh t
dt, (A13)

and can be expressed as [52]

Ki,1(z) = π

2
[1 − zK0(z)L−1(z) − zK1(z)L0(z)] , (A14)

where Li is a modified Struve function.
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