
PHYSICAL REVIEW C 90, 044904 (2014)

Influence of temperature-dependent shear viscosity on elliptic flow at backward and forward
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We explore the influence of a temperature-dependent shear viscosity over entropy density ratio ηs/s on
the azimuthal anisotropies v2 and v4 of hadrons at various rapidities. We find that in Au + Au collisions at
full Relativistic Heavy Ion Collider energy,

√
sNN = 200 GeV, the flow anisotropies are dominated by hadronic

viscosity at all rapidities, whereas in Pb + Pb collisions at the Large Hadron Collider energy,
√

sNN = 2760 GeV,
the flow coefficients are affected by the viscosity in both the plasma and hadronic phases at midrapidity, but the
further away from midrapidity, the more dominant the hadronic viscosity becomes. We find that the centrality and
rapidity dependence of the elliptic and quadrangular flows can help to distinguish different parametrizations of
(ηs/s)(T ). We also find that at midrapidity the flow harmonics are almost independent of the decoupling criterion,
but they show some sensitivity to the criterion at backward and forward rapidities.
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I. INTRODUCTION

Determining the transport properties of the quark-gluon
plasma (QGP) formed in ultrarelativistic nuclear collisions [1]
is nowadays one of the main goals in high-energy nuclear
physics. Fluid-dynamical models indicate a very low shear
viscosity to entropy density ratio ηs/s,1 when tuned to repro-
duce the azimuthal anisotropies of the transverse momentum
distributions of observed hadrons. For recent reviews see, for
example, Refs. [2–4]. The values favored by state-of-the-art
calculations are in the vicinity of the conjectured lower limit
for shear viscosity, ηs/s = 1/(4π ), based on the anti–de
Sitter/conformal field theory (AdS/CFT) correspondence [5].
For example, the values found in Ref. [6] are ηs/s = 0.12
for collisions at the Relativistic Heavy-Ion Collider (RHIC) at
Brookhaven National Laboratory and ηs/s = 0.2 at the Large
Hadron Collider (LHC) at CERN.

The values quoted above were obtained by using a constant
ηs/s ratio during the entire evolution of the system. For a
physical system ηs/s depends at least on temperature [7] and
on baryon density [8]. A constant value of ηs/s represents
only an effective average over the entire space-time evolution
of the system. The slightly larger effective ηs/s obtained for
collisions at the LHC, i.e., at larger collision energy, thus may
be interpreted as an indication of the temperature dependence
of ηs/s [9,10]. Unfortunately, extracting the temperature
dependence of ηs/s from the experimental data is a challenging
problem.

In our previous works [11–13], we have studied the
consequences of relaxing the assumption of a constant ηs/s.
We found that the relevant temperature region where the

1In this work ηs denotes the coefficient of shear viscosity, ηch the
pseudorapidity, and η the space-time rapidity.

shear viscosity affects the elliptic flow most varies with the
collision energy. At the RHIC the most relevant region is
around and below the QCD transition temperature, while for
higher collision energies the temperature region above the
transition becomes more and more important. To constrain
the temperature dependence of ηs/s better, it would thus
be necessary to find observables which are sensitive to the
shear viscosity at different stages of the evolution of a single
collision.

In this work we relax the assumption of boost invariance of
our earlier works, solve the evolution equations numerically
in all three dimensions, and study whether the azimuthal
anisotropies have similar dependence on (ηs/s)(T ) at all
rapidities. If not, the measurements of vn at backward and
forward rapidities could bring further constraints to (ηs/s)(T ).

We also approach the problem of extracting the temper-
ature dependence of ηs/s in a fashion similar to that of
Ref. [9]: We tune different parametrizations to reproduce
the anisotropies at one collision energy and centrality and
check whether anisotropies at different centralities, rapidi-
ties, and collision energies can distinguish between these
parametrizations.

Furthermore, we check the sensitivity of our results to
different decoupling criteria. To this end we carry out the
calculations using a dynamical freeze-out criterion, i.e., freeze-
out at constant Knudsen number [14–16], and compare the
results to those obtained using the conventional freeze-out at
constant temperature.

In the following we describe the structure and freeze-out
in our (3+1)-dimensional dissipative fluid-dynamical model
in Sec. II and the parameters in our calculations in Sec. III.
Section IV contains the comparison of our results with
experimental data, while in Secs. V and VI we discuss
whether it is possible to distinguish the details of different
parametrizations of (ηs/s)(T ), as well as the effects of a
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dynamical freeze-out criterion. We summarize our results in
Sec. VII.

Specific details of the fluid-dynamical equations are rele-
gated to Appendix A. The numerical algorithm and details of
our implementation and the numerical accuracy of our code
are discussed in Appendices B, and C, respectively.

In this work we use natural units � = c = k = 1.

II. FLUID DYNAMICS

A. Equations of motion

Relativistic fluid dynamics corresponds to the local
conservation of energy-momentum and net-charge currents
(if any),

∂μT μν = 0, ∂μN
μ
i = 0, (1)

where T μν is the energy-momentum tensor and N
μ
i are the

net-charge four-currents.
These macroscopic fields can be decomposed with respect

to the fluid flow velocity defined by Landau and Lifshitz [17],
uμ = T μνuν/e, as

T μν = euμuν − P�μν + πμν, (2)

N
μ
i = niu

μ + V
μ
i , (3)

where e = T μνuμuν and ni = N
μ
i uμ are the energy and

net-charge densities in the local rest frame, respectively,
P = −T μν�μν/3 is the isotropic pressure, and V

μ
i = Nα

i �μ
α

are the charge diffusion currents. The shear-stress tensor,
πμν = T 〈μν〉, is the traceless and orthogonal part of the energy-
momentum tensor. With the (+,−,−,−) convention for the
metric tensor gμν , the projection tensor is �μν = gμν − uμuν .
The angular brackets 〈〉 denote an operator leading to the
symmetric, traceless, and orthogonal to the flow velocity part
of a tensor: T 〈μν〉 = [ 1

2 (�μ
α�ν

β + �
μ
β�ν

α) − 1
3�μν�αβ]T αβ .

Landau’s matching condition allows one to associate
the rest-frame densities with their equilibrium values, e =
e0(T ,{μi}) and ni = ni,0(T ,{μj }). The difference between the
isotropic and equilibrium pressures defines the so-called bulk
viscosity, 	 = P − P0.

Equations (2) and (3) can be closed by providing an equa-
tion of state (EoS), together with the equations determining
the evolution of dissipative quantities πμν , 	, and V

μ
i . These

quantities represent the dissipative forces in the system as
well as deviations from the local thermal equilibrium. In the
Navier-Stokes approximation they are linearly proportional to
the gradients of velocity and temperature, with proportionality
coefficients for shear viscosity ηs(T ,{μi}), bulk viscosity
ζ (T ,{μi}), and charge diffusion κi(T ,{μj }) quantifying the
transport properties of the matter.

It is well known that the bulk viscosity coefficient of a
relativistic gas is about three orders of magnitude smaller
than its shear viscosity coefficient, and it vanishes in the
ultrarelativistic limit [18]. However, it is still important for
relativistic systems around phase transitions; therefore, even
if the bulk viscosity is negligible in the QGP-phase, it may be
large near and below the phase transition [19]. A large bulk
viscosity at those stages may or may not have a significant
effect on the observables [20–25]. Since disentangling the

effects of shear and bulk on the observed spectra is difficult,
and beyond the scope of this work, we adopt the approach
of Ref. [21]. We assume that bulk viscosity is large only in
the vicinity of the QCD phase transition but due to the critical
slowing down its effect is so small that it can be safely ignored.

At midrapidity the matter formed in ultrarelativistic colli-
sions at the RHIC and at the LHC is to a good approximation
net-baryon free, and thus in boost-invariant calculations it
has been an excellent approximation to neglect all con-
served charges. Since in this study we want to investigate
the backward and forward rapidity regions of the system
where net-baryon density is finite, in principle we should
include the net-baryon current and baryon charge diffusion
in the description of the system. However, the baryon charge
diffusion in a QGP as well as in a hadron gas is largely unknown
at the moment. Also, at low values of net-baryon density where
the lattice QCD results [26,27] can be used, the effect of the
finite density on the EoS is small [28]. Therefore, to simplify
the description of the system, and to allow us to concentrate
solely on the effects of shear viscosity on the spectra, we ignore
the finite baryon charge in the fluid as well. Thus we are left
with the shear-stress tensor πμν as the only dissipative quantity
in the system.

In so-called second-order or causal fluid-dynamical theories
by Müller and by Israel and Stewart [29–31], the dissipative
quantities fulfill certain coupled relaxation equations. Here
we recall the relaxation equation for the shear-stress tensor
obtained from the relativistic Boltzmann equation [32–34],

τπDπμν = 2ηsσ
μν − πμν − τπ (πλμuν + πλνuμ)Duλ

− δπππμνθ − τπππ
〈μ
λ σ ν〉λ

+ 2τππ
〈μ
λ ω ν〉λ + ϕ7π

〈μ
λ π ν〉λ. (4)

Here τπ is the shear-stress relaxation time, Dπμν = uαπ
μν
;α

denotes the time derivative, θ is the expansion rate, σμν is the
shear tensor, and ωμν is the vorticity. The other coefficients can
be calculated self-consistently from microscopic theory and,
for example, in case of an ultrarelativistic massless Boltzmann
gas we obtain, in the 14-moment approximation, τπ = 5

3λmfp,
δππ = (4/3) τπ , τππ = (10/7) τπ , while ϕ7 = (9/70) /P0,
where λmfp is the mean free path between collisions. For
QCD these coefficients are mostly unknown; however, for
high-temperature QCD matter the coefficients given above
may be acceptable as a first approximation.

For the sake of simplicity we ignore the last two terms
in Eq. (4). This is justified since the relative contribution of
the ϕ7 coefficient was shown to be negligible compared to
the others [34]. Similarly, we have observed that the term
proportional to the vorticity has little effect on the overall
evolution of the system and is thus omitted from the final
calculations shown here.

B. The freeze-out stage

During the fluid-dynamical evolution the system cools and
dilutes due to the expansion, and consequently the microscopic
rescattering rate of particles, � ∼ nσ � λ−1

mfp, decreases, until
the rescatterings cease and particles stream freely toward
detectors. The transition from an (almost) equilibrated fluid
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to free-streaming particles is a gradual process, but since
implementing such a gradual process into a fluid-dynamical
description is very complicated [35,36], it is usually assumed
to take place on an infinitesimally thin space-time layer, on
the so-called freeze-out surface. Therefore the total number of
particles crossing the surface �, with a normal vector d3�μ

pointing outward, leads to the following invariant distribution
of particles emitted from the fluid, known as the Cooper-Frye
formula [37]:

E
d3N

d3p
=

∫
�

d3�μ(x) pμf (x,p), (5)

where pμ = (E,p) denotes the four-momentum, while f (x,p)
is the phase-space distribution function of particles on the
surface.

To apply the Cooper-Frye formula, we need an appropriate
criterion for choosing the surface �. Since scattering rates
strongly depend on temperature, the usual approach is to
assume the freeze-out to take place on a surface of constant
temperature or energy density. However, it has been argued
that it would be more physical to assume that the freeze-out
happens when the average scattering rate is roughly equal to
the expansion rate of the system [38].

This latter, so-called dynamical freeze-out, criterion can
be expressed in terms of the Knudsen number, Kn, which is
the ratio of a characteristic microscopic time or length scale,
such as λmfp, and a characteristic macroscopic scale of the
fluid, such as the inverse of the local gradients, L−1 ≈ ∂μ.
In terms of the Knudsen number the dynamical freeze-out
criterion is Kn ≈ 1, which has occasionally been used in ideal
fluid calculations [15,16,39,40], but for viscous fluids it is more
appropriate to use the relaxation times of dissipative quantities
as the microscopic scale, since they appear naturally in the
evolution equations for dissipative quantities [32].

In most of our calculations we use the conventional
constant-temperature freeze-out, but to evaluate how sensitive
our results are to the particular freeze-out criterion, and to the
freeze-out description in general, we also do the calculations
assuming freeze-out at constant Knudsen number. We take the
relaxation time of shear stress, τπ , as the microscopic scale
and the inverse of the expansion rate of the system, θ−1, as the
macroscopic scale. Thus we get a local Knudsen number of

Kn = τπθ. (6)

Since the Knudsen number can be evaluated in many different
ways [14], we do not insist on freeze-out at Kn = 1, but we
treat the freeze-out Knudsen number as a free parameter cho-
sen to reproduce rapidity and pT distributions of experimental
data. To avoid pathologies encountered in Refs. [14,15], we
also require that the dynamical freeze-out takes place below a
temperature of T = 180 MeV and above T = 80 MeV.

To evaluate the distributions on the freeze-out surface, we
assume that the distribution of particles for each species i,
i.e., fi(x,p), is given by the well-known Grad’s 14-moment
ansatz, which includes corrections δfi (shear viscosity only)

to the local equilibrium distribution function as

fi(x,p) ≡ f0i + δfi = f0i

[
1 + (1 ∓ f̃0i)

p
μ
i pν

i πμν

2T 2 (e + p)

]
,

(7)

where f0i is the local equilibrium distribution function,

f0i (x,p) = gi

(2π )3

[
exp

(
p

μ
i uμ − μi

T

)
± 1

]−1

, (8)

and f̃0i = (2π )3f0i/gi . We also include the contribution from
all strong and electromagnetic two- and three-particle decays
of the hadronic resonances up to a mass of 2 GeV to the final
particle distributions.

The flow anisotropies are defined from a Fourier decompo-
sition of the particle spectra as

E
d3N

d3p
= d2N

2πpT dpT dyp

(
1 + 2

∞∑
n=1

vn cos n(φ − �n)

)
,

(9)

where yp = 1
2 ln[(p0 + pz)/(p0 − pz)] is the rapidity of the

particle, pT =
√

p2
x + p2

y is its transverse momenta, and �n

is the event plane for coefficient vn. The Fourier coefficients
vn = vn(pT ,yp) are the differential flow components. In this
work the differential and integrated vn are calculated by using
the event-plane method.

III. PARAMETERS

We mostly implement the parametrization used in
Refs. [11,13], but we retune the parameter values and gen-
eralize it for a (3+1)-dimensional non-boost-invariant case.

A. Equation of state

For the EoS we use the s95p-PCE-v1 parametrization
of lattice QCD results at zero net-baryon density [41]. The
high-temperature part of the EoS is given by the hotQCD
Collaboration [42,43] and it is smoothly connected to the low-
temperature part described as a hadron resonance gas, where
resonances up to a mass of 2 GeV are included. The hadronic
part includes a chemical freeze-out at Tchem = 150 MeV
where all stable particle ratios are fixed [44–46]. Since the
construction of the EoS assumes that the entropy per particle is
conserved after chemical freeze-out, the small (approximately
1%) entropy increase during the viscous hydrodynamical
evolution below Tchem leads to a small increase in particle
yields too.

B. Transport coefficients

As in our earlier works [11–13], we use four different
parametrizations of the temperature-dependent shear viscosity
over entropy ratio (see Fig. 1):

(1) LH-LQ, in which (ηs/s)(T ) = 0.08 for all tempera-
tures;

(2) LH-HQ, in which (ηs/s)(T ) = 0.08 for the hadronic
phase, while above Ttr the viscosity to entropy ratio

044904-3
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FIG. 1. (Color online) Different parametrizations of ηs/s as a
function of temperature. The LH-LQ line has been shifted downward
and the HH-HQ upward for better visibility.

increases according to

(ηs/s)(T )QGP = −0.289 + 0.288
T

Ttr

+ 0.0818

(
T

Ttr

)2

; (10)

(3) HH-LQ, in which, in the hadronic phase below Ttr,

(ηs/s)(T )HRG = 0.681 − 0.0594
T

Ttr

− 0.544

(
T

Ttr

)2

, (11)

while in the QGP-phase (ηs/s)(T ) = 0.08; and
(4) HH-HQ, in which we use (ηs/s)(T )HRG and

(ηs/s)(T )QGP for the hadronic and QGP phases, re-
spectively.

Unless stated otherwise, the value of ηs/s at the transition
temperature, Ttr = 180 MeV, is (ηs/s)(Ttr) = 0.08. This is
a close approximation to the lower bound conjectured in
the framework of the AdS/CFT correspondence [5]. For all
parametrizations the relaxation time for the shear-stress tensor
is

τπ = 5
ηs

e + p
. (12)

For the sake of comparison, we also do the calculations using
zero shear viscosity, i.e., for an ideal fluid.

C. The initial state

In this work we ignore the effects of event-by-event
fluctuations [47,48], and we generalize a simple optical
Glauber model [49] for a non-boost-invariant initial state.
In different variants of the Glauber model the initial energy
density in the transverse plane at midrapidity and at initial
time τ0 is given as a function of the density of binary collisions,
nBC(x,y,b), wounded nucleons, nWN(x,y,b), or both:

eT (τ0,x,y,b) = Ce(τ0) f (nBC,nWN) , (13)

where the normalization constant Ce(τ0) is selected to repro-
duce the multiplicity measured in central collisions, and b is
the impact parameter of the collision. In the following we use
our BCfit parametrization [11,13], where the energy density
depends solely on the number of binary collisions:

fBC(nBC,nWN) = nBC + c1n
2
BC + c2n

3
BC, (14)

and the coefficients c1 and c2 are chosen to reproduce the
observed centrality dependence of multiplicity.

In the optical Glauber model, the density of binary
collisions on the transverse plane is calculated from

nBC(x,y,b) = σNNTA (x + b/2,y) TB (x − b/2,y) , (15)

where σNN is the total nucleon-nucleon inelastic cross section,
and TA/B is the nuclear thickness function. As a cross section
we use σNN = 42 mb at the RHIC [49,50] and σNN = 64 mb
at the LHC [51]. As usual, we define the thickness function as

TA (x,y) =
∫ ∞

−∞
dz ρA (x,y,z) , (16)

where ρA is the Woods-Saxon nuclear density distribution,

ρA (r) = ρ0

1 + exp [(r − RA) /d]
, (17)

and ρ0 = 0.17 fm−3 is the ground-state nuclear density
and d = 0.54 fm is the surface thickness. The nuclear radii
RA are calculated from RA = 1.12A1/3 − 0.86/A1/3, which
gives RAu � 6.37 fm and RPb � 6.49 fm (AAu = 197 and
APb = 208).

Unfortunately, there are very few theoretical constraints
for the longitudinal structure of the initial state, since even
the most sophisticated approaches to calculate the initial state
from basic principles [52,53] are restricted to midrapidity. Here
we follow the simple approaches shown in Refs. [54–56],
and in a similar fashion we assume longitudinal scaling
flow, vz = z/t , i.e., vη = 0, and a constant energy density
distribution around midrapidity [57], followed by exponential
tails in both backward and forward directions. We parametrize
the longitudinal energy density distribution as

eL (η) = exp

(
−2cη

√
1 + (|η| − η0)2

2cησ 2
η

� (|η| − η0) + 2cη

)
,

(18)

where η = 1
2 ln [(t + z)/(t − z)] is the space-time rapidity, and

�(x) is the Heaviside step function. Thus the normalized
energy density distribution is

e (τ0,x,y,η,b) = eT (τ0,x,y,b) eL (η) . (19)

We are aware that there are more sophisticated approaches
in the literature [22,58–60], but since attempts to create
more plausible longitudinal structures easily lead to a rapidity
distribution of v2 which strongly deviates from the observed
one [54], we leave the detailed study of the longitudinal
structures for a later work.

Due to entropy production in dissipative fluids, the different
parametrizations of ηs/s lead to different entropy production
and therefore different final multiplicity of hadrons. Because
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most of the entropy is produced during the early stages of the
expansion when the longitudinal gradients are largest [61], it
is sufficient to adjust initial densities according to the entropy
produced in the partonic phase. Further entropy production
during the hadronic evolution turns out to represent only
a small contribution in the final multiplicities and it is not
corrected in our calculations.

At the RHIC, we used the following maximum energy
densities, e0 = e(τ0,0,0,0):

(i) for an ideal fluid, e0 = 17.0 GeV/fm3,
(ii) for LH-LQ and HH-LQ, e0 = 15.8 GeV/fm3, and
(iii) for LH-HQ and HH-HQ, e0 = 14.9 GeV/fm3,

while at the LHC

(iv) for an ideal fluid, e0 = 57.5 GeV/fm3,
(v) for LH-LQ and HH-LQ, e0 = 54.5 GeV/fm3, and
(vi) for LH-HQ and HH-HQ, e0 = 49.5 GeV/fm3.

Note that these values are smaller than the ones given in
Refs. [11,13]. The main reason for this is that we used different
data to fit the centrality dependence, and we chose to fit the
multiplicity as a function of centrality class, not as a function of
number of participants, as was done in Refs. [11,13]. This leads
to different values of c1 and c2 parameters, and, consequently,
the maximum density in a head-on collision (which practically
never happens) is different even if the energy density at
midrapidity at impact parameters b > 2 fm is almost identical.

The parameters controlling the centrality dependence,
c1 and c2 in Eq. (14), are c1 = −0.035 fm−2 and c2 =
0.00034 fm−4 at the RHIC and c1 = −0.02 fm−2 and c2 =
0.000175 fm−4 at the LHC. The parameters in Eq. (18) defining
the longitudinal structure are cη = 4 at the RHIC and cη = 2
at the LHC, while η0 = 2.0 for the constant-rapidity plateau
for both. The width of the rapidity distribution is ση = 1.0
at the RHIC and ση = 1.8 at the LHC. The average impact
parameters in each centrality class are given in Table I.

If not stated otherwise the fluid-dynamical evolution is
started at τ0 = 1 fm/c proper time. The initial values for the
transverse fluid velocity and shear-stress tensor are always set
to zero. The value of the decoupling temperature or Knudsen
number is indicated in the figures.

To obtain the final particle distributions we use the
framework described in Ref. [62]. Thus we sample particle
distributions to create “events” even if we are not doing
event-by-event calculations, but we use conventional averaged
initial states. The particle spectra and other measurables at

TABLE I. The average impact parameter b in each centrality class
at the RHIC and the LHC.

Centrality (%) RHIC b (fm) LHC b (fm)

0–5 2.24 2.32
5–10 4.09 4.24
10–20 5.78 5.99
20–30 7.49 7.76
30–40 8.87 9.19
40–50 10.06 10.43

the RHIC are obtained as an average over Nev = 100 000
events, where the sampling is done over pT = (0,5.4) GeV
and ηch = (−6.6,6.6) with NpT

= 36 and Nηch = 22 bins. At
the LHC the particle multiplicity is � 2.5 times larger than at
the RHIC; hence we average over Nev = 40 000 events.

IV. RESULTS AND COMPARISONS TO DATA

A. Au + Au at
√

sNN = 200 GeV at the RHIC

We fix the parameters characterizing the initial state,
Eqs. (13), (14), and (18), by comparison to the PHOBOS
charged particle pseudorapidity distribution, dNch/dηch, at
various centralities [63]. We present our results in Fig. 2, where
the calculations are shown for 0%–5% centrality and for the
average of 10%–20% and 20%–30% as well as 30%–40%
and 40%–50% centralities. This is in order to facilitate a
comparison to the data taken at 0%–6%, 15%–25%, and
35%–45% centralities. As required, the final multiplicity and
pseudorapidity distribution are well reproduced at all cen-
tralities for all parametrizations of the temperature-dependent
shear viscosity to entropy density ratio. Here we once again
stress the importance of fixing the initial energy density to
compensate for the entropy production for different ηs/s
parametrizations. Otherwise, for fixed initial densities, the
larger the effective viscosity, the larger the entropy production
and thus the final multiplicity.

The kinetic freeze-out temperature, Tdec, affects the charged
particle pseudorapidity distribution very weakly. We have
chosen Tdec = 100 MeV by comparison to the pion, kaon,
and proton pT spectra measured by the PHENIX Collabo-
ration [64], and we checked that, if we use Tdec = 140 MeV,
the pseudorapidity distributions are still within error bars and

 0
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-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

dN
ch

/d
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ideal
LH-LQ
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FIG. 2. (Color online) The charged particle pseudorapidity dis-
tribution dNch/dηch. Experimental data are from the PHOBOS
Collaboration [63].
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FIG. 3. (Color online) Transverse momentum spectra of positive
pions at the RHIC. Experimental data are from the PHENIX
Collaboration [64].

that the change is on the same level as the differences due to
different viscosities shown in Fig. 2. Such a weak dependence
is not surprising: It is well known that, in a chemically
frozen system, pion pT distributions are weakly sensitive to the
kinetic freeze-out temperature [65]. We now observe similar
behavior in the longitudinal direction.
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FIG. 4. (Color online) Transverse momentum spectra of positive
kaons at the RHIC. Experimental data are from the PHENIX
Collaboration [64].
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FIG. 5. (Color online) Transverse momentum spectra of protons
at the RHIC. Experimental data for protons (upper) and antiprotons
(lower) are from the PHENIX Collaboration [64].

In Figs. 3, 4, and 5 we present the pT spectra of positive pi-
ons, kaons, and protons, respectively, corresponding to central-
ity classes, 0%–5%, 10%–20%(×10−1), 20%–30%(×10−2),
30%–40%(×10−3), and 40%–50%(×10−4). Here the multi-
plicative factors are applied (to both theoretical and experi-
mental points) for better visibility. The experimental data are
from the PHENIX Collaboration [64].

As seen before in viscous calculations (e.g., in Ref. [13]),
the slopes of pion spectra are reasonably well reproduced up
to pT � 1.5 GeV for semicentral collisions, but the agreement
recedes with increasing impact parameter. The kaon yields
are overpredicted at all centralities, whereas the fit to proton
spectra is slightly better than the fit to kaons. Since we do not
include a finite baryochemical potential in our calculation, we
are consistently overestimating the yields of heavy particles,
which might imply the need for even lower chemical freeze-out
temperature.

The pion spectra become flatter with increasing freeze-out
temperature; hence, for example, for Tdec = 140 MeV the
theoretical calculations are in a better agreement at larger
momenta, but then we overestimate the spectra around pT ∼
1 GeV. The slope of the proton spectra become steeper with
increasing freeze-out temperature as well, and thus Tdec =
100 MeV provides the best compromise.

As expected, after the initial densities are fixed to reproduce
the yield, the slopes are practically unaffected by the different
ηs/s parametrizations, and the corresponding δfi in each case
represents only a small correction compared to the thermal
spectra.

In Figs. 6 and 7 the elliptic flow coefficient v2 at various
centralities is shown as a function of transverse momentum
pT and pseudorapidity ηch. In Fig. 6 the experimental data
are from the STAR Collaboration [66], whereas in Fig. 7
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FIG. 6. (Color online) Charged hadron v2(pT ) at the RHIC.
Experimental data are from the STAR Collaboration [66].

the average of 0%–5% and 10%–20% and of 10%–20%
and 20%–30% events are compared to the data from
the PHOBOS Collaboration for 3%–15% and 15%–25%
centrality classes [67] and to the STAR Collaboration data in
the 15%–25% centrality class [68].

As expected, the pT differential elliptic flow coefficient
shows the behavior reported in Refs. [11,13]: At the RHIC
the elliptic flow coefficient is very sensitive to viscosity in
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FIG. 7. (Color online) Charged hadron v2(ηch) at the RHIC.
Experimental data are from the PHOBOS [67] and STAR [68]
Collaborations.
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FIG. 8. (Color online) Charged hadron v4(pT ) at the RHIC.
Experimental data are from the STAR Collaboration [68].

the hadronic phase but independent of the high-temperature
parametrization of the viscosity. The same observation also
holds for the rapidity-dependent elliptic flow coefficient at
all centrality classes. The dissipative reduction of v2 is quite
independent of rapidity, and thus we cannot reproduce the
shape of v2(ηch) very well. On the other hand, slightly larger
hadronic viscosity would further reduce v2, and our result
would be very close to the ideal fluid + UrQMD hybrid
calculation of Ref. [69].

Similarly, the v4(pT ) and v4(ηch) of charged hadrons in
different centrality classes are compared to the experimental
data from the STAR Collaboration [68] in Figs. 8 and 9. The
v4 coefficient, both as a function of transverse momentum and
as a function of pseudorapidity, complies with the previously
made observations about the elliptic flow coefficient. As we
have reported earlier [12,13], v4 is sensitive to viscosity
at even later stages of the evolution than v2, and a large
hadronic viscosity is sufficient to turn v4(pT ) negative at quite
low pT . The comparison of Figs. 7 and 9 also shows the
well-known fact that the larger the value of n, the stronger
the viscous suppression of vn [70,71]. Viscosity has only a
weak effect on the shapes of v2(ηch) and v4(ηch), but quite
interestingly the effect on the shapes is different for different
coefficients: Increasing viscosity makes the (approximate)
plateau in v2(ηch) narrower but that in v4(ηch) wider.

From Fig. 8 it is apparent that the v4(pT ) data favor the
parametrizations with low hadronic viscosity, unlike v2(pT ).
However, we have to remember that the experimental data
were obtained by using different methods for v2 and v4,
i.e., four-particle cumulant and mixed harmonic event-plane
methods, whereas we use the event-plane method to evaluate
all the harmonics. Another uncertainty is that event-by-event
fluctuations cause a sizable fraction of v4, but they are not
included in our study. Thus we advise against drawing any
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FIG. 9. (Color online) Charged hadron v4(ηch) at the RHIC.
Experimental data are from the STAR Collaboration [68].

conclusions about the favored (ηs/s)(T ) from this particular
result.

B. Pb + Pb at
√

sNN = 2760 GeV at the LHC

As at the RHIC, we use the pseudorapidity distribu-
tion of charged particles to fix the initialization and the
pT distributions of identified particles to fix the kinetic freeze-
out temperature.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

dN
ch

/d
η c

h

ηch

0-5 %

10-20 %

20-30 %

30-40 %

40-50 %

Tdec = 100 MeV
LHC 2760 AGeV

ideal
LH-LQ
LH-HQ
HH-LQ
HH-HQ
ALICE

FIG. 10. (Color online) The charged particle pseudorapidity dis-
tribution dNch/dηch at the LHC. Experimental data are from the
ALICE Collaboration [72].
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FIG. 11. (Color online) Transverse momentum spectra of pos-
itive pions at the LHC. Experimental data are from the ALICE
Collaboration [73].

In Fig. 10 the charged particle pseudorapidity distributions
dNch/dηch for different centrality bins are compared to the
experimental data from the ALICE Collaboration [72]. The
pseudorapidity distribution of charged particles reasonably
matches the data for all centrality classes given in the
figure. Similarly as for the RHIC we slightly overshoot the
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FIG. 12. (Color online) Transverse momentum spectra of posi-
tive kaons at the LHC. Experimental data are from the ALICE
Collaboration [73].
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FIG. 13. (Color online) Transverse momentum spectra of pro-
tons at ALICE. Experimental data for protons and antiprotons are
from the ALICE Collaboration [73].

experimental results at the LHC for the most central collisions
while we undershoot for the peripheral ones. Moreover, as
observed before, the pseudorapidity distributions of charged
particles are insensitive to the chosen freeze-out temperature.

In Figs. 11, 12, and 13 we show the pT spectra of
positive pions, positive kaons, and protons corresponding
to centrality classes, with multiplicative factors applied for
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FIG. 14. (Color online) Charged hadron v2(pT ) at the LHC.
Experimental data are from the ALICE Collaboration [75].
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FIG. 15. (Color online) Charged hadron v2(ηch) at the LHC.

better visibility. The experimental data are from the ALICE
Collaboration [73]. These distributions behave in a way similar
to that of the RHIC results, and they are thus unaffected by the
different ηs/s parametrizations. We note that, as in many other
calculations [73,74], the low-pT part of the pion distribution
turned out to be very difficult to reproduce.

In Figs. 14 and 15 the elliptic flow coefficient v2 is shown
as functions of transverse momentum and pseudorapidity,
respectively. In both figures the experimental data are from the
ALICE Collaboration [75]. At the LHC viscous suppression
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FIG. 16. (Color online) Charged hadron v4(pT ) at the LHC.
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FIG. 17. (Color online) Charged hadron v4(ηch) at the LHC.

of the elliptic flow is less dominated by the hadronic viscosity
than at the RHIC. In central collisions at midrapidity, both
QGP and hadronic viscosities affect v2 equally: Large QGP
viscosity may be compensated with a low hadronic viscosity
and vice versa (compare LH-HQ with HH-LQ for 10%–20%
and 20%–30% up to pT � 2 GeV or ηch � 2). In peripheral
collisions and at large rapidities, v2 loses its sensitivity to
QGP viscosity, and the system behaves like at the RHIC. Thus
measuring v2 at large rapidities at the LHC would provide an
additional handle on the temperature dependence of the ηs/s
ratio.

Finally, in Figs. 16 and 17 we present the v4 coefficients
as functions of pT and ηch. As discussed in Refs. [12,13],
v4 is sensitive to viscosity at lower temperatures than is
v2. Therefore the behavior of v4 at the LHC is similar to
the behavior of v4 and v2 at the RHIC: The curves are
grouped according to their hadronic viscosity, and they show
no sensitivity to QGP viscosity. The suppression of v4 at both
the LHC and the RHIC is clearly sensitive to the hadronic
viscosity (compare Fig. 8 with Fig. 16 and Fig. 9 with 17) and
to the minimum value of ηs/s.

V. THE DISTINGUISHABILITY OF THE ηs/s
PARAMETRIZATIONS

In the previous section we described how the sensitivity
of v2 and v4 to QGP and hadronic shear viscosities depends
on centrality, transverse momentum pT , and pseudorapidity
ηch. Now we use this observation to distinguish between dif-
ferent parametrizations of (ηs/s)(T ). We rescale our existing
parametrizations in such a way that they all lead to almost
identical pT differential v2 in central collisions, and we check
whether the calculated v2 and v4 differ at other centralities and
rapidities. Note that this procedure also tests the sensitivity of
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FIG. 18. (Color online) Parametrizations of (ηs/s)(T ) rescaled to
lead to similar charged hadron v2(pT ) in central collisions at the RHIC
(top) and the LHC (bottom).

the flow coefficients to the minimum value of ηs/s and not
only to its values above and below the transition temperature.

The new scaled parametrizations are shown in Fig. 18. At
RHIC energies the value of the viscosity to entropy ratio for
LH-LQ and LH-HQ is increased uniformly with �ηs/s = 0.1
for all temperatures, while the other two parametrizations
remain unchanged. Since the sensitivity to the temperature
dependence of ηs/s is more complicated at the LHC, the
required changes in parametrizations are �ηs/s = 0.1 for LH-
LQ, �ηs/s = 0.06 for LH-HQ, and �ηs/s = 0.04 for HH-LQ.
The increase in ηs/s leads to larger entropy production, and
thus to larger final multiplicities, which we have counteracted
by rescaling the initial densities accordingly.

Note that since the LH-HQ and HH-LQ parametrizations
require different rescalings at the RHIC and the LHC, they
can be distinguished already by comparing v2(pT ) in central
collisions at different energies, but LH-LQ and HH-HQ cannot.
Furthermore, we want to check whether it is possible to
distinguish LH-HQ and HH-LQ in collisions at the same
energy by varying the centrality and rapidity.

In Figs. 19, 20, and 21 we present v2(pT ), v2(ηch), and
v4(pT ) at the RHIC using these new parametrizations. As
required, in central collisions all parametrizations lead to
similar v2(pT )—the differences due to different hadronic
viscosity at very late stages of the evolution are compensated
by the larger viscosity at and after the QCD transition region.
However, when one moves to larger centralities, and thus
to smaller systems, the region where v2 is most sensitive
to shear viscosity moves toward lower temperatures, and
the parametrizations with different hadronic viscosities can
be identified (see Fig. 19). The same, although weaker,
phenomenon happens when we move to larger rapidities (see
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FIG. 19. (Color online) Charged hadron v2(pT ) at the RHIC.
Experimental data are from the STAR Collaboration [66].

Fig. 20). Most of the sensitivity comes from the change
in centrality, but, as seen in the 15%–25% centrality class
[Fig. 20(b)], the difference at large rapidities increases faster
than at midrapidity. On the other hand, the v4 coefficient
shows larger sensitivity than v2: In central collisions all
parametrizations are equal, but the difference increases with
increasing fraction of cross section faster than for v2. Note that
none of the observables are sensitive to the plasma viscosity,
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FIG. 20. (Color online) Charged hadron v2(ηch) at the RHIC.
Experimental data are from the PHOBOS [67] and STAR [68]
Collaborations.
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FIG. 21. (Color online) Charged hadron v4(pT ) at the RHIC.
Experimental data are from the STAR Collaboration [68].

but we have to study the collisions at the LHC to be able to
distinguish, say, HH-LQ and HH-HQ parametrizations.

At the LHC we see slightly different behavior. In central
collisions v2(pT ) is again the same for all parametrizations by
construction, but the differences appear slowly and stay modest
when we move toward more peripheral collisions (see Fig. 22).
Again, in more peripheral collisions, the system is most sensi-
tive to viscosity in lower temperatures, and v2(pT ) curves are
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FIG. 22. (Color online) Charged hadron v2(pT ) at the LHC.
Experimental data are from the ALICE Collaboration [75].
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FIG. 23. (Color online) Charged hadron v2(ηch) at the LHC.

ordered according to hadronic viscosity—the larger viscosity
is at freeze-out, the lower is v2(pT ). In Fig. 15 the pseudorapid-
ity distribution of v2 showed clear sensitivity to shear viscosity.
In that figure different parametrizations caused different v2

already at midrapidity in central collisions. Now viscosity is
scaled to remove this difference, and the sensitivity of the shape
of v2(ηch) to the viscosity is more visible. As one can see from
Fig. 23, larger hadronic viscosity causes v2(ηch) to drop slightly
faster with increasing rapidity. The strongest difference is seen
in v4(pT ), which is able to distinguish the new parametrizations
at the LHC (see Fig. 24), but its resolving power at the LHC
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FIG. 24. (Color online) Charged hadron v4(pT ) at the LHC.

is weaker than at the RHIC (Fig. 21). Thus we conclude that
differential measurements of the flow anisotropies as function
of transverse momentum, pseudorapidity, and centrality can
provide constraints for the temperature dependence of ηs/s,
but the measurements at various energies are essential to
constrain the parametrizations properly.

VI. DYNAMICAL FREEZE-OUT

To test the sensitivity of our results to the freeze-out
criterion and the freeze-out description in general, we redo
some of the calculations using the dynamical freeze-out
criterion [38]. In these calculations we use only our HH-LQ
and HH-HQ parametrizations for the shear viscosity, since the
low value of ηs/s in a hadron gas leads to a very slowly
increasing relaxation time and thus to unrealistically low
temperatures, 〈T 〉 � 80 MeV, on the freeze-out surface when
Kndec ∼ 1. Since the Knudsen number can be based on many
quantities [14], and since we do not know when exactly the
hydrodynamical description should break down, we use the
freeze-out Knudsen number as a free parameter chosen to fit
the rapidity and pT distributions.

Figures 25 and 26 show the charged particle pseudorapidity
distributions at the RHIC and the LHC, respectively. As
expected, the pseudorapidity distributions are only weakly
dependent on the precise value of Kndec, but it turned out
that our choice of Knudsen number and relaxation time lead
to weak sensitivity of the pT distributions to the value of
Kndec too. Nevertheless, we found that decoupling at constant
Knudsen number Kndec = 0.8 leads to basically the same
rapidity and pT distributions as conventional decoupling at
Tdec = 100 MeV.
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FIG. 25. (Color online) The charged particle pseudorapidity dis-
tribution dNch/dηch at the RHIC obtained by using two different
freeze-out criteria. Experimental data are from the PHOBOS Collab-
oration [63].
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FIG. 26. (Color online) The charged particle pseudorapidity dis-
tribution dNch/dηch at the LHC obtained by using two different
freeze-out criteria. Experimental data are from the ALICE Collab-
oration [72].

The pT differential v2 of charged hadrons at the RHIC and
the LHC is shown in Figs. 27 and 28, respectively. Unlike
in Ref. [16], where both pT distributions and anisotropies de-
pended on the freeze-out criterion, we see that, once the freeze-
out parameters are fixed to produce similar pT distributions,
the anisotropies become very similar. This is especially clear
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FIG. 27. (Color online) Charged hadron v2(pT ) at the RHIC
obtained by using two different freeze-out criteria. Experimental data
are from the STAR Collaboration [66].
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FIG. 28. (Color online) Charged hadron v2(pT ) at the LHC
obtained by using two different freeze-out criteria. Experimental data
are from the ALICE Collaboration [75].

at the LHC. Below pT ∼ 2 GeV both criteria lead to identical
v2(pT ), and the difference seen in the plots is due to the shear
viscosity parametrization. At the RHIC both parametrizations
lead to identical v2(pT ), and a weak sensitivity to the freeze-
out criterion appears around pT ∼ 1 GeV. However, this
sensitivity is too weak to be significant.
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FIG. 29. (Color online) Charged hadron v2(ηch) at the RHIC
obtained by using two different freeze-out criteria. Experimental data
are from the STAR Collaboration [66].
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FIG. 30. (Color online) Charged hadron v2(ηch) at the LHC ob-
tained by using two different freeze-out criteria. Experimental data
are from the ALICE Collaboration [75].

As a function of pseudorapidity v2 shows more sensitivity
to the freeze-out criterion (see Figs. 29 and 30). At both
the RHIC and the LHC v2(ηch) drops faster with increasing
rapidity, when the dynamical freeze-out criterion is used.
Also, with both freeze-out criteria the sensitivity to plasma
viscosity disappears at large rapidities even at the LHC. This
is again a manifestation of previously seen behavior: At large
rapidities at the LHC, the system behaves like the system at the
RHIC.

The rather weak dependence of anisotropies on the de-
coupling criterion means that at midrapidity fluid dynamical
results are surprisingly robust against variations in the de-
coupling procedure. As well, this gives a reason to expect
that the hybrid model results are sensitive only to the value
of the switching criterion from fluid to cascade, not to the
criterion itself. Since the fluid-dynamical results concerning
the viscosity of the QGP are based on the analysis of
anisotropies at midrapidity, this means that those results are not
compromised by the freeze-out criterion. On the other hand,
the sensitivity to the freeze-out description at high rapidities
indicates that at lower collision energies the fluid-dynamical
results may be sensitive to the freeze-out criterion even
at midrapidity. Thus one has to pay extra attention to the
freeze-out description of the collisions at

√
sNN = 3–9 GeV

in the future Facility for Antiproton and Ion Research (FAIR)
and Nuclotron-based Ion Collider Facility (NICA).

VII. CONCLUSIONS

We have studied the effects of temperature-dependent
ηs/s on the azimuthal anisotropies of hadron transverse
momentum spectra using genuinely (3+1)-dimensional vis-
cous hydrodynamics. We have extended our previous

studies [11,13] to backward and forward rapidities and
explored the resolving power of differential measurements of
v2 and v4 to distinguish between different parametrizations
of (ηs/s)(T ).

In close to central collisions at the LHC energy,
√

sNN =
2.76 TeV, viscous suppression of elliptic flow at midrapidity
is affected by both hadronic and QGP viscosities, but when
one moves toward backward and forward rapidities, hadronic
viscosity becomes more and more dominant—the system
becomes effectively smaller and begins to behave like in
collisions at the RHIC,

√
sNN = 200 GeV. Therefore, with

large hadronic viscosity, v2 tends to drop slightly faster with
increasing rapidity, the effect being stronger in peripheral
collisions. At both energies and at all rapidities v4 is mostly
suppressed by hadronic viscosity, but if we simultaneously
change the minimum value of ηs/s, hadronic, and QGP
viscosities, it is difficult to predict which coefficient at which
collision energy is most sensitive to the changes. Nevertheless,
the differential measurements of vn as functions of transverse
momentum, rapidity, centrality, and collision energy provide
a way to distinguish different parametrizations of (ηs/s)(T )
and thus constrain the temperature dependence of the ηs/s
ratio.

We also studied how sensitive our results are to the freeze-
out criterion, and we found that, once the freeze-out parameters
are fixed to reproduce pT distributions, both decoupling at
constant temperature and at constant Knudsen number lead
to very similar anisotropies at midrapidity. Toward the large
rapidities, v2 tends to drop faster with the dynamical freeze-
out criterion. This indicates that uncertainties in the decou-
pling description do not affect the present fluid-dynamical
results regarding the anisotropies, but at lower collision
energies the results may be more sensitive to the freeze-out
criterion.

ACKNOWLEDGMENTS

This work was supported by the Helmholtz International
Center for FAIR within the framework of the LOEWE program
launched by the State of Hesse. The work of H. Niemi
was supported by Academy of Finland Project No. 133005,
the work of P. Huovinen by BMBF under Contract No.
06FY9092, and the work of H. Holopainen by the ExtreMe
Matter Institute (EMMI). E. Molnár was partially supported
by the European Union and the European Social Fund
through project Supercomputer, the national virtual laboratory
(Grant No. TAMOP-4.2.2.C-11/1/KONV-2012-0010), as well
as by TAMOP 4.2.4.A/2-11-1-2012-0001 National Excellence
Program (A2-MZPDÖ-13-0042).

APPENDIX A: EQUATIONS IN 3+1 DIMENSIONS

In the following, the components of four-vectors and tensors
of rank-2 in four-dimensional space-time are denoted by
Greek indices that take values from 0 to 3 while Roman
indices range from 1 to 3. If not stated otherwise the Einstein
summation convention for both Greek and Roman indices is
implied.
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First we recall the definitions of the covariant derivative of
contravariant four-vectors and tensors of rank-2:

Aμ
;α = ∂αAμ + �

μ
αβAβ, (A1)

Aμν
;α = ∂αAμν + �

μ
αβAβν + �ν

αβAμβ, (A2)

where �
μ
αβ ≡ �

μ
βα = 1

2 gμν(∂βgαν + ∂αgνβ − ∂νgαβ) denotes
the Christoffel symbol of the second kind and ∂α = ∂/∂xα

denotes the four-derivative. For scalar quantities the covari-
ant derivative reduces to the ordinary four-derivative, i.e.,
(AμAμ);α = ∂α(AμAμ).

Applying the definition of the transverse projection operator
�μν = gμν − uμuν we can decompose the covariant derivative
as the sum of the covariant time derivative D and spatial
gradient ∇α ,

DAμ1···μn = uβA
μ1···μn

;β , (A3)

∇αAμ1···μn = �β
αA

μ1···μn

;β ; (A4)

hence A
μ1···μn
;α = uαDAμ1···μn + ∇αAμ1···μn , while for later use

we also introduce the comoving or convective time derivative

dAμ1···μn = uβ∂βAμ1···μn . (A5)

In the following, we summarize the equations of relativistic
dissipative fluid dynamics in hyperbolic coordinates [i.e.,
(τ,x,y,η) coordinates] [57], where τ = (t2 − z2)−1/2 is the
longitudinal proper time and η = 1/2 ln [(t + z)/(t − z)] is
the space-time rapidity. The proper metric tensors are gμν =
diag(1,−1,−1,−τ−2) and gμν = diag(1,−1,−1,−τ 2). Thus
the only nonvanishing Christoffel symbols are �η

ητ ≡ �η
τη =

τ−1 and �τ
ηη = τ , and the gradient is ∂μ = (∂τ ,∂x,∂y,∂η)

while ∂μ ≡ gμν∂ν = (∂τ ,−∂x,−∂y,−τ−2∂η). The inverse
transformations to Minkowski coordinates with g

μν
M ≡

ημν = diag(1,−1,−1,−1) are t = τ cosh η and z = τ sinh η.
Note that the hyperbolic coordinates are similar to the
Milne coordinates that are spherically symmetric, i.e., r ≡√

x2 + y2 + z2 = τ sinh η.
The contravariant flow velocity is

uμ = γ (1,vx,vy,vη); (A6)

hence the covariant flow velocity is uμ ≡ gμνu
ν =

γ (1,−vx,−vy,−τ 2vη), where the normalization condition
uμuν = 1 leads to γ = (1 − v2

x − v2
y − τ 2v2

η)−1/2 as well as
to uμuμ;ν ≡ uμu

μ
;ν = 0.

The energy-momentum conservation equation in general
coordinates is

T μν
;μ ≡ 1√

g
∂μ(

√
g T μν) + �ν

μβT μβ = 0, (A7)

where g ≡ −det(gμν) is the negative determinant of the metric
tensor, which in hyperbolic coordinates leads to g = τ 2.

Henceforth the energy conservation equation leads to

∂τT
ττ + ∂x(vxT

ττ ) + ∂y(vyT
ττ ) + ∂η(vηT

ττ )

= −∂x(vxP − vxπ
ττ + πτx) − ∂y(vyP − vyπ

ττ + πτy)

−∂η(vηP − vηπ
ττ + πτη) − 1

τ
(T ττ + τ 2T ηη), (A8)

while the momentum-conservation equation leads to

∂τT
τx + ∂x(vxT

τx) + ∂y(vyT
τx) + ∂η(vηT

τx)

= −∂x(P − vxπ
τx + πxx) − ∂y(−vyπ

τx + πxy)

−∂y(−vηπ
τx + πxη) − 1

τ
T τx, (A9)

∂τT
τy + ∂x(vxT

τy) + ∂y(vyT
τy) + ∂η(vηT

τy)

= −∂x(−vxπ
τy + πxy) − ∂y(P − vyπ

τy + πyy)

−∂η(−vηπ
τy + πyη) − 1

τ
T τy, (A10)

∂τT
τη + ∂x(vxT

τη) + ∂y(vyT
τη) + ∂η(vηT

τη)

= −∂x(−vxπ
τη + πxη) − ∂y(−vyπ

τη + πyη)

−∂η

(
P

τ 2
− vηπ

τη + πηη

)
− 3

τ
T τη. (A11)

The corresponding tensor components are defined according
to the general definition of the energy-momentum tensor
[Eq. (2)]:

T ττ = (e + P )γ 2 − gττP + πττ , (A12)

T τi ≡ (e + P )γ 2vi − gτiP + πτi,

= viT
ττ + P (gττ vi − gτi) − viπ

ττ + πτi, (A13)

T ij ≡ (e + P )γ 2vivj − Pgij + πij ,

= viT
τj + P (gτjvi − gij ) − viπ

τj + πij . (A14)

A simplified but mathematically equivalent way of writing
the equations of motion can be obtained by introducing scaled
variables that absorb the

√
g factor [76],

T̃ μν = τT μν ; (A15)

hence we are led to the following τ -scaled equations:

∂μT̃ τμ = −τ T̃ ηη, (A16)

∂μT̃ xμ = 0, ∂μT̃ yμ = 0, ∂μT̃ ημ = − 2

τ
T̃ τη. (A17)

For example, in special test cases with no transverse pres-
sure and vanishing dissipation we can solve the energy-
conservation equation exactly. We found that by solving the
scaled equations we can achieve approximately O5 numerical
precision, which is in comparison about two orders of
magnitude more accurate than the numerical solution of the
nonscaled equations of motion using the same time step. Note
that the τ scaling from Eq. (A15) also affects the relaxation
equations for the shear-stress tensor. Therefore the scaled
quantities π̃μν = τπμν result in dπ̃μν − π̃μν/τ = τdπμν .

For a better understanding of what will follow, we introduce
the notation uμ = γ (1,v̄i) for the contravariant flow velocity
from Eq. (A6). Similarly, the covariant component is denoted
as uμ = γ (1,−vi); thus v2 ≡ v̄ivi = v2

x + v2
y + τ 2v2

η and γ =√
1 − v2.
In our case of interest, gττ = 1, and the metric of space-time

is diagonal, leading to gτi = 0; thus we can introduce a
simplified notation which mimics the ideal fluid relations, E ≡
T ττ − πττ = Tττ − πττ , M̄i ≡ T τi − πτi , and Mi ≡ Tτi −
πτi = gατgβi(T αβ − παβ). Using this notation we obtain the
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local rest frame energy density from Eqs. (A12) and (A13):

e ≡ T ττ − πττ − (T τi − πτi)vi = E − M̄ivi , (A18)

while the expression for the velocity components from
Eq. (A13) leads to

v̄i ≡ T τi − πτi

T ττ − πττ + P
= M̄i

E + P
. (A19)

Now, similarly expressing the vi components we define the
magnitude of the three-velocity as

v ≡ √
v̄ivi = M

E + P
, (A20)

where M ≡ (M̄iMi)
1/2 =

√
M̄2

x + M̄2
y + τ 2M̄2

η . Using the lat-

ter two equations together we obtain

v̄i = v
M̄i

M
. (A21)

Therefore, with the help of Eq. (A18), Eq. (A20) can be solved
by using a one-dimensional root search, whereas Eq. (A21)
yields the individual velocity components.

In general, we can reduce the number of unknowns in
the relaxation equations (4) by applying the orthogonality
and tracelessness conditions of the shear-stress tensor. For
example, by choosing πxx , πyy , πxy , πxη, and πyη as
independent components, the other four components of the
shear-stress tensor follow from the orthogonality πμνuν = 0:

πττ = πτxvx + πτyvy + τ 2πτηvη, (A22)

πτx = πxxvx + πxyvy + τ 2πxηvη, (A23)

πτy = πxyvx + πyyvy + τ 2πyηvη, (A24)

πτη = πxηvx + πyηvy + τ 2πηηvη, (A25)

whereas the last unknown component is available from the
tracelessness condition πμνgμν = 0:

πηη ≡ τ−2(πττ − πxx − πyy)

= τ−2
[
πxx

(
v2

x − 1
) + πyy

(
v2

y − 1
) + 2πxyvxvy

+ 2τ 2(πxηvxvη + πyηvyvη)
]/(

1 − τ 2v2
η

)
. (A26)

Note that solving the above algebraic equations to obtain the
remaining five components, instead of explicitly propagating
all ten components of the shear-stress tensor, we introduce
a small numerical error compared to the latter method. This
is because the velocities entering into Eqs. (A22)–(A26) are
given from the previous (half) time step, so we obtain different
values with different methods. However, this difference usually
becomes smaller as the number of time steps increases; hence
this small numerical error is acceptable especially if the
runtime is also reduced considerably.

For sake of completeness we write out all terms from
the shear-stress relaxation equations explicitly. The relaxation
equations for the chosen five independent components of the

shear-stress tensor πxx , πyy , πxy , πxη, and πyη are

τπdπxx = 2ηsσ
xx − πxx − I xx, (A27)

τπdπyy = 2ηsσ
yy − πyy − I yy, (A28)

τπdπxy = 2ηsσ
xy − πxy − I xy, (A29)

τπdπxη = 2ηsσ
xη − πxη − τπ

γ

τ
(πxη + vηπ

τx) − I xη,

(A30)

τπdπyη = 2ηsσ
yη − πyη − τπ

γ

τ
(πyη + vηπ

τy) − I yη.

(A31)

Here according to Eq. (4) we denoted

Iμν = I
μν
1 + δππI

μν
2 − τπI

μν
3 + τππI

μν
4 − ϕ7I

μν
5 , (A32)

where

I
μν
1 = (πλμuν + πλνuμ)Duλ, (A33)

I
μν
2 = θπμν, (A34)

I
μν
3 = πμλων

λ + πνλω
μ
λ, (A35)

I
μν
4 = 1

2gλκ (πμκσ νλ + πνκσμλ) − 1
3�μνπα

β σβ
α , (A36)

I
μν
5 = gλκπ

μκπνλ − 1
3�μνπα

β πβ
α . (A37)

The I1 terms are

I xx
1 = 2γ vx(πτxDuτ + πxxDux + πyxDuy + πηxDuη),

(A38)

I
yy
1 = 2γ vy(πτyDuτ + πxyDux + πyyDuy + πηyDuη),

(A39)

I
xy
1 = γ [(πτxvy + πτyvx)Duτ + (πxxvy + πxyvx)Dux

+(πyxvy + πyyvx)Duy + (πηxvy + πηyvx)Duη],

(A40)

I
xη
1 = γ [(πτxvη + πτηvx)Duτ + (πxxvη + πxηvx)Dux

+(πyxvη + πyηvx)Duy + (πηxvη + πηηvx)Duη],

(A41)

I
yη
1 = γ [(πτyvη + πτηvy)Duτ + (πxyvη + πxηvy)Dux

+(πyyvη + πyηvy)Duy + (πηyvη + πηηvy)Duη],

(A42)

where according to Eqs. (A3) and (A5) the proper time
derivatives are given by Duμ = duμ − �β

μαuαuβ and hence

Duτ ≡ Duτ = γ [∂τ γ + vx∂xγ + vy∂yγ + vη∂ηγ ] + τγ 2v2
η,

(A43)

Dux ≡ −Dux = −γ [∂τ (γ vx) + vx∂x (γ vx)

+vy∂y (γ vx) + vη∂η (γ vx)], (A44)

Duy ≡ −Duy = −γ [∂τ (γ vy) + vx∂x(γ vy)

+vy∂y(γ vy) + vη∂η(γ vy)], (A45)

Duη ≡ −τ 2Duη = −γ τ 2[∂τ (γ vη) + vx∂x(γ vη)

+vy∂y(γ vη) + vη∂η(γ vη)] − 2τγ 2vη. (A46)
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Note that Duτ ≡ duτ + τγ 2v2
η = duτ + τγ 2v2

η , Dux ≡
dux = −dux , Duy ≡ duy = −duy , and Duη ≡ duη = duη,
since Duη ≡ duη + 2τ−1γ 2vη = −τ 2duη.

The I3 terms are

I xx
3 = 2

(
πxτωx

τ + πxyωx
y + πxηωx

η

)
, (A47)

I
yy
3 = 2

(
πyτωy

τ + πyxωy
x + πyηωy

η

)
, (A48)

I
xy
3 = πxτωy

τ + πyτωx
τ + πxxωy

x

+ πyyωx
y + πxηωy

η + πyηωx
η, (A49)

I
xη
3 = πxτωη

τ + πητωx
τ + πxxωη

x

+ πxyωη
y + πηyωx

y + πηηωx
η, (A50)

I
yη
3 = πyτωη

τ + πητωy
τ + πyxωη

x

+ πηxωy
x + πyyωη

y + πηηωy
η, (A51)

where the vorticities are defined most generally as

ωμ
ν ≡ 1

2�μα�β
ν(uα;β − uβ;α)

= 1
2

[
gμα (∂νuα − uνduα) − gβ

ν (∂μuβ − uμduβ)
]

+ 1
2 (gμαuν − gα

νu
μ)uβ�λ

αβuλ. (A52)

Here we used the fact that the Christoffel symbols of the
second kind are symmetric, �

μ
αβ = �

μ
βα , with respect to the

interchange of the two lower indices.
The different components of the vorticity are given as

ωτ
x ≡ ωx

τ = 1
2 [∂τ (γ vx) + ∂xγ ]

+ 1
2 [γ vxdγ − γ d (γ vx)] + 1

2τγ 3v2
ηvx, (A53)

ωτ
y ≡ ωy

τ = 1
2 [∂τ (γ vy) + ∂yγ ]

+ 1
2 [γ vydγ − γ d(γ vy)] + 1

2τγ 3v2
ηvy, (A54)

ωτ
η ≡ τ 2ωη

τ = 1
2 [∂τ (τ 2γ vη) + ∂ηγ ]

+ 1
2 [τ 2γ vηdγ − γ d(τ 2γ vη)] + 1

2τ 3γ 3v3
η (A55)

and

ωx
y ≡ −ωy

x = 1
2 [∂y(γ vx) − ∂x(γ vy)]

+ 1
2 [γ vyd(γ vx) − γ vxd(γ vy)], (A56)

ωx
η ≡ −τ 2ωη

x = 1
2 [∂η(γ vx) − ∂x(τ 2γ vη)]

+ 1
2 [τ 2γ vηd(γ vx) − γ vxd(τ 2γ vη)], (A57)

ωy
η ≡ −τ 2ωη

y = 1
2 [∂η(γ vy) − ∂y(τ 2γ vη)]

+ 1
2 [τ 2γ vηd(γ vy) − γ vyd(τ 2γ vη)]. (A58)

Note that the general expression of the vorticity given
in Eq. (10) in Ref. [77] is missing the contribution of the
Christoffel symbols compared to Eq. (A52) in this work.
Therefore, the values for ωτ

x , ωτ
y , and ωτ

η given in Eqs. (C.22),
(C.23), and (C.24) in Ref. [77] are also incorrect compared to
these formulas.

The next term we need is given by

I xx
4 = (πxτσ xτ − πxxσ xx − πxyσ xy − τ 2πxησ xη)

+1

3

(
1 + γ 2v2

x

)
πα

β σβ
α , (A59)

I
yy
4 = πyτσ yτ − πyxσ yx − πyyσ yy − τ 2πyησ yη

+1

3

(
1 + γ 2v2

y

)
πα

β σβ
α , (A60)

I
xy
4 = 1

2
(πxτσ yτ + πyτσ xτ ) − 1

2
(πxxσ yx + πyxσ xx)

−1

2

(
πxyσ yy + πyyσ xy

) − τ 2

2
(πxησ yη + πyησ xη)

+1

3

(
γ 2vxvy

)
πα

β σβ
α , (A61)

I
xη
4 = 1

2
(πxτσ ητ + πητσ xτ ) − 1

2
(πxxσ ηx + πηxσ xx)

−1

2
(πxyσ ηy + πηyσ xy) − τ 2

2
(πxησ ηη + πηησ xη)

+1

3
(γ 2vxvη)πα

β σβ
α , (A62)

I
yη
4 = 1

2
(πyτσ ητ + πητσ yτ ) − 1

2
(πyxσ ηx + πηxσ yx)

−1

2
(πyyσ ηy + πηyσ yy) − τ 2

2
(πyησ ηη + πηησ yη)

+1

3
(γ 2vyvη)πα

β σβ
α . (A63)

The shear tensor is most generally defined as

σμν ≡ ∇〈μuν〉 = 1

2
�μα�νβ(uα;β + uβ;α) − θ

3
�μν

= 1

2
[gμα(∂νuα − uνduα) + gνβ(∂μuβ − uμduβ)]

−�μα�νβ�λ
αβuλ − θ

3
�μν, (A64)

whereas the expansion scalar is

θ ≡ ∇μuμ = ∂μuμ + �λ
λμuμ

= γ

τ
+ ∂τ γ + ∂x(γ vx) + ∂y(γ vy) + ∂η(γ vη). (A65)

The various shear tensor components that we need to use are

σ ττ = −τγ 3v2
η + [(∂τ γ − γ dγ )] + (γ 2 − 1)

θ

3
, (A66)

σ τx = −1

2

(
τγ 3v2

ηvx

) + 1

2
[∂τ (γ vx) − ∂xγ ]

−1

2
[γ vxdγ + γ d (γ vx)] + γ 2vx

θ

3
, (A67)

σ τy = −1

2

(
τγ 3v2

ηvy

) + 1

2
[∂τ (γ vy) − ∂yγ ]

−1

2
[γ vydγ + γ d(γ vy)] + γ 2vy

θ

3
, (A68)

σ τη = −γ 3vη

2τ

(
2 + τ 2v2

η

) + 1

2

[
∂τ (γ vη) − 1

τ 2
∂ηγ

]

−1

2
[γ vηdγ + γ d(γ vη)] + γ 2vη

θ

3
, (A69)
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σηη = − γ

τ 3

(
1 + 2τ 2γ 2v2

η

) − 1

τ 2
∂η(γ vη)

−(γ vη)d(γ vη) +
(

1

τ 2
+ γ 2v2

η

)
θ

3
(A70)

and

σxx = − [∂x (γ vx) + γ vxd (γ vx)] + (
1 + γ 2v2

x

)θ

3
, (A71)

σyy = −[∂y(γ vy) + γ vyd(γ vy)] + (
1 + γ 2v2

y

)θ

3
, (A72)

σxy = −1

2
[∂x(γ vy) + ∂y(γ vx)]

−1

2
[γ vyd(γ vx) + γ vxd(γ vy)] + γ 2vxvy

θ

3
, (A73)

σxη = −γ 3vxvη

τ
− 1

2

[
∂x(γ vη) + 1

τ 2
∂η (γ vx)

]

−1

2
[γ vηd (γ vx) + γ vxd(γ vη)] + γ 2vxvη

θ

3
, (A74)

σyη = −γ 3vyvη

τ
− 1

2

[
∂y(γ vη) + 1

τ 2
∂η(γ vy)

]

−1

2
[γ vηd(γ vy) + γ vyd(γ vη)] + γ 2vyvη

θ

3
. (A75)

The last contributions from Eq. (A32) are

I xx
5 = (πxτ )2 − (πxx)2 − (πxy)2 − (τπxη)2

+ 1
3

(
1 + γ 2v2

x

)
πα

β πβ
α , (A76)

I
yy
5 = (πyτ )2 − (πyx)2 − (πyy)2 − (τπyη)2

+ 1
3

(
1 + γ 2v2

y

)
πα

β πβ
α , (A77)

I
xy
5 = πxτπyτ − πxxπyx − πxyπyy − τ 2πxηπyη

+ 1
3 (γ 2vxvy)πα

β πβ
α , (A78)

I
xη
5 = πxτπητ − πxxπηx − πxyπηy − τ 2πxηπηη

+ 1
3 (γ 2vxvη)πα

β πβ
α , (A79)

I
yη
5 = πyτπητ − πyxπηx − πyyπηy − τ 2πyηπηη

+ 1
3 (γ 2vyvη)πα

β πβ
α . (A80)

Furthermore, to evaluate the Cooper-Frye formula, Eq. (5),
as well as the argument of the equilibrium distribution
function, Eq. (8), we express the four-momenta of particles
as

pμ =
(
mT cosh(yp − η),px,py,

mT

τ
sinh(yp − η)

)
,

(A81)

where m is the rest mass of the particle, mT =
√

m2 + p2
x + p2

y

denotes the transverse mass, while yp is the rapidity of

the particle. Therefore, the nonequilibrium corrections to the
spectra from Eq. (7) are given with an argument of

παβpαpβ = m2
T [cosh2(yp − η)πττ + τ 2 sinh2(yp − η)πηη]

+(
p2

xπ
xx + 2pxpyπ

xy + p2
yπ

yy
)

−2mT cosh(yp − η)(pxπ
τx + pyπ

τy)

+2τmT sinh(yp − η)(pxπ
xη + pyπ

yη)

−2τm2
T sinh(yp − η) cosh(yp − η)πτη, (A82)

while using Eq. (C4) we obtain

pμd3�μ = τ

[
mT cosh(yp − η)dxdydη − pxdτdydη

−pydτdxdη − mT

τ
sinh(yp − η)dτdxdy

]
.

(A83)

APPENDIX B: NUMERICAL METHODS

The conservation laws as well as the relaxation equations
are solved using the well-known SHASTA (SHarp and Smooth
Transport Algorithm) originally developed by Boris and
Book [78] and later refined by Zalesak [79] and others [80].
This numerical algorithm solves equations of the conservation
type with source terms:

∂tU + ∂i(viU ) = S(t,x), (B1)

where U = U (t,x) is, for example, T 00 or T 0i , while vi is the
ith component of three-velocity, and S(t,x) is a source term;
for more details see Refs. [77,81,82].

Because for smooth solutions (like in our case) the mul-
tidimensional antidiffusion limiter suffers from instabilities
around the boundary caused by small ripples propagating into
the interior [83], we further stabilized SHASTA by letting the
antidiffusion coefficient Aad, which controls the amount of
numerical diffusion, be proportional to

Aad = AS
ad

(k/e)2 + 1
, (B2)

where AS
ad = 0.125 is the default value for the antidiffusion

coefficient [78], e is the energy density in the local rest frame,
and k = 6 × 10−5 GeV/fm3 is a numerical parameter. In this
way we increase the amount of numerical diffusion in the
low-density region and Aad goes smoothly to zero near the
boundaries of the grid. In our cases of interest this neither
affects the solution nor produces more entropy inside the
decoupling surface.

It is also important to mention that in the (3+1)-dimensional
case both the conservation and the relaxation equations
are solved using SHASTA, employing the above-mentioned
modification for the antidiffusion coefficient. Earlier, for the
(2+1)-dimensional boost-invariant case, we used a simple cen-
tered second-order difference algorithm to solve the relaxation
equations [13]. However doing so in the (3+1)-dimensional
case does not always lead to stable solutions.
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To further stabilize the numerical calculations (and also
for ideal fluids) we used a smaller value for the antidiffusion
coefficient in the transverse directions,Ax,y

ad = 0.105, but kept
A

η
ad = 0.125 in the η direction. Decreasing the antidiffusion

coefficient produces smoother solutions inside the decoupling
hypersurface but also increases the numerical diffusion, which
in turn may decrease the numerical accuracy. The reason
we used a different coefficient in the longitudinal direction
is to increase the accuracy; see the next section for more
details.

The numerical calculations are done on a discretized
spatial grid (including four boundary points in each direc-
tion as required by the algorithm) of Nx × Ny × Nη cells
with Nx = Ny = 180 while Nη = 2 × 120 with �x = �y =
�η = 0.15 fm cell sizes. The time step is given from �τ =
λ�x, which for λ = 0.4 leads to �τ = 0.06 fm/c. Further-
more, the system is symmetric around the x and y directions,
with exponentially interpolated boundary conditions for the
conserved quantities (e.g., for Glauber-type initial conditions)
and linearly interpolated boundary conditions for the shear-
stress tensor (because the shear-stress tensor may change
sign).

Finally, the freeze-out hypersurface is constructed at time
intervals �τCF ≡ 5�τ = 0.3 fm/c. The space is sampled
uniformly in both the transverse and longitudinal directions,
at �xCF ≡ 2�x = 0.3 fm distances.

The freeze-out hypersurface is calculated by using the
CORNELIUS++ subroutine presented in Ref. [84] and its source
code can be obtained from the Open Standard Codes and
Routines (OSCAR) website [85].

APPENDIX C: REMARKS ON THE
NUMERICAL ACCURACY

SHASTA solves the fluid dynamical equations up to some
finite numerical accuracy. In most cases this means that
in Cartesian coordinates the particle number and energy
are conserved up to O5 accuracy. However, in (τ,x,y,η)
coordinates, the expressions for the conserved quantities as
well as the equations of motion change with additional source
terms resulting from the nonvanishing Christoffel symbols.

As an example let us evaluate a conserved quantity at a
given time or proper time; hence by comparing this initial
value with one at a later time we can follow the accuracy of
the fluid-dynamical solver during this time interval.

The total conserved charge Ntot across any given hypersur-
face is

Ntot ≡
∫

Nμd3�μ =
∫

N0d3�0 +
∫

Nid3�i. (C1)

Here the hypersurface element d3�μ can be specified in any
coordinate system according to the following general formula:

d3�μ = −εμνλκ

∂�ν

∂u

∂�λ

∂v

∂�κ

∂w
dudvdw, (C2)

where εμνλκ is the Levi-Civita symbol.
For example, in Cartesian coordinates the hypersur-

face normal vector is �(t,z)
μ (t,x,y,z), where t = t (x,y,z);

hence

d3�(t,z)
μ ≡ (dxdydz,−dtdydz,−dtdxdz,−dtdxdy)

= τ

(
∂τ

τ∂η
sinh η + cosh η,−∂τ

∂x
,−∂τ

∂y
,

− ∂τ

τ∂η
cosh η − sinh η

)
dxdydη, (C3)

while in (τ,x,y,η) coordinates for �(τ,η)
μ (τ,x,y,η) and τ =

τ (x,y,η) we obtain

d3�(τ,η)
μ = τ (dxdydη,−dτdydη,−dτdxdη,−dτdxdy).

(C4)

If we are interested in the conserved current across constant
time or proper time hypersurfaces then d3�

(t,z)
i = d3�

(τ,η)
i =

0; hence in Cartesian coordinates we get

Ntot(t) ≡
∫

Nμd3�(t,z)
μ = γ n0

∫
dxdydz, (C5)

where Nμ ≡ n0u
μ = γ n0(1,vx,vy,vz) is the conserved charge

current. Similarly, Eq. (C1) leads to the total conserved charge
at any proper-time hypersurface in hyperbolic coordinates,

Ntot(τ ) ≡
∫

Nμd3�(τ,η)
μ = γ n0

∫
τdxdydη. (C6)

To calculate how the total energy-momentum changes
between two closed hypersurfaces, first we define the energy-
momentum current across a hypersuface as

E
μ
tot ≡

∫
T μνd3�ν =

∫
T μ0d3�0 +

∫
T μid3�i. (C7)

In Cartesian coordinates E
μ
tot = (E0

tot,E
i
tot), such that E0

tot
denotes the energy current while Ei

tot denotes the momentum
current trough the hypersurface. Therefore the total energy
current across a constant-t hypersurface is

E0
tot(t) ≡

∫
T 0νd3�(t,z)

ν =
∫

T 00dxdydz. (C8)

The energy-momentum current across a constant-τ hy-
persurface in (τ,x,y,η) coordinates can also be calculated
from Eq. (C7) together with the general transformation rules
E

μ
tot = (∂xμ/∂x̂α) Êα

tot, where the position vectors are xμ ≡
(t,x,y,z) = (τ cosh η,x,y,τ sinh η) and x̂μ ≡ (τ,x,y,η). Thus
the total energy across a constant-τ hypersurface is given by

E0
tot (τ ) ≡

∫
cosh η T τνd3�(τ,η)

ν +
∫

τ sinh η T ηνd3�(τ,η)
ν

=
∫

(cosh η T ττ + τ sinh η T ητ ) τdxdydη. (C9)

Using the latter formulas we can check energy conservation
from the initial time to the end using

�E0
tot (t) = E0

tot (tend) − E0
tot (tini) . (C10)

It turns out that by solving the fluid dynamical equations
in Cartesian coordinates we can achieve �E0

tot(t) ≈ O6
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numerical accuracy, while in hyperbolic coordinates
�E0

tot(τ ) ≈ O1. This behavior is due to two different reasons.
First, the numerical algorithm is accurate only to finite

precision, meaning that T 00 or T ττ is calculated correctly
only up to the first six digits. However, due to the hyperbolic
functions in Eq. (C9) the total energy of the system is given by a
differently weighted sum over all cells (compared to Cartesian
coordinates). These hyperbolic weights increase very rapidly
as a function of η; hence even though the numerical error of
the solver is acceptably small for SHASTA, the weighted sum
over all cells in hyperbolic coordinates shows otherwise.

We have checked that for RHIC energies �E0
tot(τ ) < 2%

while at LHC energies this number can be as much as 20%.
This is because f (η) is much narrower at the RHIC than at
the LHC. Similar results were also obtained in Ref. [86] using
a different computational fluid-dynamical algorithm.

We also verified energy conservation inside the constant-
temperature freeze-out hypersurface, and we found that in
that case the energy is conserved at 1% accuracy, at both
the RHIC and the LHC. This was expected since inside the
T = 100 MeV freeze-out hypersurface the space-time rapidity
of matter is η < 10.
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