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We present the analysis of three deuteron stripping reactions, 14C(d,p)15C, 58Ni(d,p)59Ni, and 116Sn(d,p)117Sn
using the combined method [A. M. Mukhamedzhanov and F. M. Nunes, Phys. Rev. C 72, 017602 (2005)], in
which each reaction is analyzed at low and significantly higher energies. At low energies all these reactions
are peripheral and the experimental asymptotic normalization coefficients (ANCs) are determined with accuracy
about 10%. At higher energies we determine the spectroscopic factors (SFs) by fixing the normalization of the
peripheral parts of the reaction amplitudes governed by the ANCs found from the low-energy data. The combined
method imposes a strict limitation on the variation of the geometrical parameters of the single-particle potential,
which can be arbitrarily taken in the standard approach. By checking the compatibility of the ANCs and SFs
using the combined method we reveal the flaw in the contemporary nuclear reaction theory in treating the nuclear
interior, which is the most crucial part in the determination of the SFs.
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I. INTRODUCTION

One of the main purposes of measuring transfer reactions
is to extract spectroscopic information important for nuclear
structure, nuclear astrophysics, and applied physics. Deuteron
stripping reactions pioneered the usage of the transfer reactions
being the simplest transfer reactions, which still carry many
features of reactions with composite nuclei. For more than
50 years deuteron stripping reactions were one of the main
tools to determine spectroscopic factors (SFs) and, later on,
asymptotic normalization coefficients (ANCs). Determination
of these important quantities is based on measuring the overlap
function of the bound-state wave functions of the final and
initial nuclei in the deuteron stripping reactions. Changing the
reaction kinematics, energy, and target one can probe different
parts of the overlap function.

At low energies and good matching of the initial and final
momenta the reaction is dominantly peripheral; that is, the
reaction amplitude is mainly contributed by the peripheral
part of the overlap function. In this case normalization of
the theoretical differential cross section to the experimental
one allows us to determine the ANC. That is why we can
say that the ANC controls the overall normalization of the
peripheral deuteron stripping reactions. With the energy and/or
mismatching of the initial and final momenta increase, the
contribution of the nuclear interior also increases, allowing
one to determine the SF. However, the external part still
contributes significantly. To extract the SF with better pre-
cision, in Refs. [1,2] the normalization of the external part was
fixed using experimentally measured ANC from a different
peripheral reaction. Such a combined method allows one not
only to extract the SF with a better accuracy but also to test an
underlying nuclear reaction theory.

Such an analysis has been done in Refs. [2–5] using
distorted-wave Born approximation (DWBA) and adiabatic
distorted-wave approximation (ADWA). The latest analysis

was done in Ref. [5], where the 14C(d,p)15C reaction at
the deuteron energy Ed = 23.4 and 60 MeV was analyzed.
Because the low-energy reaction is peripheral, the ANC
for the neutron removal from 15C was determined from
its analysis and then the combined method was applied to
determine the SF from the higher energy deuteron stripping
reaction. Introduction into the analysis the ANC by fixing the
normalization of the external part of the reaction amplitude
leads to unrealistic SFs for the ground and the first excited
states of 15C. In the combined method, the reliability of the
extracted SF depends on the accuracy of the reaction theory in
the calculation of the internal part of the reaction amplitude.
The failure to determine reliable SF in Ref. [5] can be caused
by two reasons: the inaccuracy of the adopted ADWA reaction
theory and ambiguity in the adopted optical potentials. The
used Koning-Delaroche (KD) potential [6] and CH89 [7]
are not determined for light nuclei as 14,15C. The impact of
the optical potentials was demonstrated by the dependence of
the results on the adopted optical potentials.

Because the combined method can reveal shortcomings of
the underlying reaction theory and indicate directions in which
it can be improved, we apply a more deeper and updated
analysis of three different deuteron stripping reactions on light,
medium, and heavier nuclei, 14C(d,p)15C, 58Ni(d,p)59Ni, and
116Sn(d,p)117Sn. In all three cases the final neutron bound-
state wave functions have nodes. While the neutron bound
state in 15C is loosely bound, the two other nuclei have tightly
bound neutrons.

To check the dependence of the extracted ANCs and
SFs on the reaction model we compared the results of the
DWBA, ADWA, and continuum discretized coupled-channels
(CDCC) for these reactions at two different energies. First
we analyze each reaction at low energy, where each reaction
is peripheral and we are able to determine the ANC. After
that, to apply the combined method we analyze all three
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reactions at higher energies, where reactions are not peripheral
and internal parts of the reaction amplitude become more
significant. Because the SF is mainly contributed by the
nuclear interior, from the analysis of the reactions at higher
energies we can determine the SF at fixed normalization of the
peripheral part of the reaction amplitude using the information
about the ANC obtained from the analysis of the low-energy
data. The extracted SFs are compared with the ones obtained
using the standard analysis followed by the critical analysis of
the theory. Note that in the analysis of the 14C(d,p)15C reaction
we added the CDCC method, which was absent in Ref. [5].
Two other reactions were selected because for heavier nuclei
the KD optical potentials [6] and CH89 [7] potentials are
available, making results of the analysis more reliable, so that
the combined method of determination of the SF, which uses
the information about the ANC, can be tested more accurately.

II. REACTION MODELS

In the analysis we used three reaction models: DWBA,
ADWA, and CDCC. The deuteron stripping amplitude can be
written in the post form,

MTH(post) = 〈
χ

(−)
pF IF

A

∣∣�VpF |�(+)
i 〉, (1)

where the acronym TH stands for the DWBA, ADWA, or
CDCC. In the DWBA the initial-channel wave function �

(+)
i

is given by

�
(+)
i = ϕpnχ

(+)
dA . (2)

For the ADWA we use the same channel wave function as
in the DWBA but the d − A optical potential generating the
initial distorted wave is taken as prescribed in the Johnson-
Tandy model [8]. In the CDCC approach we replace �

(+)
i

with the CDCC wave function, which is given by the sum of
the incident channel wave function ϕdχ

(+)
dA and the three-body

continuum state p + n + A. In the three-body continuum the
integration over the n − A relative momentum knA is replaced
with the summation over the bins [9]. The final-channel wave
function is taken in the same form as in the DWBA. ϕpn is the
deuteron bound-state wave function, χ (±)

ij is the distorted wave
of particles i and j interacting via the optical potential Uij ,
IF
A = √

A + 1〈ϕA|ϕF 〉 is the overlap function of the bound-
state wave functions of nuclei F = (nA) and A, and

√
A + 1

is the antisymmetrization factor in the isospin formalism,

�VpF = UpA + Vpn − UpF , (3)

where Vpn is the p − n interaction potential. We use KD optical
potentials as the N − A optical ones for the analysis of the
reactions on 14C and 58Ni. For the analysis of the reactions on
116Sn we use the CH89 N − A optical potentials. In the DWBA
the distorted wave χ

(+)
dA is calculated using a global optical

potential. In the ADWA the optical potential UdA is expressed
in terms of the proton and neutron optical potentials [8].

III. COMBINED METHOD OF DETERMINATION
OF SPECTROSCOPIC FACTOR

The overlap function appearing in the DWBA, ADWA, and
CDCC is not an eigenfunction of a Hermitian Hamiltonian and
is not normalized to unity [10]. The square norm of the overlap
function gives a model-independent definition of the SF,

S = 〈
IF
A

∣∣IF
A

〉
, (4)

where the antisymmetrization factor is taken in the isospin
formalism.

The tail of the radial overlap function is given by

IF
A(lnAjnA)(rnA)

rnA>RnA≈ ClnAjnA
iκnAh

(1)
lnA

(iκnArnA), (5)

where h
(1)
lnA

(iκnArnA) is the spherical Hankel function, κnA =√
2μnAεnA, εnA is the binding energy for F → n + A, and

μAn is the reduced mass of n and A; lnA and jnA are the
orbital angular momentum and the total angular momentum
of the neutron in the bound state F = (nA). Similarly, the
asymptotics of the neutron single-particle wave function is

ϕnA(nr lnAjnA)(rnA)
rnA>RnA≈ bnr lnAjnA

iκnAh
(1)
lnA

(iκnArnA), (6)

where bnr lnAjnA
is the single-particle ANC (SPANC) determin-

ing the amplitude of the tail of the single-particle bound-state
wave function and nr is the principle quantum number.
The asymptotic behavior is valid beyond RnA, the nuclear
interaction radius. It is clear that in the asymptotic region the
overlap function is proportional to the single-particle wave
function.

The normalization ClnAjnA
introduced in Eq. (5) is the

ANC which relates to the SPANC bnr lnAjnA
by ClnAjnA

=
Knr lnAjnA

bnr lnAjnA
, where Knr lnAjnA

is an asymptotic propor-
tionality coefficient. It is a standard practice to assume that
the proportionality between the overlap function and the
single-particle function extends to all rnA values

IF
nA(lnAjnA)(rnA) = Knr lnAjnA

ϕnA(nr lnAjnA)(rnA). (7)

Because ϕnA(nr lnAjnA)(rnA) is normalized to unity, this approxi-
mation, Eq. (7), implies that

SFnr lnAjnA
= K2

nr lnAjnA
. (8)

Thus, although the definition (4) of the SF does not depend
on the principal quantum number nr , approximation (7) of the
overlap function by the single-particle wave function leads to
the SF [Eq. (8)], which depends on nr .

We have to emphasize, however, that the behavior of the
overlap function in the interior is nontrivial and may well
differ from the single-particle wave function. Approximating
the radial dependence of the overlap function as described
above leads to the post form of the stripping amplitude,

MTH(post) = SF
1/2
nr lnAjnA

〈χ (−)
pF ϕnA(nr lnAjnA)|�VpF |�(+)

i 〉. (9)

Normalizing the calculated cross section,

dσ TH(post)

d	
= |〈χ (−)

pF ϕnA(nr lnAjnA)|�VpF |�(+)
i 〉|2, (10)

to the experimental data provides the phenomenological SF,
SFnr lnAjnA

= K2
nr lnAjnA

. Assuming that Eq. (7) is valid for all
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rnA, we can infer from Eq. (4) that the main contribution to the
norm of the overlap function comes from the nuclear interior
(except for very loosely bound neutrons). In the meantime, the
normalization amplitude of the asymptotic tail of the overlap
function is determined by the ANC. Correspondingly, let us
rewrite the reaction amplitude in terms of the internal and
external (over the variable rnA) parts:

MTH(post) = M
TH(post)
int + M

TH(post)
ext . (11)

Here the internal matrix element is

M
TH(post)
int = SF

1/2
nr lnAjnA

M̃
TH(post)
int , (12)

M̃
TH(post)
int = 〈χ (−)

pF ϕnA(nr lnAjnA)|�VpF |�(+)
i 〉|rnA�RnA

. (13)

Correspondingly, the external matrix element is

M
TH(post)
ext = SF

1/2
nr lnAjnA

〈χ (−)
pF ϕnA(nr lnAjnA)|�VpF |�(+)

i 〉|rnA�RnA
.

(14)

Note that the integration in Eqs. (13) and (14) over the second
Jacobian variable, the radius vector between the outgoing
proton and the center of mass of F , ρpF , is taken over the
whole volume.

Taking into account Eq. (6), we can rewrite the external
matrix element as

M
TH(post)
ext = ClnAjnA

M̃
TH(post)
ext , (15)

where

M̃
TH(post)
ext = iκnA

〈
χ

(−)
pF h

(1)
lnA

(iκnArnA)
∣∣�VpF |�(+)

i 〉|rnA�RnA
.

(16)

The normalization factor in Eq. (15) is nothing other than
the ANC,

ClnAjnA
= SF

1/2
nr lnAjnA

bnr lnAjnA
. (17)

Note that the ANC, by definition, does not depend on the
principal quantum number nr . In Eq. (17) nr appears as
the result of using the shell model for the bound-state wave
function ϕnA(nr lnAjnA). Because of that, in such an approach
when we use the single-particle neutron bound-state wave
function, both the SPANC and SF depend on nr . To be accurate,
we need to indicate explicitly a dependence of the ANC on
nr in Eqs. (15) and (17) also. It would underscore that the
ANC determined by Eq. (17) is model dependent. However, if
the assumed shell-model configuration is dominant, then the
model definition (17) should be accurate and we may disregard
the dependence of the ANC on nr in Eqs (15) and (17).

In the internal matrix element, owing to the presence of the
distorted waves, the contribution to the radial matrix element
over rnA in Eq. (14) from small rnA can be suppressed and
the dominant contribution comes from the interval RnA − � �
rnA � RnA. In this case in this region the single-particle bound-
state wave function ϕnA(nr lnAjnA) is governed by the SPANC
bnr lnAjnA

. Hence, the single-particle bound-state wave function
and, correspondingly, the internal matrix element M

DW(post)
int

are functionals of the SPANC. To underscore it, we rewrite

M
TH(post)
int as

M
TH(post)
int

[
bnr lnAjnA

] = SF
1/2
nr lnAjnA

M̃
TH(post)
int

[
bnr lnAjnA

]
, (18)

M̃
TH(post)
int = 〈

χ
(−)
pF ϕnA(nr lnAjnA)

[
bnr lnAjnA

]∣∣
×�VpF |�(+)

i 〉|rnA�RnA
. (19)

Then the total reaction amplitude can be written as

MTH(post) = SF
1/2
nr lnAjnA

M̃
TH(post)
int

[
bnr lnAjnA

] + ClnAjnA
M̃

TH(post)
ext .

(20)

Thus, we can rewrite the post amplitude as the sum of the
internal matrix element, which is the functional of the SPANC
bnr lnAjnA

, and the external matrix element. The normalization
of the internal amplitude is determined by the SF while the
normalization of the external matrix element is determined by
the ANC. It is valid for all three approaches: DWBA, ADWA,
and CDCC.

In the conventional approach, the SF is determined by
normalization of the theoretical differential cross section to
the experimental one at the main stripping peak in the angular
distribution,

SFnr lnAjnA
= dσ exp/d	

dσ TH(post)/d	
, (21)

where dσ TH(post)/d	 can be DWBA, ADWA, or CDCC
differential cross sections. In such an approach, the result
depends on the adopted geometry of the F = (nA) bound-state
potential, which is, a priori, unknown and usually is taken in
the standard region. Assume that one has found a SF using this
procedure; then the corresponding ANC can be determined
from Eq. (17). The ANC determined in such a way can be
quite different from the experimental one [2,4]. Thus, the SF
extracted using the conventional approach actually may be
determined on the expense of the wrong contribution of the
external part, which usually is dominant.

In a combined approach suggested in Refs. [1,2], the SF is
extracted using the information about ANC. In this approach
the normalization of the external part is fixed using the
information about the ANC determined independently from
other sources. In a such a way, the SF can be determined
as the normalization factor of the internal amplitude. To add
the information about the ANC into the analysis, we rewrite
Eq. (20) as

MTH(post) = ClnAjnA

(
M̃

TH(post)
int

[
bnr lnAjnA

]
bnr lnAjnA

+ M̃
TH(post)
ext

)
, (22)

where we took into account Eq. (17). Equating the theoret-
ical and experimental differential cross sections in the first
stripping peak we get

(
ClnAjnA

[
bnr lnAjnA

])2 = dσ exp/d	∣∣ M̃
TH(post)
int [bnr lnAjnA

]
bnr lnAjnA

+ M̃
TH(post)
ext

∣∣2
. (23)

Thus, by comparing the experimental differential cross section
and theoretical one we can determine the ANC. Because
the right-hand side is a functional of the SPANC bnr lnAjnA

the phenomenological ANC determined from Eq. (23) is
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also a functional of the SPANC. If M̃
TH(post)
int [bnr lnAjnA

] is
negligible, then the reaction is dominantly peripheral and
extracted from Eq. (23) phenomenological ANC has no or
little bnr lnAjnA

dependence. In this case the determined ANC
can be considered as an experimental one. Reliability of the
determined ANC depends on the adopted reaction theory. Note
that in the case of the peripheral reaction the extracted SF in
the standard procedure is determined by

SFnr lnAjnA
= dσ exp/d	(

bnr lnAjnA

)2∣∣M̃TH(post)
ext

∣∣2 . (24)

Because M̃
TH(post)
ext does not depend on bnr lnAjnA

, in the case of
the pure peripheral reaction SFnr lnAjnA

∼ (bnr lnAjnA
)−2.

If a reaction is not peripheral then the phenomenological
ANC depends on the SPANC. The stronger this dependence
the stronger contribution of the nuclear interior. If in this case
the ANC is known, for example, determined from a peripheral
reaction, then from the intersection of the phenomenological
ANC and experimental one,(

ClnAjnA

[
bnr lnAjnA

])2 = (
ClnAjnA

)2
, (25)

we can determine the SPANC b(0)nr lnAjnA
, which is solution of

Eq. (25) and then from Eq. (17) we can find the SF. The stronger
the dependence of ClnAjnA

[bnr lnAjnA
] on bnr lnAjnA

the smaller the
uncertainty of the determined SF. In practical calculations
of the bound-state wave function we use the Woods-Saxon
potential determined by the geometrical parameters, radius
r0, and diffuseness a. The depth of the potential is adjusted
to reproduce the experimental binding energy. The SPANC
bnr lnAjnA

is a function of these geometrical parameters of the
Woods-Saxon potential and for each given bnr lnAjnA

we can find
an infinite number of the pair r0,a generating this SPANC.
However, if we fix one of the geometrical parameters, for
example, diffuseness, then there is a unique correspondence
between r0 and bnr lnAjnA

. Then, from Eq. (25) we can determine
r0 or a range of r0 at which this equation is satisfied.

Once the SPANC has been determined, using Eq. (17)
we can immediately find the SF, which does not suffer from
the ambiguity of the geometrical parameters of the bound-state
Woods-Saxon potential. This SF is determined from the
internal contribution to the reaction amplitude, while the nor-
malization of the external part is fixed using the experimentally
determined ANC. However, in the practical applications the
experimentally determined ANC has uncertainty caused by the
uncertainties of the experimental and theoretical differential
cross sections. Owing to these uncertainties, intersection
of (ClnAjnA

[bnr lnAjnA
])2 with the experimental (ClnAjnA

)2 may
provide b(0)nr lnAjnA

± �bnr lnAjnA
, where uncertainty �bnr lnAjnA

is not small compared to b(0)nr lnAjnA
. It leads to a bigger

uncertainty in the determined SF.
In the standard approach of determination of the SF

the information about the ANC is completely disregarded
and the SF is determined by adopting standard geometrical
parameters, r0 = 1.1−1.35 fm and a = 0.5−0.7 fm. Because
the geometrical parameters of the Woods-Saxon potential are
chosen arbitrarily, the SFs extracted in the standard approach
are usually determined at the expense of the normalization
of the external part. The external part usually dominates or

plays an important role up to the deuteron incident energies
Ed ∼ 100 MeV. Hence, by a small variation of the external part
contribution, one can achieve a much bigger variation of the
internal part, which gives the main contribution to the SF. The
main advantage of the combined method is that it puts serious
limitations on the theory by fixing the normalization of the
external part of the reaction amplitude. This normalization is
governed by the ANC, which can be measured experimentally
from peripheral reactions. Hence, the normalization of the
peripheral amplitude can be fixed experimentally. In this case,
the SF is determined from the internal contribution to the
reaction amplitude. Such a reformulation of the theory puts
it on a correct and clear physical basis: The external part is
controlled by the ANC and the internal part by the SF. Hence,
using the combined method, a priori, we can determine an
interval of the geometrical parameters and the corresponding
SFs keeping the external normalization fixed. Thus, in the
combined method the reliability of the determined SFs depends
on the accuracy of the theory in treating the internal part,
which can be compromised. The problem is that the existing
approaches—post DWBA, ADWA, and CDCC—are based on
the three-body model extended by adopting optical potentials
and are designed to treat mostly peripheral reactions. However,
if we consider the internal region, where a strong coupling of
different channels occurs and antisymmetrization effects are
important, it is legitimate to ask whether the initial-channel
wave function �

(+)
i used in all the above-mentioned methods

is adequate to treat the nuclear interior. The combined method
can reveal the adequacy of the theory in the internal region.

IV. NUMERICAL RESULTS

Here we present the calculations for three different deuteron
stripping reactions on 14C, 58Ni, and 116Sn populating the
ground states of the final nuclei. Thus, we select light, medium,
and heavier targets. The goal is to demonstrate how the
combined method works versus the conventional one. Each
reaction is analyzed at two different energies: One is low so that
the reaction is peripheral and the ANC can be determined. Then
this ANC is used to analyze the same reaction at higher energy,
where the internal contribution becomes more important and
the SF is extracted. For the analysis we use three different
approaches: DWBA, ADWA, and CDCC. Because the SPANC
is a function of the geometrical parameters of the bound-state
potential, in what follows we present the extracted ANCs
and SFs as functions of r0. Throughout the paper we use
the diffuseness a = 0.65 fm of the Woods-Saxon potential
supporting the neutron bound states in 15C,59Ni, and 117Sn.
For the deuteron bound-state potential we adopt the Gaussian
one from Ref. [11] with the depth of 72.15 MeV and radius of
1.484 fm. The numerical calculations of the transfer reaction
differential cross sections for the (d,p) reactions on 14C and
58Ni are performed using the FRESCO code [12]. For the
analysis of the 116Sn reaction we used the TWOFNR [13] code
with nonlocality corrections for the neutron bound-state and
optical potentials. The details of the calculations of the transfer
reaction amplitudes are described in Ref. [12].
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TABLE I. Optical model potential parameters used in the calculations for the 14C(d,p)15C(2s1/2) reaction at 23.4 MeV. V, rV , and aV are
the depth, radius, and diffuseness parameters of the real part, W , rW , aW and Ws , rs , as are depth, radius, and diffuseness parameters of the
volume and surface imaginary parts, respectively, of the optical potential of the standard Woods-Saxon type. Deuteron-target optical potential
in the DWBA calculations are of Daehnick et al. (Daehnick) [14]; proton and neutron potentials are all of KD systematics [6]. Potential depths
are in MeV and geometry parameters are in fm.

Projectile Target Energy V rV aV W rW aW Ws rs as Potential type

d 14C 23.4 84.61 1.17 0.749 0.68 1.33 0.659 12.13 1.33 0.659 Daehnick
p 14C 11.7 54.76 1.14 0.676 0.98 1.14 0.676 8.88 1.30 0.526 KD
n 14C 11.7 47.40 1.14 0.676 1.04 1.14 0.676 6.66 1.30 0.542 KD
p 15C 20.8 52.12 1.14 0.676 1.94 1.14 0.676 8.82 1.30 0.527 KD

A. Reaction 14C(d, p)15C

In all the calculations in this section we use the KD optical
N − A potentials [6]. In the ADWA the deuteron optical
potential is calculated using the KD N − A optical potentials
and Johnson-Tandy procedure [8]. In the DWBA calculations
we use the Daehnick et al. (Daehnick) global deuteron optical
potential [14].

1. Reaction 14C(d, p)15C at 23.4 MeV

We start from the low-energy reaction 14C(d,p)15C(2s1/2) at
23.4 MeV. In the case under consideration the binding energy
of the transferred neutron in 15C is ε

15C
n14C = 1.218 MeV. The

neutron bound-state wave function in the ground state has one
node at rnA > 0. The adopted optical potential parameters are
given in Table I.

In Fig. 1 we present three angular distributions obtained
using the DWBA, ADWA, and CDCC. We see that all three
methods equally well reproduce the first stripping peak. From
Fig. 2 it is evident that this reaction is peripheral because
variation of the square of the ANC from the central value
is about 3%; that is, the ANC changes very little over the
broad interval of changing of the radius r0 of the Woods-
Saxon potential supporting the neutron bound state in 15C. The

100

101

 0  5  10  15  20  25  30  35

d
/d

 (
m

b/
sr

)

c.m. (deg)

CDCC
ADWA
DWBA

FIG. 1. (Color online) Angular distributions of the DWBA,
ADWA, and CDCC differential cross sections for the deuteron
stripping 14C(d,p)15C(2s1/2) at Ed = 23.4 MeV. The blue short and
green dashed lines are the post-DWBA and -ADWA differential
cross sections, correspondingly. The solid red line is the post-
CDCC calculation. The theoretical differential cross sections are
normalized to the experimental one at forward angles. The dots are
the experimental data from Ref. [5].

determined square of the ANC from the CDCC calculations
is C2

01/2 = 1.80 ± 0.2 fm−1. In what follows, for simplicity,
we use the ANC, keeping in mind that actually we mean the
square of the ANC.

In Fig. 3 we show the r0 dependence of the SFs normalized
to unity at r0 = 1 in three different methods, DWBA, ADWA,
and CDCC. The SFs are calculated using Eq. (17). While
the ANC changes very little, the SF varies by ≈40% when
r0 varies from r0 = 1.0 fm until r0 = 1.7 fm. Also in this
figure (magenta dotted line) we show the r0-dependence of
the normalized SF in the case of the pure peripheral reaction,
SF 20 1/2 ∼ 1/(b201/2)2. The closeness of the extracted SFs to
the peripheral line confirms that the reaction is peripheral.

2. Reaction 14C(d, p)15C at 60 MeV

After determining the ANC from the low-energy data, we
can apply the combined method to determine the neutron SF
in 15C from the analysis of the 14C(d,p)15C(2s1/2) reaction at
Ed = 60 MeV. The higher energy is selected to get a higher
contribution from the nuclear interior, which is more sensitive
to the SF. The adopted optical potential parameters are given
in Table II.

FIG. 2. (Color online) r0 dependence of the ANCs normalized to
unity at r0 = 1 in the DWBA, ADWA and CDCC for the deuteron
stripping 14C(d,p)15C(2s1/2) at Ed = 23.4 MeV. The blue square dots
and the short dashed line is the ANC determined from the DWBA,
the green open dots and the dashed line is the ANC obtained from the
ADWA, and the solid red dots and the solid line is the ANC obtained
from the CDCC. For simplicity, the subscripts denoting the quantum
numbers in the ANC are omitted.
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FIG. 3. (Color online) r0 dependence of the SFs normalized to
unity at r0 = 1 in the DWBA, ADWA, and CDCC for the deuteron
stripping 14C(d,p)15C(2s1/2) at Ed = 23.4 MeV. The blue square dots
and the short dashed line is the SF determined from the DWBA, the
open green dots and the dashed line is the SF obtained from the
ADWA, and the red solid dots and the solid line is the SF obtained
from the CDCC. The magenta dotted line is the r0 dependence of the
normalized SF in the case of pure peripheral reaction. For simplicity,
the subscripts denoting the quantum numbers in the SF are omitted.

In Fig. 4 we show the calculated angular distributions
for 14C(d,p)15C at Ed = 60 MeV. Because this reaction is
measured at higher energy we expect that this reaction is less
peripheral than at 23.4 MeV [5].

In Fig. 5 we show the r0 dependence of the ANCs
normalized to unity at r0 = 1 in three different methods:
DWBA, ADWA, and CDCC. As we see the behavior of the
ANC depends on the method used. In Ref. [5] the ADWA was
used to analyze this reaction at Ed = 60 MeV. While in the
DWBA the reaction is completely peripheral, it becomes less
peripheral within the ADWA and nonperipheral in the CDCC.
These observations are confirmed by Fig. 6, in which we show
the r0 dependence of the SFs. As we can see, the SF determined
in the DWBA is very close to the peripheral dependence. The
ADWA is less peripheral, but the CDCC gives the strongest
nonperipheral case.

To determine the SF from the 60-MeV data, the ADWA was
used in Ref. [5]. It is understandable now why the combined
method failed in Ref. [5]. It is because the internal contribution
in the ADWA was not significant enough. Evidently, that the
CDCC method with more significant nonperipherality among
all three methods is the best candidate to apply the combined
method.

Our previous observations about the peripheral character
of the low-energy reaction and important contribution of the

FIG. 4. (Color online) Angular distributions of the DWBA,
ADWA, and CDCC differential cross sections for the deuteron
stripping 14C(d,p)15C(2s1/2) at Ed = 60 MeV. The blue short and
green dashed lines are the post-DWBA and -ADWA differential cross
sections, correspondingly. The solid red line is the CDCC calculation.
The theoretical differential cross sections are normalized to the
experimental one at forward angles. The dots are the experimental
data from Ref. [5].

internal region at 60 MeV are confirmed by Fig. 7, where the
normalized differential cross section Rx is shown as a function
of rmin

nA and rmax
nA . To get the dependence on rmin

nA the neutron
bound-state wave function in 15C is cut at rnA < rmin

nA . Hence,
rmin
nA is the lower limit of the radial matrix element over rnA. To

determine the dependence of Rx on rmax
nA , we cut the neutron

bound-state wave function at rnA > rmax
nA . In this case rmax

nA

becomes the upper limit in the radial matrix element over rnA.
The normalized differential cross section Rx is determined
as the ratio of the differential cross section calculated at the
peak of the angular distribution as the function of rmin

nA or
rmax
nA to the full differential cross section also calculated at the

peak of the angular distribution. Figure 7 clearly shows that
the reaction under consideration is peripheral at 23.4 MeV
and nonperipheral at 60 MeV. For example, we see that at
23.4 MeV Rx changes very little as function of rmin

nA (green
dashed line) until rmin

nA ∼ 4.5 fm; that is, the contribution to the
reaction amplitude from the internal region is suppressed. The
red solid line showing the dependence of Rx on rmax

nA confirms
that the significant contribution to the matrix element begins at
rmax
nA > 5 fm; that is, the reaction is peripheral. In the meantime,

at 60 MeV we observe quite a different behavior of Rx . The
dependence on rmax

nA (blue dashed line) shows that the internal
region between 3 and 6 fm plays an important role, which is
different from the 23.4-MeV case.

In Fig. 8 we compare the ANCs extracted within the CDCC
method from the analysis of 23.4- and 60-MeV data. Owing

TABLE II. Optical model potential parameters used in the calculations for the 14C(d,p)15C(2s1/2) reaction at 60 MeV. Notations are the
same as in Table I.

Projectile Target Energy V rV aV W rW aW Ws rs as Potential type

d 14C 60.0 75.09 1.17 0.811 4.16 1.33 0.659 9.60 1.33 0.659 Daehnick
p 14C 30.0 47.70 1.14 0.676 3.07 1.14 0.676 7.29 1.30 0.526 KD
n 14C 30.0 41.28 1.14 0.676 2.87 1.14 0.676 5.21 1.30 0.542 KD
p 15C 54.9 39.93 1.14 0.676 6.16 1.14 0.676 4.70 1.30 0.527 KD
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FIG. 5. (Color online) r0 dependence of the ANCs normalized to
unity at r0 = 1 in the DWBA, ADWA, and CDCC for the deuteron
stripping 14C(d,p)15C(2s1/2) at Ed = 60 MeV. The blue sqaue dots
and short dashed line is the ANC determined from the DWBA, the
green open dots and dashed line is the ANC obtained from the ADWA,
and the solid red dots and the solid line is the ANC obtained from the
CDCC. For simplicity, the subscripts denoting the quantum numbers
in the ANC are omitted.

to the 11% uncertainty of the determined ANCs [5], the region
of the overlapping of the ANCs from 23.4- and 60-MeV data
is quite wide. We select this region as the interval 1.10 fm �
r0 � 1.60 fm (these radii are realistically acceptable for the
bound-state Woods-Saxon potentials).

Note that the corresponding interval in the SPANC is
1.37 � |b201/2| � 1.58. The central value is r0 = 1.35 fm,
which corresponds to the ANC C2

01/2 = 1.80 ± 0.2 fm−1,
which is in nice agreement with the value found in Ref. [5].
Despite the wide interval of r0, owing to the nonperipheral
character of the reaction at 60 MeV, the SF (the solid red line
in Fig. 6) does not change much and the combined analysis

FIG. 6. (Color online) r0 dependence of the SFs normalized to
unity at r0 = 1 in the DWBA, ADWA, and CDCC for the deuteron
stripping 14C(d,p)15C(2s1/2) at Ed = 60 MeV. The blue square dots
and the short dashed line is the SF determined from the DWBA,
the open green dots and dashed line is the SF obtained from the
ADWA, and the red solid dots and the solid line is the SF obtained
from the CDCC. The magenta dotted line is the r0 dependence of the
normalized SF in the case of pure peripheral reaction. For simplicity,
the subscripts denoting the quantum numbers in the SF are omitted.
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FIG. 7. (Color online) Dependence of the normalized CDCC
differential cross sections Rx on rnA for the deuteron stripping
14C(d,p)15C(2s1/2) at Ed = 23.4 and 60 MeV. The green dashed and
the magenta dotted lines are RX at 23.4 and 60 MeV, correspondingly.
To get these Rx , we calculated the post-CDCC differential cross
section at the peak of the angular distribution. The radial integral over
rnA is calculated for rmin

nA � rnA < ∞. The calculated differential cross
section is normalized to the full differential cross section calculated
at the peak of the angular distribution. Similarly, the solid red and
the blue short dashed lines are the post-CDCC RX calculated at 23.4
and 60 MeV, correspondingly, in which the radial integral over rnA

is calculated in the interval 0 � rnA � rmax
nA . Again, the calculated

differential cross sections are normalized to the full differential cross
sections at the corresponding energies. Hence, rnA on the abscissa is
rmin
nA for the green dashed and magenta dotted lines and rmax

nA for the
solid red and blue short dashed lines.

of the peripheral reaction at 23.4 MeV and nonperipheral at
60 MeV results in SF 201/2 = 0.82 ± 0.03. Thus, using the
CDCC method we are able to determine a reasonable SF
under the condition that the experimental ANC governs the
normalization of the peripheral part of the reaction amplitude.
That is what we call compatibility of the ANC and the SF.
This result demonstrates the power of the combined method
when the reaction theory works. We summarize the results of
the analysis in this section in what follows.

FIG. 8. (Color online) Comparison of the r0 dependence of the
ANCs in the CDCC for the deuteron stripping 14C(d,p)15C(2s1/2)
at Ed = 23.4 and 60 MeV. The open green dots is the ANC r0

dependence from the 23.4-MeV reaction and the solid red dots are the
ANC r0 dependence from the 60-MeV reaction. For simplicity, the
subscripts denoting the quantum numbers in the ANC are omitted.
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TABLE III. Optical model potential parameters used in the calculations of the 58Ni(d,p)59Ni(2p3/2) reaction at 10 MeV. Notations are the
same as in Table I.

Projectile Target Energy V rV aV W rW aW Ws rs as Potential type

d 58Ni 10.0 92.27 1.17 0.726 0.12 1.33 0.786 12.34 1.33 0.786 Daehnick
p 58Ni 5.0 57.39 1.20 0.669 0.39 1.20 0.669 6.86 1.28 0.549 KD
n 58Ni 5.0 51.39 1.20 0.669 0.45 1.20 0.669 6.97 1.28 0.535 KD
p 59Ni 16.7 52.86 1.20 0.669 1.34 1.20 0.669 8.09 1.28 0.549 KD

(i) The important part of the analysis is the application
of the CDCC method.

(ii) The determined SF is very reasonable and has small
uncertainty owing to the nonperipheral character of
the reaction at 60 MeV.

(iii) The SF and ANC are compatible because for the whole
interval of the determined SF the corresponding ANC
is within the uncertainty interval (see Fig. 8).

(iv) The accuracy of the determined SF is determined by
the accuracy of the reaction model in the nuclear
interior. In the case under consideration the main
contribution to the reaction amplitude at 60 MeV
comes from the internal region close to the surface
(3−5 fm), surface region (5−7 fm), and peripheral
region (>7 fm). Thus, although the reaction is not
peripheral at 60 MeV, the contribution of the deep
interior is still significantly weakened. In the internal
region close to the surface the CDCC approach
turns out to be acceptable, making the ANC and SF
compatible.

B. Reaction 58Ni(d, p)59Ni

We apply now the combined method for the analysis of
the deuteron stripping 58Ni(d,p)59Ni(2p3/2) at Ed = 10 and
56 MeV. The low-energy case is selected to get the ANC and
then to use this ANC to determine the neutron SF in 59Ni
from the higher energy reaction at 56 MeV. Note that the
final bound-state wave function, as in the previous case, has

FIG. 9. (Color online) Angular distributions of the DWBA,
ADWA, and CDCC differential cross sections for the deuteron
stripping 58Ni(d,p)59Ni(2p3/2) at Ed = 10 MeV. Notations are the
same as in Fig. 1. Dots are the experimental data from Ref. [15].
All the calculated angular distributions are normalized to the
experimental one at the first stripping peak.

one node at rnA > 0, but the neutron is much stronger bound
than in 15C. In all the calculations in this section we use the
KD optical N − A potentials [6]. In the ADWA the deuteron
optical potential is calculated using the KD N − A optical
potentials and Johnson-Tandy procedure [8]. In the DWBA
calculations, we use the Daehnick et al. (Daehnick) global
deuteron optical potential [14].

1. Reaction 58Ni(d, p)59Ni at 10 MeV

The adopted optical potential parameters are given in
Table III. In Fig. 9 we present three angular distributions
obtained using the DWBA, ADWA, and CDCC for Ed =
10 MeV. We see that all three methods reproduce the first
stripping peak, although the CDCC and ADWA agree with the
experimental data better than the DWBA.

From Fig. 10 we can conclude that, despite high neu-
tron binding energy, ε

59Ni
n58Ni = 8.999 MeV, in the ADWA

and CDCC the ANC changes very little over the broad
interval of the variation of r0 (or the SPANC b213/2) of the
Woods-Saxon potential supporting the neutron bound state in
59Ni. The DWBA shows a less peripheral character of the
reaction than ADWA and CDCC.

In Fig. 11 we present the r0 dependence of the SFs
normalized to unity at r0 = 1 in three different methods—
DWBA, ADWA, and CDCC—determined from the reaction
at Ed = 10 MeV. The SFs are calculated using Eq. (17).
Also in this figure (magenta dotted line) we show the r0

dependence of the normalized SF for the pure peripheral

FIG. 10. (Color online) r0 dependence of the ANCs normalized
to unity at r0 = 1 in the DWBA, ADWA, and CDCC for the deuteron
stripping 58Ni(d,p)59Ni(2p3/2) at Ed = 10 MeV. Notations are the
same as in Fig. 2. For simplicity, the subscripts denoting the quantum
numbers in the ANC are omitted.
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FIG. 11. (Color online) r0 dependence of the SFs normalized to
unity at r0 = 1 in the DWBA, ADWA, and CDCC for the deuteron
stripping 58Ni(d,p)59Ni(2p3/2) at Ed = 10 MeV. Notations are the
same as in Fig. 3. For simplicity, the subscripts denoting quantum
numbers are omitted in the SF.

reaction, which is given by SF 213/2 ∼ 1/(b213/2)2. Owing to
the peripheral character of the reaction in the ADWA and
CDCC, the corresponding SFs are very close to the one
expected in the case of the totally peripheral reaction. Because
in the DWBA the reaction at Ed = 10 MeV is less peripheral,
the r0 dependence of the extracted SF slightly deviates from
the peripheral line.

From the analysis of the data at 10 MeV we determine
the square of the ANC for the neutron removal from 59Ni as
C2

13/2 = 100 ± 10 fm−1 assuming a 10% uncertainty for the
ANC.

2. Reaction 58Ni(d, p)59Ni at 56 MeV

After determining the ANC from the low-energy data, we
can apply the combined method to determine the neutron SF
in 59Ni from the analysis of the 58Ni(d,p)59Ni(2p3/2) reaction
at Ed = 56 MeV. The adopted optical potential parameters are
given in Table IV.

In Fig. 12 we present the angular distributions obtained
using DWBA, ADWA, and CDCC. The DWBA fails to
reproduce the experimental angular distribution while both
ADWA and CDCC reproduce the first stripping peak quite
well. In what follows, for the analysis of the 56-MeV data we
use only ADWA and CDCC methods.

In Fig. 13 we compare the dependence of the post-ADWA
normalized differential cross sections on rmin

nA and rmax
nA at 10

and 56 MeV.

FIG. 12. (Color online) Angular distributions of the DWBA,
ADWA, and CDCC differential cross sections for the deuteron strip-
ping 58Ni(d,p)59Ni(2p3/2) at Ed = 56 MeV. Notations are the same
as in Fig. 1. Dots are the experimental data from Refs. [16,17]. The
calculated angular distributions are normalized to the experimental
one at the forward peak.

Figure 13 clearly shows that the reaction under considera-
tion is peripheral at 10 MeV and nonperipheral at 56 MeV. For
example, we see that at 10 MeV Rx changes very little as a
function of rmin

nA (green dashed line) until rmin
nA 	 6 fm; that is,

the main contribution to the reaction amplitude comes from the
peripheral region. The red solid line showing the dependence
of Rx on rmax

nA confirms that the significant contribution to the
matrix element begins at rmax

nA > 6 fm. In the meantime, at
56 MeV we observe quite a different behavior of Rx . The
dependence on rmin

nA (magenta dotted line) shows that the
internal region between 1 and 6 fm plays an important role
that is drastically different from the 10-MeV case.

In Fig. 14 we present the r0 dependence of the ANCs
normalized to unity at r0 = 1 in the ADWA and CDCC.
As we see, the ANC changes very quickly as a function
of r0 (or b213/2); that is, the reaction at 56 MeV is not
peripheral (compare with Fig. 10 for 10 MeV). In Fig. 15
we present the r0 dependence of the SFs normalized to unity
at r0 = 1 in the ADWA and CDCC for the 56-MeV data.
The nonperipheral character of the reaction at 56 MeV now
is seen in the deviation of the SF from the pure peripheral
line, although we would expect this deviation to be much
stronger. Presumably, it demonstrates that, when the nuclear
interior becomes more significant, the CDCC method is not
accurate and in this case a microscopic approach is required
to calculate the internal region contribution more accurately.
In Figs. 16 and 17 we compare the ANCs determined from
the CDCC and ADWA analysis of the low-energy data at
10 MeV and higher energy data at 56 MeV. By definition,

TABLE IV. Optical model potential parameters used in the calculations for the 58Ni(d,p)59Ni(2p3/2) reaction at 60 MeV. Notations are the
same as in Table I.

Projectile Target Energy V rV aV W rW aW Ws rs as Potential type

d 58Ni 56.0 80.31 1.17 0.804 3.68 1.33 0.786 9.98 1.33 0.786 Daehnick
p 58Ni 28.0 48.21 1.20 0.669 2.62 1.20 0.669 6.90 1.28 0.549 KD
n 58Ni 28.0 43.28 1.20 0.669 2.49 1.20 0.669 6.21 1.28 0.535 KD
p 59Ni 61.9 36.82 1.20 0.669 6.72 1.20 0.669 3.60 1.28 0.549 KD
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FIG. 13. (Color online) Dependence of the normalized ADWA
differential cross sections Rx on rnA for the deuteron stripping
58Ni(d,p)59Ni(1d3/2) at Ed = 10 and 56 MeV. The green dashed and
magenta dotted lines are RX at 10 and 56 MeV, correspondingly. To
get these Rx , we calculated the post-ADWA differential cross section
at the peak of the angular distribution. The radial integral over rnA

is calculated for rmin
nA � rnA < ∞. The calculated differential cross

section is normalized to the full differential cross section. Similarly,
the solid red and blue short dashed lines are the post-ADWA RX

calculated at 10 and 56 MeV, correspondingly, in which the radial
integral over rnA is calculated in the interval 0 � rnA � rmax

nA . Again
the calculated differential cross sections are normalized to the full
differential cross sections at the corresponding energies. Hence, rnA

on the abscissa is rmin
nA for the green dashed and magenta dotted lines

and rmax
nA for the solid red and blue short dashed lines.

the neutron ANC does not depend on the geometry of the
neutron bound-state potential, as is the case for the peripheral
10-MeV reaction (green open dots). For 56 MeV we have a
strong dependence of the extracted ANC on r0 that reflects a
nonperipheral character of the reaction. This dependence of
the ANC on r0 allows us to identify the interval of r0 at which
the ANCs determined from 10- and 56-MeV data coincide. It
constitutes the combined method of determination of the SF,
which can be determined from Eq. (17) once we know r0 and,
hence, the SPANC b213/2. From Figs. 16 and 17 we see that
only in the CDCC is there the region 1.45 � r0 � 1.70 fm

FIG. 14. (Color online) r0 dependence of the ANCs normalized
to unity at r0 = 1 in the ADWA and CDCC for the deuteron stripping
58Ni(d,p)59Ni(2p3/2) at Ed = 56 MeV. Notations are the same as in
Fig. 2. For simplicity, the subscripts denoting quantum numbers are
omitted in the ANC.

FIG. 15. (Color online) r0 dependence of the normalized to unity
at r0 = 1 SFs in the ADWA and CDCC for the deuteron stripping
58Ni(d,p)59Ni(2p3/2) at Ed = 56 MeV. Notations are the same as in
Fig. 3. For simplicity, the subscripts denoting quantum numbers are
omitted in the SF.

corresponding to 22.1 � −b213/2 � 35.40 fm−1/2, where the
ANCs from both data do overlap. That is why we analyze only
the CDCC calculations. The ANC determined in the CDCC
from the 10-MeV data (see Fig. 16) is C2

13/2 = 100 ± 10 fm−1.
From the overlapping region of the ANCs at the 10- and
56-MeV data, 1.45 � r0 � 1.70, using Eq. (17) we find that
0.08 � SF 213/2 � 0.21. When determining this interval of the
SF we fixed the normalization of the peripheral part in terms
of the ANC extracted from the 10-MeV data. We find that
the combined method provides significantly lower SF than
that determined in the standard approach [16,17], in which a
standard geometry of the neutron bound-state potential in 59Ni
r0 = 1.25 fm and diffuseness a = 0.65 fm was used and the
determined SF using the DWBA was in the interval 0.38−0.54.

Let us see what we would get if we use the CDCC and
the standard approach to get the SF from the analysis of
the data at 56 MeV. In the standard approach the SF is
obtained by the normalization of the CDCC differential cross
section, calculated using the standard geometry for the neutron
bound-state potential in 59Ni, to the experimental one at the

FIG. 16. (Color online) Comparison of r0 dependence of the
ANCs in the CDCC for the deuteron stripping 58Ni(d,p)59Ni(2p3/2) at
Ed = 10 and 56 MeV. The green dots is the ANC r0 dependence from
the 10-MeV reaction and the red dots from 56 MeV. For simplicity,
in the ANC the subscripts denoting quantum numbers are omitted.
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FIG. 17. (Color online) Comparison of the r0 dependence of the
ANCs in the ADWA for the deuteron stripping 58Ni(d,p)59Ni(2p1/2)
at Ed = 10 and 56 MeV. The green open dots is the ANC r0

dependence from the 10-MeV reaction and the red solid dots is
the ANC from 56 MeV. For simplicity, in the ANC the subscripts
denoting quantum numbers are omitted.

forward peak of the angular distribution. Then for the SF
we get SF 213/2 = 0.77, which is significantly higher than
the value obtained in the combined method. However, the
corresponding ANC (see the red solid line in Fig. 16 at
r0 = 1.25 fm) is C2

13/2 = 181 fm−1, that is, about 80% higher
than the value obtained from the peripheral reaction at 10 MeV.
Now we understand that the higher value of the SF in the
standard approach is determined on the expense of a significant
overestimation of the normalization of the peripheral part of
the reaction amplitude, which is governed by the ANC.

We can make some additional conclusion about the internal
part of the reaction amplitude. The drop of the ANC as
function of r0 (or, equivalently, b213/2) allows us to conclude
from Eq. (23) that there is destructive interference between
the internal and external amplitudes. The external part does
not depend on b213/2 and dominates over the internal part.
Hence, the decrease of the ANC with increase of b213/2 is the
result of the decrease of the internal part what increases the
denominator in Eq. (23) (for the destructive interference of
the external and internal parts). A too-large ANC obtained
from Eq. (23) at the standard geometry r0 = 1.25 fm and
diffuseness a = 0.65 fm is the result of the overestimation
of the internal part in the CDCC (and also in the ADWA).
Thus, the conventional CDCC method does not provide an
accurate contribution of the nuclear interior that is revealed
only after application of the combined method. As a result, the
extracted SF is too small.

The failure of the analysis is related with the fact that now,
owing to the high neutron binding energy, the contribution of
the deep internal part is much stronger than in the case of 15C

and the CDCC theory turns out to be inadequate in treating
the internal part. The failure of the CDCC method to treat
the nuclear interior is understandable: The CDCC method is
a reasonable approximation for the three-body model, which
can be valid for the analysis of the nuclear exterior, but not for
the treatment of the nuclear interior in which the coupling of
channels is important. Correct evaluation of the nuclear interior
contribution requires a microscopic many-body approach.

Thus, in the case under consideration we observe incompat-
ibility of the ANC and the SF. If we use the standard geometry,
as in the previous publications [16,17], we obtain a reasonable
SF from the 56-MeV data on the expense of the wrong ANC,
which turns out to be significantly higher than the experimental
value. If we include the information about the experimental
ANC, then the determined SF becomes too low. That is, the
meaning of the incompatibility of the ANC and the SF in
the combined analysis of the low- and higher energy data.
The combined method reveals a flaw in the nuclear interior
treatment in the contemporary nuclear reaction theory, which
is hidden in the standard approach.

C. Reaction 116Sn(d, p)117Sn

We apply now the combined method for the analysis
of the deuteron stripping 116Sn(d,p)117Sn at Ed = 12.2 and
79.2 MeV. The low-energy case is selected to get the ANC
and then to use this ANC to determine the neutron SF in
117Sn from the higher energy reaction at 79.2 MeV. In the case
under consideration the neutron binding energy in 117Sn(3s1/2)
is 6.943 MeV. The neutron bound-state wave function has
two nodes at rnA > 0. We find that for the reaction under
consideration the CH89 optical potentials work better than
KD ones. For the analysis we use the finite Johnson-Tandy
ADWA [8] with nonlocality corrections in the neutron bound
state and optical potentials with the TWOFNR code [13]. We
have found that the nonlocality corrections are important.
That is why we present below only the ADWA calculations
performed with nonlocal effects using the TWOFNR code. In all
the calculations, only CH89 optical potentials were used.

1. Reaction 116Sn(d, p)117Sn at 12.2 MeV

The adopted optical potential parameters are given in
Table V.

In Fig. 18 we present the angular distribution obtained using
the ADWA for Ed = 12.2 MeV. From Fig. 19 we can con-
clude that, despite the high neutron binding energy ε

117Sn
n116Sn =

6.943 MeV, in the ADWA with the nonlocal potentials the
ANC changes very little over the broad interval 1.0 � r0 �
1.7 fm of the radial parameter (or the SPANC b301/2) of the

TABLE V. Optical model potential parameters used in the calculations for the 116Sn(d,p)117Sn(3s1/2) reaction at 12.2 MeV. Notations are
the same as in Table I. Here the proton and neutron optical potentials are CH89 systematics [7].

Projectile Target Energy V rV aV W rW aW Ws rs as Potential type

p 116Sn 6.1 57.11 1.20 0.690 0.50 1.24 0.690 9.57 1.24 0.690 CH89
n 116Sn 6.1 49.30 1.20 0.690 1.10 1.24 0.690 5.20 1.24 0.690 CH89
p 117Sn 16.8 53.99 1.20 0.690 0.91 1.24 0.690 8.97 1.24 0.690 CH89
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FIG. 18. (Color online) The ADWA differential cross sections
for the deuteron stripping 116Sn(d,p)117Sn(3s1/2) at Ed = 12.2 MeV:
green dashed line. Black dots are the experimental data from Ref. [18].
The calculated angular distribution is normalized to the experimental
one at the first measured peak.

Woods-Saxon potential supporting the neutron bound state in
117Sn. Hence, we can conclude that at 12.2 MeV the reaction
is peripheral.

In Fig. 20 we present the r0 dependence of the SF
normalized to unity at r0 = 1 in the ADWA determined from
the reaction at Ed = 12.2 MeV. The SF is calculated using
Eq. (17). Also in this figure (magenta dotted line) we show the
r0 dependence of the normalized SF for the pure peripheral
reaction, which is given by SF301/2 ∼ 1/(b301/2)2. From the
analysis of the data at 12.2 MeV we determine the ANC for
the neutron removal from 117Sn as C2

03/2 = 310 ± 30 fm−1,
assuming a 10% uncertainty for the ANC.

2. Reaction 116Sn(d, p)117Sn at 79.2 MeV

After determining the ANC from the low-energy data we
can apply the combined method to determine the neutron SF in
117Sn from the analysis of the 116Sn(d,p)117Sn(3s1/2) reaction
at Ed = 79.2 MeV. The adopted optical potential parameters
are given in Table VI.

FIG. 19. (Color online) r0 dependence of the ANC normalized
to unity at r0 = 1 in the ADWA for the deuteron stripping
116Sn(d,p)117Sn(3s1/2) at Ed = 12.2 MeV: green open circles and
dashed line. The solid dots and solid red line is the r0 dependence of
the normalized ANC obtained from 79.2-MeV data. For simplicity,
in the ANC the subscripts denoting quantum numbers are omitted.

FIG. 20. (Color online) r0 dependence of the normalized to
unity at r0 = 1 SF in the ADWA for the deuteron stripping
116Sn(d,p)117Sn(3s1/2) at Ed = 12.2 MeV is shown by the green
open dots and dashed line. The solid dots and solid red line is the r0

dependence of the normalized SF obtained from the 79.2-MeV data.
The magenta dotted line is the r0 dependence of the normalized SF
in the case of pure peripheral reaction. For simplicity, in the SF the
subscripts denoting quantum numbers are omitted.

In Fig. 21 we compare the calculated angular distribution
in the ADWA with the experimental one [19]. We see that
inclusion of all nonlocality effects improves the agreement
with the experimental data at forward angles. We can conclude
from Figs. 19 and 20, in which the r0 dependence of the
normalized ANCs and SFs for the 12.2- and 79.2-MeV data are
shown, that clearly the reaction at 79.2 MeV is not peripheral.

In Fig. 22 we compare the dependence of the post-ADWA
normalized differential cross sections on rmin

nA and rmax
nA at 12.2

and 79.2 MeV. The dependence on rmin
nA at 12.2 MeV (green

dashed line) confirms that the reaction is peripheral because
Rx changes very little until rmin

nA ≈ 7.5 fm. The peripheral
character of the reaction at 12.2 MeV also is evident from
the rmax

nA dependence of the Rx (solid red line). We can see
that the contribution to the reaction from rnA < 7.5 fm can be
neglected. In the meantime, at 79.2 MeV we observe quite a
different behavior of Rx . The dependence on rmin

nA (magenta
dotted line) shows that the internal region between 1 and
7.5 fm plays an important role that is drastically different
from 12.2-MeV case.

Now we can apply the combined method to determine
the SF from 79.2-MeV data using the ANC obtained from
the 12.2-MeV data. It can be done using Fig. 23, where we
compare the absolute values of the ANCs from the ADWA
calculations determined for the 12.2- and 79.2-MeV data.
A sharp dependence on r0 of the ANC obtained from the
79.2-MeV data confirms that the reaction is not peripheral.
The high-energy ANC overlaps with the low-energy ANC
in the interval 1.35 � r0 � 1.5. It corresponds to the SF
0.14 � SF 301/2 � 0.24. Note that the existing data and their
uncertainty does not allow us to determine the the SF with
better accuracy.

The standard analysis of the 12.2-MeV data with the geom-
etry r0 = 1.17 fm and a = 0.72 fm in Ref. [18] gave SF 301/2 �
0.5. Note that the optical potentials used in Ref. [18] are
different from the CH89 optical potentials adopted here. If
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TABLE VI. Optical model potential parameters used in the calculations for the 116Sn(d,p)117Sn(3s1/2) reaction at 79.2 MeV. Notations are
the same as in Table I. Here the proton and neutron optical potentials are CH89 systematics [7].

Projectile Target Energy V rV aV W rW aW Ws rs as Potential type

p 116Sn 39.6 47.06 1.20 0.690 2.78 1.24 0.690 7.12 1.24 0.690 CH89
n 116Sn 39.6 39.25 1.20 0.690 4.46 1.24 0.690 3.58 1.24 0.690 CH89
p 117Sn 83.3 34.08 1.20 0.690 6.98 1.24 0.690 3.65 1.24 0.690 CH89

we use the bound-state potential geometry from Ref. [18] in
the ADWA employed here (CH89 optical potentials and with
nonlocality corrections) we get even higher SF, SF 301/2 =
0.89. The corresponding ANC is C2

01/2 = 667 fm−1. If we use
the standard geometry for the neutron bound-state potential,
r0 = 1.25 fm and a = 0.65 fm, from the ADWA analysis
with CH89 optical potentials, and nonlocality effects from the
79.2-MeV data, we get the SF SF 303/2 = 0.52, which is close
to the result from Ref. [18]. However, the corresponding ANC
is C2

01/2 = 451 fm−1 (red solid dots in Fig. 23). Thus, higher
SF can be obtained only on the expense of the ANC, which is
significantly higher than the interval C2

03/2 = 310 ± 30 fm−1

determined from the low-energy data.
The r0 interval, in which the ANC determined from the

79.2-MeV data coincide with the ANC extracted from the
12.2-MeV data, is located at r0 > 1.25 fm, where the SF is
lower than 0.5. As we see from Fig. 23 the ANC decreases with
r0 increase (until r0 ≈ 1.4 fm). Such a behavior follows from
Eq. (22) if we assume the destructive interference between
the external and internal amplitudes with the dominance of
the external part. Overestimation of the internal part leads to a
smaller denominator in Eq. (22) and to a bigger extracted ANC
at the standard geometry. Thus, as in the case of the deuteron
stripping on 58Ni, too high ANC at the standard geometry

FIG. 21. (Color online) Angular distribution of the
ADWA differential cross sections for the deuteron stripping
116Sn(d,p)117Sn(3s1/2) at Ed = 79.2 MeV. ADWA calculations
without any nonlocality effects are the magenta dotted line. ADWA
calculations with nonlocality effects in the neutron bound-state
potential are presented by the blue short dashed line. The green
dashed line shows the ADWA calculations with the nonlocal
corrections in the optical potentials. Finally, the solid red line is the
ADWA angular distribution with all nonlocality effects included,
which is normalized to the experimental one at the forward peak.
The same normalization factor was applied to the three other curves.
Black dots are the experimental data from Ref. [19].

is caused by the overestimation of the internal part of the
reaction amplitude. If we take, for example, rmin

nA > 1 fm, we
see that the internal part decreases with increase of rnA (the
external part does not depend on b301/2, that is, on r0), leading
to increase of the theoretical cross section and to decrease of
the extracted ANC. Hence, the r0 dependence of the ANC
calculated at 79.2 MeV intersects with the ANC curve at 12.2
MeV at large r0 (or b301/2), at which the SF becomes very
small. If the internal contribution is smaller than in the CDCC
theory, then the theoretical differential cross section is larger
and the intersection of the higher energy ANC with the ANC
curve at 12.2 MeV will occur at r0 < 1.35 fm−1, which leads
to higher SF, making the ANC and SF more compatible.

Thus, the low SF extracted using the combined method
reveals one of the main shortcomings of the reaction theory:
inadequate description of the internal region. This flaw was
hidden in the standard approach, in which the geometry of the
bound-state potential could vary arbitrarily at the expense of
the ANC to determine the SF.

 0
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12.2 MeV, rsmax
79.2 MeV, rsmax
12.2 MeV, rsmin
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FIG. 22. (Color online) Dependence of the normalized ADWA
differential cross sections Rx on rnA for the deuteron stripping
116Sn(d,p)117Sn(3s1/2) at Ed = 12.2 and 79.2 MeV. The green
dashed and the magenta dotted lines are Rx at 12.2 and 79.2 MeV,
correspondingly. To get these Rx , we calculated the post-ADWA
differential cross section at the peak of the angular distribution.
The radial integral over rnA is calculated for rmin

nA � rnA < ∞.
The calculated differential cross section is normalized to the full
differential cross section. Similarly, solid red and blue short dashed
lines are the post-ADWA Rx calculated at 12.2 and 79.2 MeV,
correspondingly, in which the radial integral over rnA is calculated in
the interval 0 � rnA � rmax

nA . Again the calculated differential cross
sections are normalized to the full differential cross sections at the
corresponding energies. Hence, rnA on the abscissa is rmin

nA for the
green dashed and magenta dotted lines and rmax

nA for the solid red and
blue short dashed lines.
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FIG. 23. (Color online) Comparison of r0 dependence of the
ANCs in the ADWA for the deuteron stripping 116Sn(d,p)117Sn(3s1/2)
at Ed = 12.2 and 79.2 MeV. Green open dots show the r0 dependence
of the ANC determined from the 12.2-MeV reaction and red solid
dots is the ANC from 79.2 MeV. For simplicity, in the ANC the
subscripts denoting quantum numbers are omitted.

V. SUMMARY

We have presented the analysis of three different
deuteron-stripping reactions: 14C(d,p)15C, 58Ni(d,p)59Ni, and
116Sn(d,p)117Sn. Each of the reactions is analyzed at two dif-
ferent energies. At low energy all the reactions are peripheral
and the experimental ANCs are determined with accuracy
∼10%. After that, from the analysis of theses reactions at
significantly higher energies, we determine the SF by fixing
the normalization of the peripheral amplitude governed by
the ANC found from the low-energy reactions. This two-step
procedure constitutes the combined method of determination
of the SF. The determined ANCs and SFs for all three cases
are given in the cumulative Table VII.

In the combined method the problem of the extraction of the
spectroscopic information from the deuteron stripping reaction
is made on the clear physical basis: The ANC determines the
normalization of the peripheral part of the reaction amplitude
and, determining the ANC, we can fix the external part;
the SF is mainly contributed by the internal part and it can
be determined at the fixed external part. Hence, the combined
method imposes a strict limitation on the variation of the
geometrical parameters of the Woods-Saxon potential, which
can be arbitrarily taken in the standard approach. By checking
the compatibility of the ANC and the SF the combined method
tests also the accuracy of the contemporary reaction theory in
treating the nuclear interior, which is the most crucial part in
determination of the SF.

In the analysis three approaches, DWBA, ADWA, and
CDCC have been used. The application of the combined

TABLE VII. ANCs C2
lnAjnA

and SFs SF lnAjnA
from the

14C(d,p)15C, 58Ni(d,p)59Ni, and 116Sn(d,p)117Sn reactions.

Reaction C2
lnAjnA

fm−1 SF nr lnAjnA

14C(d,p)15C(2s1/2) 1.80 ± 0.2 0.82 ± 0.03
58Ni(d,p)59Ni(2p1/2) 100 ± 10 �0.21
116Sn(d,p)117Sn(3s1/2) 310 ± 30 0.14−0.24

method allowed us to determine the ANC and SF for
the reaction 14C(d,p)15C with loosely bound neutron.
The analysis shows that the determined ANC and SF are
compatible in this case. The success in this case is related to
the fact that at higher energy the internal part of the reaction
amplitude is contributed by the region close to the surface
of the target 14C, while the deep internal region, where the
theory may not be accurate, is suppressed.

However, we observe quite a different picture for the
deuteron stripping reaction on heavier nuclei, 58Ni and 116Sn,
with high neutron binding energies. For higher energies the
contribution from the nuclear interior becomes very important.
The flaw in the treatment of the nuclear interior in the nuclear
reaction theory, which is hidden in the standard approach,
is immediately revealed as the incompatibility of the ANCs
and SFs. We demonstrate that the SFs determined in the
previous publications using the standard method are done at the
expense of the ANC, which becomes significantly higher than
the experimental values. If we include the information about
the experimental ANCs, then the determined SFs become
too low. That is the meaning of the incompatibility of the
ANC and the SF in these cases. We conclude that to obtain a
reliable spectroscopic information, the improvement of the
treatment of the internal region is necessary. The surface
integral formalism and the generalized R-matrix method may
be a possible solution [20,21].
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