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Background: Of the two sources of nonlocality in nucleon-nucleus and nucleus-nucleus interactions, knock-on
exchange and dynamically generated, almost all papers referring to nonlocality mention only the first.
Purpose: Our purpose is threefold: to demonstrate a method for including dynamical nonlocality, for which
a simple prescription (like the Perey factor for exchange nonlocality) is unknown, within distorted wave Born
approximation (DWBA) calculations; to identify signatures of dynamic nonlocality and illuminate the extent to
which the presence of such nonlocality can influence the extraction of spectroscopic information from direct
reactions, and more generally, to increase our understanding of nucleus-nucleus interactions.
Methods: After reviewing existing indications of dynamically induced nonlocality, DWBA transfer calculations
are presented which compare results involving dynamically nonlocal potentials with those involving their local
equivalents. The dynamical nonlocal potentials are generated in situ by the presence of channel coupling and the
local equivalents are generated by inversion of the corresponding coupled channel elastic S matrix. This method
obviates the need for solving integro-differential equations for including nonlocal potentials in DWBA.
Results: The coupling of nucleons to collective states of the target nucleus induces dynamical nonlocality in the
nucleon-nucleus interaction that has a significant effect on (p,d) reactions at energies relevant to spectroscopic
studies.
Conclusions: A method for studying the contribution of dynamically induced nonlocality in nuclear interactions
has been demonstrated. Dynamically induced nonlocality should not be overlooked in the analysis of direct
reactions. The method can also be applied to dynamic nonlocality due to projectile excitation.
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I. INTRODUCTION

It is well known that the nucleon-nucleus potential is
nonlocal as a consequence of knock-on exchange processes.
The standard local optical model potential, OMP, has an energy
dependence that is largely attributed to the fact that it is
the local equivalent, i.e., giving the same elastic scattering
S matrix Slj as the theoretical potential that includes knock-on
exchange explicitly. The phenomenological nonlocal OMP
of Perey and Buck [1], that has no explicit energy depen-
dence, fits nucleon-nucleus elastic scattering quite well over
a considerable energy range. Furthermore, the exact local
equivalent of the Perey-Buck potential has [2] just the energy
dependence of the empirical OMP. The great importance of
this nonlocality arises from the Perey effect [3], whereby the
wave function of the nonlocal potential within the nucleus is
about 15% smaller than the wave function of the equivalent
local potential. Local potentials are central to most analyses
of direct reactions that lead to spectroscopic information, and
the Perey effect modifies both the bound state and scattering
wave functions involved in the analysis. Hence, corrections for
this are required in all analyses of direct reactions, especially
those involving nucleons or deuterons [4]. The subject of

*keeley@fuw.edu.pl
†raymond.mackintosh@open.ac.uk

the present work is the incorporation into distorted wave
Born approximation, DWBA, calculations of the effects of a
different source of nonlocality: that generated by the coupling
to inelastic or reaction channels. No prescription for this is
known that is as simple as the introduction of the Perey
correction factor. In this paper we demonstrate a method
for incorporating dynamical nonlocality and show how, in a
particular reaction, it can throw light on the significance of
such nonlocality for direct reactions.

It may be the fact that exchange nonlocality accounts quite
well for most of the energy dependence of the nucleon OMP
that leads to the assumption that dynamically generated nonlo-
cality is of little importance, particularly for the extraction of
spectroscopic information. In this work we present a method
for incorporating dynamical nonlocality that allows us to
evaluate this assumption. We first briefly indicate the origin
of what we have called dynamically generated nonlocality, a
property of the dynamical polarization potential, DPP. To do
this we survey the ways in which the DPP can be calculated
and give an account of some of the indications that already
exist for a significant dynamical nonlocality. This will lead
to a presentation of calculations that show explicitly how
dynamical nonlocality can influence the outcome of direct
reaction calculations, with consequences for the extraction of
spectroscopic information.

In Sec. II we discuss relevant general properties of the
DPP, in Sec. III we review and contrast various ways in
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which the DPP can be evaluated, Sec. IV describes existing
phenomenological evidence for the nonlocality of the DPP,
Sec. V presents our evidence for the nonlocality of the DPP,
showing its consequences for transfer reactions, and Sec. VI
discusses the conclusions to be drawn. In this paper, we
designate partial wave orbital angular momentum as l and
bound nucleon or transfer angular momentum as L or J .

II. THE DYNAMICAL POLARIZATION POTENTIAL

In the background to the present work is the familiar
Feshbach expression [5] for the nucleon OMP:

VP = PV P + PV Q
1

E+ − QHQ
QV P, (1)

where P projects onto the elastic channel (assuming spin
0 or 1

2 ) and P + Q = 1. This is already problematic since
the nucleon-nucleon interaction entering into the first, PV P ,
term will not be the bare nucleon-nucleon interaction with its
repulsive core but will be modified by particle-hole excitations.
This raises questions of double counting that we shall not
address here, but we note that the first term in Eq. (1) is
often referred to as the folding model potential and the second
term is the DPP. The folding model potential will contain
exchange nonlocality but will not be expected to have dynamic
nonlocality, and it is in this sense that we identify the DPP as
the origin of dynamic nonlocality. In a complete treatment the
DPP would also contribute to exchange nonlocality, but we do
not consider that here.

It is often of interest to determine the contribution to the
DPP of a specific subset of the excited target states, for
example, highly collective states across a region of varying
collectivity. Formally, we can partition the target states so
that π = P + p projects onto the ground state plus selected
excited states, with q projecting onto all the others, so that
Q = p + q and P + p + q = 1. All the usual projection
operator expressions apply, e.g., π2 = π , pq = 0, etc. It can
then be shown [6] that the effective potential for the enlarged
π space is

Vπ = πV π + πV q
1

E+ − qHq
qV π. (2)

The formal expression for the DPP that is generated in the
elastic, P , channel, by the coupling within the enlarged π =
P + p space, can be shown [6] to be just

�V = VP − Vπ . (3)

The DPP �V will be both l-dependent and nonlocal but is
commonly calculated as a local and l-independent potential
that is S-matrix equivalent to �V , as described in Sec. III. Note
that the interaction Hamiltonian that occurs in Vπ involves all
the interchannel coupling within the p space and this implies,
especially where q represents a numerically small number
of states, that almost the full complex potential should be
involved in the diagonal and nondiagonal coupled channel, CC,
calculation within the π space. This also suggests the use of
complex potentials whenever coupling between excited states
is omitted in calculations of the OMP involving a “complete”
set of excitations, as in cases mentioned below.

In particular cases, it may be feasible to include the entire
space of excited states. For example, with a simple projectile
such as a deuteron, the excited state space can, in principle, be
included within the continuum discretized coupled channel,
CDCC, framework, based on phenomenological interactions
between the components of the projectile and the target
nucleus. The DPP arising from the breakup of projectiles has
been calculated in this way and provides examples of some of
the properties described in a subsequent paper.

Feshbach’s theory did not explicitly consider the contribu-
tion of reaction channels. The explicit inclusion of these in
CC calculations has revealed very significant contributions
but also raises difficult questions of double counting and
nonorthogonality, the second of which can now be allowed for.
The explicit inclusion of particular strongly coupled reaction
channels does reveal effects that do not seem to be represented
by folding models of the kind that depend smoothly upon
target mass and involve the local density approximation, LDA.
Such folding models do not lead to l-dependence [7], dynamic
nonlocality, or other consequences of the finite extension of
the nucleus. These effects can be well represented with the
second of the approaches described in Sec. III.

III. CALCULATING THE DPP

The DPP arising from channel coupling can be established
using two general approaches:

(1) The explicit evaluation of the Feshbach expres-
sion [5,8], or some approximation to it; see, for
example, Refs. [9–11].

(2) The inclusion of specific channels (the p channels)
in a CC calculation, followed by a derivation of a
potential that in some way (see below for a list of ways)
incorporates the effects of the coupling of those specific
channels to the elastic channel. Subtracting the “bare”
potential of the CC calculation leads to a form of the
DPP using one of the procedures to be listed below. (We
use “CC” to include coupled reaction channel, CRC,
and continuum-discretized coupled-channel, CDCC.)
An earlier variation of this approach involved refitting
the observables rather than the S-matrix produced
by the CC code [6,12,13], but this procedure was
superseded with the advent of S-matrix-to-potential
inversion techniques [14–19].

The first approach, applying Feshbach’s formalism directly,
has generally been applied to the calculation of the full
OMP rather than the DPP due to selected channels. Quite
extreme approximations were necessary, although suggestive
results [10] have been obtained that supported some results
of the second approach, in particular the l-dependence of
the equivalent local potentials and the requirement that the
propagation in the intermediate states must be in a complex
potential and that plane wave propagators, as in some early
calculations, are severely deficient. Other results from the
calculations of Ref. [11], which are in some ways more
realistic, have a bearing on the nonlocality considerations of
this paper.
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The second approach, “CC plus inversion,” has revealed
that CC contributions lead to local-equivalent DPPs that are
far from smooth in form and certainly do not represent a
uniform normalization of the bare (folding model) potential.
Calculations of this kind (i) facilitate the evaluation of
processes (such as coupling to transfer channels) that do not
appear to be well represented within folding models based on
the LDA; (ii) produce corrections to global OMPs arising from
the particular collectivities of specific nuclei; and (iii) provide
a means of determining shell corrections to global potentials.

Coupling to collective states and transfer processes in
particular have been found to lead to dynamic nonlocalities and
l-dependencies outside the scope of the LDA. CC plus inver-
sion can also be applied to projectiles as well as target nuclei:
It has given valuable insight concerning the interaction of light
nuclei, such as deuterons, in which something approaching a
complete description of the projectile excited states can be
included. Such calculations also provide suggestive insights
concerning the general nature of DPPs.

The CC plus inversion approach to determining the DPP
can be realized in different ways, each of which produces a
different representation of it. These are the following:

(1) S-matrix inversion. The elastic channel S-matrix,
Sl , Slj , or, for spin-1, S

j
ll′ , is inverted to produce a

local potential that reproduces it exactly. The resulting
potential is never of a smooth form and is always far
from being a factor times the bare potential. This im-
mediately calls into question the practice of including a
uniform normalization factor when applying a folding
model. There is now a substantial literature recording
the results of CC-plus-inversion calculations. There are
no limitations on the nature of the excitations that may
be included: These may be inelastic channels, reaction
channels, and projectile breakup channels.

(2) Exact TELP. Franey and Ellis [20] derived indepen-
dent potentials for each partial wave by determining
algebraically the radial potential that produces in a
single-channel Schrödinger equation the radial wave
function calculated in the multichannel calculation.
This is the TELP, trivially equivalent local potential. It
can vary considerably from partial wave to partial wave
and will become singular if the channel wave function
has zeros. Coulter and Satchler [10] also introduced a
somewhat different TELP for their nonlocal Feshbach
DPPs; these were strongly l-dependent.

(3) Weighted TELP. The strong l-dependence of the exact
TELP can be tamed somewhat by a suitable weighting
over contiguous partial waves to yield an l-independent
potential [21]. This is the form of TELP incorporated
in the CC code FRESCO [22]. The resulting potential is
generally qualitatively similar to that derived by exact
inversion, but can be significantly different in detail;
see, for example, Ref. [23] for a comparison in the case
of 6Li breakup.

(4) ψ-potential. An alternative form of TELP is the
ψ-potential [24–28], the l-independent potential that
exactly reproduces the elastic scattering wave function

as a function of two coordinates on the scattering plane
in the interaction region.

(5) l-dependent factor. The bare potential, or some
approximate inverted smooth potential V R(r) + iV I(r),
is renormalized by independent functions of l for the
real and imaginary parts, NR(l)V R(r) + iN I(l)V I(r),
so as to reproduce exactly the CC elastic channel
S-matrix; see Ref. [29].

(6) Analytic approximations. For certain specific kinds
of collectivity there exist analytical procedures for
calculating approximate DPPs; see Refs. [30,31].

It is the first of the above, S-matrix inversion, that yields
a potential that is most directly related to local OMP phe-
nomenology. In this way it offers the possibility of explaining,
for example, departures from global behavior of a local OMP
that has been fitted to particular nuclei. At the same time, the
results from the other procedures suggest the possible pitfalls
of the unconsidered application of local OMPs in the analysis
of direct reactions, for reasons to be described below.

IV. EXISTING INDICATIONS OF SIGNIFICANT
DYNAMIC NONLOCALITY

The theoretical DPP according to Feshbach’s formalism is
both nonlocal and l-dependent (l-dependence is here to be dis-
tinguished from the parity dependence that arises with certain
non-knock-on exchange processes.) It is not straightforward
to identify the contribution of dynamical nonlocality to the
properties of the local and l-independent S-matrix equivalent
potential found by Sl → V (r) inversion. This is in part because
any explicitly l-dependent local potential has an l-independent
S-matrix equivalent having undulatory features which often
resemble the undulatory features that arise in precision fits to
elastic scattering data. In general, local-equivalent DPPs are
quite undulatory, with the waviness having a point-by-point
magnitude that can be disproportionate to their contribution to
the volume integral of the potential. This might explain why the
associated dynamic nonlocality or l-dependence contributes
little to the global energy dependence of the OMP in the way
that exchange nonlocality does, but it does not imply that it is
not important.

The first ψ-potential calculations [24] studied the nature of
the DPP that arises from the coupling to rotational channels.
Features of the DPP that appear near r = 0 in a conventional
representation appear instead at a finite impact parameter
on the scattering plane. Over a substantial radial range, the
wave function for the nonlocal potential (the elastic channel
wave function of the CC calculation) exceeded the local wave
function found by S-matrix inversion; both wave functions are
identical in the asymptotic radial region. This is, in effect, an
“anti-Perey” effect. If such effects are found to be a common
consequence of dynamically generated nonlocality, this is
likely to be significant for spectroscopic analyses involving
direct reactions. Another suggestive phenomenon revealed by
these calculations is the occurrence of an emissive region in
the “shadow” edge of the nucleus, a clear indication of flux
being returned to the elastic channel, a feature identified by
Austern [32] as characteristic of nonlocality.
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Subsequent ψ-potential calculations [26] evaluated the
DPP generated by coupling the proton elastic channel to the
same 10 phonon states that were employed by Coulter and
Satchler [10]. A comparison on the scattering plane of the
CC elastic channel wave function ψnonloc(r,θ ) and the wave
function of the local potential ψloc(r,θ ) with the same S-matrix,
also shows a distinct “anti-Perey” effect. The standard local
DPP found by inversion, �V (r), exhibited deep undulations
in both the real and imaginary parts, with substantial regions
of emissivity in the imaginary part. As a check, the spatial
distribution of the “generalized Perey factor”

R(r,θ,φ) = |ψnonloc|
|ψloc| (4)

was calculated for a Perey-Buck nonlocal potential and it
was consistent with the usual Perey effect, being close to
spherical and roughly 0.85 within the nucleus. However, with
the coupling to the ten phonons, the nature of R(r,θ ) was very
different. There was a complicated pattern of regions where
R was < 1 (“Perey”) and regions where R was > 1 (“anti-
Perey”). The coupling to deuteron channels led to extensive
anti-Perey regions [but nonorthogonality corrections were not
included in these (p ↔ d) calculations.] The phonon coupling
calculations suggest that dynamical nonlocality is significant
for the scattering of nucleons and other light ions from nuclei.
It is not obvious what would be the effect of this dynamical
nonlocality upon direct reactions involving nucleons, but there
is now a strong motivation for a direct evaluation of this. It is
likely that transfer reactions would depend sensitively upon
where the maxima of the spectroscopic functions occur with
respect to the features that we have described.

The DPP for heavier ions can be studied with the same
methods, and in Ref. [27] the DPP generated in the 16O + 12C
interaction by rotational excitations of 12C was studied for
139.2 MeV laboratory energy 16O. The inverted local DPP,
the Franey-Ellis TELP, and the ψ-potential were compared,
but the generalized Perey factor was not calculated. The DPP
was found to have a strong emissive region in the surface, as
well as surface repulsion. It was found that the coupling had
the counterintuitive effect of increasing |Sl| for higher values
of l, so that the coupling actually reduced the partial reaction
cross section for those partial waves. This phenomenon occurs
in various circumstances and for a general discussion see
Refs. [33,34]; see also Ref. [35] and below. For this particular
case, the surface emissivity and increases in |Sl| for higher
values of l both occurred only if the imaginary component of
the OMP was deformed [27], but there are strong reasons for
believing that it should be.

More generally, the DPP calculated by the CC-plus-
inversion technique applied to the S-matrix from a wide
range of coupled channel calculations generally has varying
degrees of undulatory character. We mention just a few
recent examples. In Ref. [34] the effect upon deuteron elastic
scattering of breakup to the continuum was studied at 56, 79,
and 120 MeV. The DPPs were strongly undulatory, exhibiting
emissive regions in the imaginary terms. The undulations and
emissivity were greatest at the lower energies, where also the
tendency for the coupling to increase |Sl| was most marked.

It was noticed [23] that following CDCC calculations of
projectile breakup in 6Li + 12C at 90, 123.5, 168.6, 210,
and 318 MeV, there was a tendency for the local DPP
due to breakup coupling to be strongly undulatory within
the nucleus (an effect not shown by the weighted TELP).
The undulations included emissive radial regions at 123.5
and 90 MeV and the potential was somewhat wavy in the
surface for the 90 MeV case at which energy |Sl| was
almost doubled for several values of l. This is the same
counterintuitive effect noted for deuteron scattering under the
influence of deuteron breakup [34]. Arguments have been
made [33,35] that this behavior is indicative of nonlocal effects,
with the emissive features being the consequence of repre-
senting an underlying nonlocal DPP with a local equivalent
potential.

The explicit evaluation of the Feshbach potential by
Rawitscher, yielding potentials that are strongly nonlocal and
also l-dependent, suggests that the relevant question now is the
following: is there a reason, such as some kind of cancellation,
why OMPs should not have these properties? We note that in
cases where precise and wide angular range elastic scattering
data are precisely fitted using model-independent methods,
undulatory potentials tend to appear, a signature of underly-
ing l-dependence. Moreover, potentials exhibiting substantial
emissive features in their imaginary parts are found, suggestive
of nonlocality. Examples for nucleon-nucleus potentials are
given in Refs. [36] and [37]; the second of these exhibits
an imaginary term with a large emissive feature while the
potentials in Ref. [36] were more undulatory, probably because
emissivity was explicitly excluded by the search procedure.
Note also that the final potentials of Ref. [37] were for protons
on 16O for which the OM potential is parity dependent [38];
enforcement of parity independence leads to a more undulatory
structure. An example of a highly undulatory potential that is
required to give a precise fit to deuteron scattering data is
given in Ref. [39]. This is a case where parity dependence is
not expected.

There is another line of argument concerning the existence
of substantial dynamic nonlocality arising from channel
coupling. If there are two distinct nonlocal terms in the
potential, V1(r1,r2) and V2(r1,r2) then the local equivalents
Ṽ1(r) and Ṽ2(r) do not add linearly. That is, the local equivalent
of V1(r1,r2) + V2(r1,r2) is not Ṽ1(r) + Ṽ2(r). This can be
seen, for example, from the iterative nature of the method by
which Perey and Buck [1] determined the local equivalent.
This inequality applies to the nonlocal DPPs generated by
coupling to channels that have no mutual coupling. This
was studied in Ref. [40] where the influence on proton
scattering of specific pickup reaction channels that were not
mutually coupled was evaluated. The sum of local equivalent
DPPs for two such reaction channels was not equal to
the local equivalent of the two channels when both were
coupled.

Finally, we note that various properties described here,
such as the occurrence of emissivity and anti-Perey ef-
fects, suggest that simple prescriptions, along the lines
of a Perey factor for exchange nonlocality, are unlikely
to be effective for accounting for dynamically generated
nonlocality.
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FIG. 1. Angular distributions for 30.3 MeV (a) neutrons and
(b) protons on 40Ca. The dashed lines are for the bare potential,
and the solid lines are for coupling to the 10 collective states [10,41].

V. DIRECT EVIDENCE FOR SIGNIFICANT
DYNAMIC NONLOCALITY

Section IV surveyed some of the evidence for dynamical
nonlocality in nucleon and other (mostly) light-ion interac-
tions, but it is not clear how important this almost universally
ignored effect might be when local potentials are applied in the
analysis of reactions. Here, we approach this by addressing the
following question concerning the nucleon optical potentials
that are employed in the analysis of (p,d) and (n,d) DWBA
nucleon transfer reactions: What effect does the dynamical
nonlocality, that might reasonably be expected to be a property
of the proton or neutron potentials, have on the differential
cross sections and other observables from standard DWBA
calculations? For example, is the effect of sufficient magnitude
to affect the extraction of spectroscopic factors?

To answer these questions, we study the effect of dynamical
nonlocality by comparing DWBA (p,d) and (n,d) calculations
employing dynamically nonlocal nucleon optical potentials,
with calculations that employ local nucleon potentials. The
local potentials in each comparison will be S-matrix equiv-
alent to the corresponding nonlocal potential, hence yielding
identical elastic scattering observables. The nonlocal potential
will be generated in situ by coupling the nucleon elastic
channel to a set of excited states of the target nucleus. The
states chosen are expected to contribute to the experimental
OMP for that projectile. The corresponding local potential
will be determined by S → V inversion to have exactly
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FIG. 2. Angular distributions for (a) (n,d) pickup and (b) (p,d)
pickup, of L = 0 nucleons from 40Ca for 30.3 MeV incident nucleons:
The dashed lines are the ADs with the bare nucleon potential and the
solid lines are the ADs with induced nonlocality due to coupling to
the 10 collective states.

the same same S-matrix as the elastic channel S-matrix of
the CC calculation. The nonlocal DWBA calculation will
be carried out by exploiting the ability of the CC code
FRESCO [22] to include a deuteron partition simultaneously
with the inelastic nucleon scattering CC calculation. Backward
coupling between partitions is excluded, so the only coupling
to the deuteron channels is one way, from the ground state of
the target. How this works will be explicit in the examples to
follow.

We compare angular distributions (ADs) for pickup cal-
culated with dynamically nonlocal potentials with the ADs
calculated using local nucleon potentials that are S-matrix
equivalent. The dynamical nonlocality is that which is in-
duced by coupling to collective states of the target nucleus.
Specifically, the collective states (phonons) were the collection
of 10 that were included by Coulter and Satchler [10] in
their calculation of the imaginary part of the optical potential
for 30.3 MeV protons scattering from 40Ca. The collective
states cover a wide range of multipolarities and excitation
energies, with deformation lengths judged to give a realistic
account of the various multipole strengths. The local potential
giving the same elastic scattering S-matrix is calculated using
Sl → V (r) inversion. An account of the relevant inversion
calculations is given in Ref. [41], which includes volume
integrals and other characteristics of the local DPPs generated
by the coupling. The local DPPs are the inverted potentials
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FIG. 3. Angular distributions for (a) (n,d) pickup and (b) (p,d)
pickup, of L = 2 nucleons from 40Ca for 30.3 MeV incident nucleons:
The dashed lines are the ADs for the bare nucleon potential and the
solid lines are the ADs with induced nonlocality due to coupling to
the 10 collective states.

with the bare potentials of the CC calculations subtracted.
The present calculations employ the same set of excitations of
40Ca and the local equivalent potentials presented in Ref. [41]
are those employed herein. We remark that the true DPPs are
l-dependent as well as nonlocal, so that this work is actually
studying the impact of both l-dependence and nonlocality
that is generated by the coupling to collective states. We
also remark that there are phenomenological grounds for
l-dependence of the nucleon OMP [7]. Nevertheless, in what
follows we generally refer to this work simply as a study of
nonlocal effects, except where specific effects of l-dependence
appear to be present.

For present purposes, a comparison of (p,d) and (n,d)
ADs calculated in the DWBA, it is sufficient to employ a
deuteron wave function calculated following Rawitscher [42]
with a Gaussian n-p binding potential which is amenable to
full finite-range interaction. Use of the DWBA implies that
the spectroscopic factors are immaterial and were chosen
to be unity. The radial wave function of the transferred
nucleon is relevant and for both proton and neutron transfer,
three cases were considered. These were L = 0 and L = 2
nucleons with binding energies appropriate to the respective
ground-state–to–ground-state experimental Q values, and L =
2 nucleons bound 5 MeV more deeply, like the 5

2

+
nucleons in

a realistic mass 40 nucleus. These choices allow a comparison
of effects for different L transfers independently of binding,
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FIG. 4. Angular distributions for (a) (n,d) pickup and (b) (p,d)
pickup, of L = 0 nucleons from 40Ca for 30.3 MeV incident
nucleons: The solid lines show the ADs for the nonlocal nucleon
optical potential, and the dotted and dashed lines are for alternative
local equivalent potentials found by inversion, as explained in the
text.

and also an evaluation of the dependence upon binding energy
for L = 2 transfer. The transferred nucleons were bound in
local Woods-Saxon potentials with conventional parameters
r0 = 1.2, a = 0.65, and for protons rc = 1.3. Since we are not
considering the effects of deuteron breakup in this work, we
used the global deuteron potential of Daehnick et al. [43] in
the exit channel.

Following Coulter and Satchler [10] and Ref. [41], we
treat nucleons as spinless, omitting spin-orbit interactions; a
study of the effect of nonlocality on analyzing powers must
await later studies. Consistently with this, we also omit spin
in our treatment of the stripping process and this, of course,
includes omitting the D state of the deuteron. The collective
coupling, by design, produces a large part of the absorption of
a realistic OMP for this case. However, transfer contributions
were omitted [41] so the CC calculation employed a bare
potential with a nonzero imaginary component. The effect
of the coupling on the elastic scattering angular distribution
is large, as can be seen in Fig. 1, with the neutron case in
the upper panel and the proton case below. In both cases the
dashed line is the AD for the bare potential, without coupling
to the collective states, and the solid line is the AD with
full coupling.

The substantial effect of the coupling is reflected in the
change in the (n,d) and (p,d) angular distributions for the
transfer of an L = 0 nucleon when the channel coupling effects
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FIG. 5. Angular distributions for (a) (n,d) pickup and (b) (p,d)
pickup, of L = 2 nucleons from 40Ca for 30.3 MeV incident nucleons:
The solid lines show the ADs for the nonlocal nucleon optical
potential, and the dotted and dashed lines are for alternative local
equivalent potentials found by inversion, as explained in the text.

are switched on; see Fig. 2. These figures compare the DWBA
ADs for the bare nucleon potential with the DWBA ADs when
the nonlocal DPP due to the collective coupling is switched
on. The same comparison for the transfer of an L = 2 nucleon
is shown in Fig. 3.

These figures show that the transfer differential cross
section close to the main peak is modified very little by changes
in the nucleon OMP that have a very large effect on the elastic
scattering ADs. The question now, of course, is the following:
How closely do the ADs calculated with nucleon potentials that
are local equivalents to the nonlocal potentials approach the
ADs for the nonlocal potentials? The difference will represent
the effect of the dynamical nonlocality on the transfer angular
distributions and thus give a measure of the significance of
dynamical nonlocality.

The answer to this question is provided for L = 0 transfer
in (n,d) pickup and (p,d) pickup in Fig. 4 and for the transfer
of an L = 2 nucleon in Fig. 5.

In Figs. 4 and 5, the two alternative ADs for the local
equivalent potentials are for alternative solutions [41] to the
Sl → V (r) inversion [17–19]. As the iterative inversion pro-
cess converges, the resulting potentials may become somewhat
oscillatory and although the two potentials shown both give
elastic scattering ADs that are indistinguishable from the
elastic channel AD from the CC calculation, these figures
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FIG. 6. Angular distributions for (a) (n,d) pickup and (b) (p,d)
pickup, of L = 2 nucleons from 40Ca for 30.3 MeV incident nucleons
leading to a 5 MeV hole state. In each case, the dotted line is the AD
with the bare nucleon optical potential, the solid line is with induced
nonlocality due to coupling to the 10 collective states and the dashed
line is for the local equivalent nucleon OMP. The labels on the dashed
lines refer to particular inverted potentials; see Ref. [41].

verify that they also give very good agreement when applied
in transfer reactions.

Except for the L = 2 neutron pickup case, the nonlocality
effect shown in Figs. 4 and 5 is very small close to the
main peak at forward angles. However, the detailed angular
distributions are considerably modified at larger angles, for
both L = 0 and L = 2. While this suggests that dynamic
nonlocality does not substantially undermine the extraction of
spectroscopic factors from fits to pickup, it is clear that a pre-
cise fit to the entire angular distribution requires consideration
of the dynamic nonlocality. Certainly this motivates extending
these calculations to include spin degrees of freedom since
J -dependence depends on the angular distribution beyond the
main peak.

We have examined the effect of a nonlocal nucleon OMP
by comparing the pickup of L = 2 nucleons that are more
bound by 5 MeV, calculated with nonlocal and local-equivalent
nucleon OMPs. In Fig. 6 we present the angular distributions
for pickup corresponding to hole states in 39K and 39Ca at 5
MeV excitation. Unlike the previous cases, here the AD near
the main peak does depend on the presence of one or the
other representation of the channel coupling effect. Moreover,
for the proton case, the AD does respond significantly to the
nonlocality quite close to the main peak.
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The last figure suggests there is a variable response to the
nonlocality of the nucleon potential, and it is clear that there
is much to learn from calculations along the lines described
here.

VI. DISCUSSION AND CONCLUSIONS

When a nucleon interacts with a target nucleus, the
possible excitations of the nucleus generate a nonlocal and
l-dependent dynamical polarization potential. Although such
dynamical nonlocality must exist together with the well-
known exchange nonlocality, it is almost never considered
in the standard DWBA analysis of direct reactions involving
nucleons. Nonlocal potentials generally require the solution
of integrodifferential equations. For the particular case of
exchange nonlocality there is a simple prescription, the Perey
correction factor, that allows this to be avoided. However, in
Sec. IV we gave reasons why dynamical nonlocality is unlikely
to be representable by such simple means. In this paper we have
shown how the need for solving Schrödinger’s equation for a
complicated nonlocal potential can be obviated. This involves
the wave function being generated directly and employed
in situ by means of an application of a coupled channel
code.

The procedure was applied to study the dynamical non-
locality of the proton-nucleus potential due to coupling to
collective vibrational states. The effect is appreciable for the
case of nucleons scattering from 40Ca, as revealed by an
analysis of (p,d) reactions. Although a wide range of energies
and target nuclei remain to be studied, the results allow us to
conclude that conventional DWBA analysis of a (p,d) reaction,

with conventional local optical potentials, omits a significant
contribution. This will affect the fitting of pickup angular
distributions and perhaps the determination of spectroscopic
factors.

Much remains to be done in applying the method developed
here to study the effects of dynamical nonlocality. We have not
studied the effect upon analyzing powers in pickup reactions
and have studied only cases with low-angular-momentum
transfer. It is likely that the effect will be larger for cases
where the projectiles penetrate further into the nucleus. An
obvious and important extension would be to include spin so
that the effect on analyzing powers can be studied as well as
J -dependence for which the details of the angular distribution
are important. As far as the cases studied here are concerned,
we note that the effect close to the main peak is not large for
the strongly excited states studied, but the details away from
the main peak, important for identifying J -dependence, are
modified.

The method we have developed is quite general. For
example, other sources of nonlocality such as reaction channel
coupling remain to be explored. When deuterons or heav-
ier composite nuclei interact with nuclei, the excitation of
these projectiles also generates nonlocality in their effective
interaction with the target. Hence, the same general approach
that we have applied to nonlocality in proton channels will
also yield information concerning a quite separate additional
contribution to reactions involving deuterons. We refer to
dynamic nonlocality in the deuteron channel due to breakup
of the projectile. This is relevant to (d,p), (d,t), (d,6Li),
etc., reactions and will be the subject of a subsequent
paper.
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