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Phonon coupling effects in proton scattering from 40Ca
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Background: Formal optical model theory shows that coupling to vibrational nuclear states generates a nonlocal
and l-dependent dynamical polarization potential (DPP). Little is established concerning the DPP, yet its properties
are crucial for explaining the departures of optical model potentials (OMPs) from global behavior and for the
rigorous extraction of spectroscopic information from direct reactions.
Purpose: To appraise the application of channel coupling followed by S-matrix inversion for the systematic
exploration of the contribution of the coupling of collective states to the nucleon OMP and to identify properties
of nuclear potentials indicative of l-dependence.
Methods: S-matrix to potential, Slj → V (r) + l · s VSO(r), inversion provides local potentials that precisely
reproduce the elastic channel S-matrix from coupled channel (CC) calculations. Subtracting the elastic channel
uncoupled (bare) potential yields a local and l-independent representation of the DPP. The dependence of this
local DPP upon the nature of the coupled states and upon other parameters can be studied.
Results: All components of the DPP arising from coupling to vibrational states are substantially undulatory
with a point-by-point magnitude therefore disproportionate to their contribution to volume integrals. Information
relating to dynamical nonlocality is found. The proton charge leads to a substantial difference between DPPs for
protons and neutrons.
Conclusions: Undulatory features in potentials found in precision fits to elastic scattering data are significant,
are a consequence of coupling to inelastic channels and must be allowed for in phenomenology; they are indirect
evidence of l-dependence. Within the model, coupling to excited states magnifies the effect of the proton charge
on the difference between proton-nucleus and neutron-nucleus interactions. Coupled channel plus inversion is a
procedure of wide applicability, complementary to evaluation of the Feshbach formalism.
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I. INTRODUCTION

Pignanelli et al. [1] (hereafter PGL) showed that the
explicit coupling to a giant quadrupole resonance (GQR)
state improved the fit to the backward angle differential cross
section for proton scattering from 40Ca at 30.3 MeV. The
data in question have never been fitted with smooth potentials
of standard parameterized forms. Potentials that fitted these
data required unconventional features: l-dependence [2–5] or
undulatory character [6,7]. The need for these unconventional
models for nucleon elastic scattering has not been widely
accepted because of the deceptive ease with which the
generally available elastic scattering data for many (but not
all; see Ref. [8]) non-closed-shell nuclei can be reasonably
well fitted with standard radial forms. We note that there have
been other calculations [9], similar to those of PGL, that have
included low-energy phonons. The coupling of proton elastic
scattering to deuteron channels also has a considerable effect
on the angular distribution, and local potentials having the
same elastic channel S-matrix Slj are undulatory [10]. In the
past, attempts have been made [11] to relate l-dependence,
or the undulatory nature of potentials that precisely fit high-
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quality data, to reaction coupling or collective coupling, but
the understanding is very incomplete.

Fitting data like that mentioned above evidently requires
physics beyond the highly developed [12–15] local density
model. Such models would not seem to have any place for
angular momentum dependence, for example. The aim of
this work is to demonstrate, with examples involving the
coupling to vibrational states, how S-matrix inversion can be
exploited to uncover implications for elastic nucleon scattering
phenomenology of processes that are not well represented by
local density models. Section II presents and discusses the
local potentials equivalent to the coupling of PGL. Section III
presents contrasting results for more general couplings for
the same scattering case, and the final section draws general
conclusions.

II. DPP DUE TO THE GQR

In what follows, we produce local and l-independent
potentials that give exactly the same elastic scattering angular
distributions as were found in the coupled channels (CC)
calculations of PGL that included the GQR. This is done by
applying Slj → V (r) + l · s VSO(r) inversion [16–18] to the
elastic channel S-matrix output by the CC code FRESCO [19].
The local, l-independent dynamic polarization potential (DPP)
generated by the coupling is obtained by subtracting the
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TABLE I. For protons scattering from 40Ca at indicated values of
MeV/nucleon in column 1, characteristics of the bare potentials. For
each energy, σ A

Reac is the reaction cross section with potential A.

E (lab.) Pot. JR RR(rms) JI RI(rms) σReac (mb) σ A
Reac (mb)

All A 400.30 4.0096 100.42 5.0028
20.0 B 440.35 4.1189 52.17 4.1661 703.93 924.53
30.3 B 413.21 4.1189 65.73 4.1314 695.26 882.60
60.0 B 334.94 4.1189 49.28 3.7773 429.94 774.31
90.0 B 255.88 4.1189 50.18 3.4834 343.66 654.21

elastic channel (“bare”) potential used in the CC calculation
from the potential found by inversion. Key properties in
the following discussion are the changes induced by the
coupling in JR, JI, RR(rms), and RI(rms), respectively, the
real and imaginary volume integrals (conventionally defined
in Ref. [20]) of the central potential and the real and imaginary
rms radii. The changes induced in the volume integrals such
as �JR, i.e., the volume integrals of the DPP, are simply the
differences between the volume integrals of the inverted and
bare potentials. The effects of the coupling on the spin-orbit
terms are conveyed graphically only.

To facilitate comparison with the results of PGL, we employ
potentials used by them and adopt the same GQR state of 40Ca:
a 2+ at 18.5 MeV, using vibrational model coupling with the
same deformation length, δ = βλR for each component of the
potential. The first set of calculations were carried out with
potential set 1 of Table I of PGL evaluated at 30.3 MeV, so
this potential was fixed for all energies studied; we refer to this
as potential A. The second choice of bare potential was set
3 of PGL, evaluated for each energy according to the energy
dependence given in PGL Table I; we refer to this as potential
B. This potential has a Gaussian imaginary term having a
volume integral at 30.3 MeV JI = 65.73 MeV fm3, much less
than predicted for global potentials; it is similarly low at the
other energies considered.

The use of both fixed and energy-dependent bare potentials,
which were substantially different even at 30.3 MeV, will
provide information concerning the sensitivity of the DPPs,
and also the elastic scattering observables, to differences in
the bare potential. In particular, potential A reveals the part
of the energy dependence of the DPP that does not arise from
the energy dependence of the bare potential. Potential B is
not, in fact, very realistic over the range of energies for which
it is applied here. The characteristics of these potentials are
presented in Table I together with the reaction cross sections
without coupling, σReac. The quantity σ A

Reac in the last column
is the no-coupling reaction cross section for the fixed potential
A. Unsurprisingly, there is an increasing divergence between
σReac and σ A

Reac at the higher energies.
The characteristics of the DPP for each energy are presented

in Table II. Column 7 gives the change in reaction cross section
(CS), �σr, induced by the coupling, and column 8 gives the
inelastic cross section σinel to the GQR. In all these cases �σr

is positive although there are many cases, see Ref. [21], where
inelastic or reaction-channel coupling reduces the reaction CS.
For 30.3 MeV, Pot A, the coupling to the GQR increases the

TABLE II. For protons scattering from 40Ca at indicated values
of MeV/nucleon. The bare potential is indicated in column 2, with A
fixed and B energy dependent, as described in the text. Columns �JR

and �JI give the volume integrals (per nucleon pair) (in MeV fm3) of
the central components of the DPP induced by coupling to the GQR.
Negative �JR corresponds to repulsion. �RR(rms) and �RI(rms)
are the changes in rms radius of the real and imaginary central
components (in fm). The two final columns present, respectively, the
change in the total reaction CS, �σr, induced by the coupling, and the
integrated inelastic CS, σinel, to the specific coupled inelastic channel.
The second 30.3 MeV case, indicated by 30.3RC, is for coupling with
only the real potential deformed.

E (lab.) Pot. �JR �RR �JI �RI �σr σinel (mb)
(rms) (rms) (mb)

20.0 A 3.56 0.021 8.65 0.071 11.31 2.13 × 10−4

20.0 B 19.4 0.065 17.32 0.010 68.71 8.68 × 10−4

30.3 A 2.24 0.0002 6.51 0.057 19.56 12.75
30.3 B 1.52 0.0008 5.69 0.166 29.42 18.19
30.3RC A 3.40 0.0135 5.80 0.033 17.63 11.22
60.0 A 1.66 − 0.0038 5.31 − 0.015 21.36 23.83
60.0 B 0.55 0.0003 3.46 0.0672 22.05 17.45
90.0 A 1.10 − 0.0020 4.51 − 0.016 17.68 20.25
90.0 B 0.04 0.0014 1.77 0.0399 10.08 9.44

reaction CS σr by 19.56 mb, a factor of 1.53 greater than the
inelastic scattering CS σinel. This factor becomes 5.3 × 104

at 20 MeV. The suppression of the inelastic CS at this near-
threshold energy is due to the very low energy proton in the
exit channel being trapped by the Coulomb barrier. Column 5
of Table I presents JI for the bare potential, the quantity that
differs most between potential A and potential B. Both the
Becchetti-Greenlees [22] and Koning-Delaroche [23] global
potentials have a much larger value of JI at the higher energies
than potential B.

The DPPs corresponding to the 30.3 MeV case with
complex coupling are shown in Fig. 1. The DPP for bare
potential A (dashed lines) is generally less wavy than the DPP
for the global bare potential B (solid lines), but otherwise they
are very similar. The bare potentials are reasonably appropriate
at 30.3 MeV, and the difference between the values of JI for
potentials A and B, although substantial, is less than at the
other energies. The DPP calculated when only the real OMP
is deformed is shown in Fig. 2 where it is compared with the
DPP calculated with complex coupling for potential A, also
shown in Fig. 1. The DPPs shown in these figures are not large,
reflecting the small deformation length of the GQR. As noted
by PGL, the crucial modification of the angular distribution
at backward angles is accompanied by very small changes at
most other angles.

The DPPs for the 20 MeV case with complex coupling are
shown in Fig. 3. At this energy, the DPPs for the A and B
potentials are very different, not surprisingly in view of the
circumstances that lead to an almost zero CS, σinel, to the
GQR state. A quantitative measure of the difference between
the A and B DPPs is the large difference in the values of
�JR and �JI, both being much larger for the B case. This
is related to the fact that JI for the bare potential at 20 MeV
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FIG. 1. For 30.3 MeV protons scattering from 40Ca, the DPP
calculated with full (complex) coupling to the GQR. The dashed line
is for the bare potential A and the solid line is for the global potential
B. Panels (a)–(d) are respectively real and imaginary central and real
and imaginary spin-orbit terms.

is much greater for A than for B and to the very different
values of σr with no coupling. The wave function in the nuclear
interior is more attenuated in the A case and this is probably
why the DPP is attenuated for small r . The large increase in
reaction cross section induced by coupling in the B case is
almost entirely due to a large decrease in |Slj | for the 9/2−
partial wave. Counterintuitive increases in |Slj | resulting from
channel coupling are present at 20 and 30.3 MeV for certain
partial waves but not at higher energies. See Ref. [21] for a
discussion of this phenomenon.

At 60 and 90 MeV, the differences between the A and
B values of JI for the bare potential are also large. The
inverted potentials for 20 MeV, and (not shown) for 60 MeV
and 90 MeV, calculated with the same bare potential as used
at 30.3 MeV, have consistent qualitative features. Coupling
makes the real central potential somewhat deeper for r < 4 fm
and slightly shallower and then undulatory for larger r . The
imaginary potential becomes significantly more absorptive at
the nuclear center and the radius at which it is deepest is pushed
outward. An undulatory feature in the imaginary DPP, shown
in Fig. 1, corresponds to an outward shift in the imaginary
potential. There is always an absorptive effect at the nuclear
center, which is interesting, since this is where the coupling is
small.

When coupling is switched on, the increase �σr includes the
inelastic scattering cross section, suggesting that �σr would be
greater than σinel, and this is the case for the 20 and 30.3 MeV
cases but not for potential A at 60 and 90 MeV. This is probably
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FIG. 2. For 30.3 MeV protons scattering from 40Ca, the DPP
calculated with bare potential A. The DPP for full (complex) coupling
to the GQR is shown as the solid line and the DPP with real coupling
only is the dashed line. Note that the x-axis scale is different from
that for Fig. 1, which includes the same complex coupling DPP. Panel
labels are as for Fig. 1.
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FIG. 3. For 20 MeV protons scattering from 40Ca, the DPP
calculated with full (complex) coupling to the GQR. The dashed
line is for the bare potential A and the solid line is for the global
potential, B. Panel labels are as for Fig. 1.
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connected with JI being greater for the A than the B potential
at these energies. This connection is also suggested by the fact
that at 30.3 MeV with real coupling σinel and also �σr are
smaller than with complex coupling.

III. MORE GENERAL VIBRATIONAL COUPLING

Although PGL found that the GQR had a significant
effect on the angular distribution at far backward angles, the
volume integrals of the DPP are small although the DPP
is not small point by point, especially for the imaginary
part. It is therefore of interest to explore the contribution of
the many other vibrational states, many with much greater
strength than the GQR. For example, it is known, e.g.,
Ref. [24], that certain low-lying states, such as the 3− state
at 3.737 MeV, make a larger contribution to the OMP. We
therefore performed further CC-plus-inversion calculations
involving low-lying excitations. For these, the bare potential
used Becchetti-Greenlees (BG) [22] parameters. This global
potential is not regarded as appropriate for A = 40, but is
adequate for the purpose of studying contributions that are
generally omitted; the BG potential is more realistic than
potentials A and B of Ref. [1].

All calculations were for 30.3 MeV protons on 40Ca. In
Table III we compare the contributions of coupled vibrational
states: (i) the 2+ state at 3.9 MeV, (ii) a 2+ state with the same
deformation length δ as state (i) at 18.5 MeV, the excitation
energy of the GQR, (iii) the GQR at 18.5 MeV, (iv) the 3− state
at 3.737 MeV, and (v) the 3− state at 3.737 MeV but with the
same deformation length δ as the 2+ state at 3.9 MeV. Some
of these states were included together in Ref. [9]. The GQR
deformation length δ is that used by PGL, and the deformation
lengths for the 3.9 and 3.737 MeV states are realistic. The
deformation length δ to the 2+ test state (ii) is the same as the
3.9 MeV state (i) but has the same excitation energy as the
GQR. Test state (v) has the same multipolarity as state (iv) but
the same δ as state (i). One surprise: the change in reaction
CS is exactly the same for the 2+ at 3.9 MeV as it is for the
test 2+ at 18.5 MeV and the changes in the real and imaginary
volume integrals are surprisingly close. However, the inelastic
CS does depend strongly on excitation energy and/or angular
momentum transfer. From Table III we also learn that the real
and imaginary volume integrals of the DPPs, apart from that for
the 3− state, tend to be small, notwithstanding the significant
qualitative effect on the angular distribution as found by PGL
for the GQR. The undulatory DPP is not so small point by
point, as shown for the the 3− state at 3.737 MeV in Fig. 4.
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FIG. 4. For 30.3 MeV protons scattering from 40Ca, the solid line
is the DPP calculated with full (complex) coupling to the 3− state at
3.737 MeV and δ = 1.6 fm. The bare potential was the Becchetti-
Greenlees global potential. The dashed line is the DPP for δ = 0.45 fm
multiplied by (1.6/0.45)2. Panel labels are as for Fig. 1.

In fact, this low-lying state does contribute substantially to the
absorptive part of the OMP.

The radial form of the DPP due to a single collective
excitation depends upon both the multipolarity and excitation
energy. There are too many combinations to compare visually,
but in Fig. 5 we compare the DPPs due to a strong low-energy
3− state (dashed line) with that due to the high-energy GQR
(solid line). In this figure both states employ the Becchetti-
Greenlees bare potential, unlike the GQR DPP in Fig. 1.
The imaginary components of the DPP for the 3− and GQR
excitations are quite different. However, Fig. 5 reveals common
features in the real DPP for the GQR and the 3− state:
Both show attraction at the nuclear center and a repulsive
bump around 5 fm which, in the case of the 3− state, leads
to a negative (repulsive) �JR. In these and all other cases,

TABLE III. For protons scattering from 40Ca at 30.3 MeV, characteristics of cross sections and DPPs when the vibrational coupling to the
indicated single state is included, with excitation energies in parentheses. The deformation length is δ. We use σinel for the inelastic scattering
cross section and �σr is the change in reaction cross section due to the coupling.

Case Excitation δ σinel
σinel
δ2 �σr

�σr
δ2 �JR �JI

�JR

δ2
�JI

δ2

(i) 2+ (3.9 MeV) 0.45 4.852 23.96 4.73 23.36 0.50 1.485 2.47 7.33
(ii) 2+ (18.5 MeV, test) 0.45 1.632 8.06 4.73 23.36 0.58 1.585 2.86 7.83
(iii) 2+ (18.5 MeV, GQR) 0.91 6.926 8.36 17.43 21.05 1.05 5.835 1.27 7.05
(iv) 3− (3.737 MeV) 1.6 40.91 15.98 32.96 12.88 − 1.45 12.325 − 0.566 4.814
(v) 3− (3.737 MeV, test) 0.45 3.12 15.41 3.05 15.06 0.35 0.935 1.72 4.617
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FIG. 5. For 30.3 MeV protons scattering from 40Ca, the solid line
is the DPP for the GQR with full complex coupling. The dashed line
is the DPP for excitation of the 3− state at 3.737 MeV and δ = 1.6 fm.
In each case the bare potential was the Becchetti-Greenlees global
potential. Panel labels are as for Fig. 1.

the imaginary DPP has excursions into emissiveness; this is
substantial at r = 0 for the 3− case.

The DPPs that we present are local equivalents of the
formal nonlocal DPP of Feshbach theory. This dynamical
nonlocality is unrelated to exchange nonlocality that generates
most of the energy dependence of the nucleon OMP and is
responsible for the well-known Perey effect; see Refs. [25,26].
The cases in Table III reveal consequences of the underlying
nonlocality such as the different degrees of departure of the
real and imaginary DPPs and their volume integrals from the
proportionality to deformation length squared, δ2, that would
be expected for the formal nonlocal DPP for phonon coupling.
The nonlocality of the underlying nonlocal DPP also manifests
itself as follows: For two phonons coupled to the elastic
channel but not mutually coupled, the nonlocal DPPs must
add. However, local equivalent potentials will not add exactly,
and we have performed a model calculation to demonstrate
this. Two identical 3− phonons at 3.737 MeV were coupled to
the elastic channel and the DPP was calculated, and in Fig. 6 we
compare the DPP due to the two phonons with twice the DPP
due to the single phonon. The difference is a manifestation of
the nonlocality of the formal DPP. The consequence of this
dynamical nonlocality for direct reactions will be discussed in
a subsequent publication. Differences between the radial form
of the DPP due to the 3− state, evident in a close comparison
of Figs. 4 and 6, are a consequence of slightly different forms
of inelastic coupling as specified below in connection with
Table IV.
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FIG. 6. For 30.3 MeV protons scattering from 40Ca, the solid line
is the DPP arising from the coupling to two identical 3− states at
3.737 MeV with δ = 1.6 fm. The dashed line is a factor of 2 times
the DPP for a single 3− state at 3.737 MeV. Panel labels are as for
Fig. 1.

The contribution of the 3− state to the real DPP is apparently
nonlinear, with the negative �JR indicating overall repulsion
for a realistic deformation length. However, the comparison
in Fig. 4 of the DPP with the DPP calculated with the much
smaller δ and scaled by δ2 shows that the response is more
linear than that would suggest, with the negative �JR arising
from the repulsive bump near 5 fm. The fact that the local
DPP shown in Fig. 4 does not scale with δ2 is a manifestation
of the nonlocality of the formal DPP. The local equivalent of
α× a nonlocal potential is not α× the local equivalent of the
original nonlocal potential. Comparing �JR/δ2 and �JI/δ

2

for cases (ii) and (iii) and also for cases (iv) and (v) reveals a

TABLE IV. Comparing the contribution of the 3− vibrational state
to the scattering of protons and neutrons from 40Ca at 30.3 MeV. The
volume integrals of the DPPs and changes to rms radii occur when
the vibrational coupling is included. For protons we present the cases
both with and without Coulomb excitation (couex). We use σinel for
the inelastic scattering cross section and �σr is the change in total
reaction cross section due to the coupling.

Quantity Neutrons Protons (no couex) Protons (couex)

�JR − 1.34 − 1.69 − 1.62
�RR − 0.0198 − 0.0227 − 0.0211
�JI 13.14 14.23 13.125
�RI 0.0221 0.0376 0.0326
�σr 42.8 mb 36.06 mb 33.33 mb
σinel 53.11 mb 46.33 mb 43.57 mb
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much more linear response for the imaginary part than for the
real part. Comparison of the same two pairs of cases reveals
that both the inelastic and reaction cross sections are roughly
linear in δ2, unlike �JR. A comparison of lines (i) and (v)
suggests that a larger angular momentum transfer is associated
with both a smaller DPP and smaller inelastic and reaction
cross sections. For the lower energy excitations, but not for
the GQR at 18.5 MeV, σinel exceeds �σr, so the collective
coupling reduces the remaining absorptive contribution to the
reaction cross section.

Inversion shows that differences between proton and
neutron OMPs can occur as an indirect consequence of the
Coulomb interaction. Table IV compares characteristics of
the DPPs arising in proton and neutron scattering from the
coupling to the 3− state at 3.737 MeV. For protons, there
are cases both with and without Coulomb excitation. In the
absence of Coulomb excitation, the differences in DPP, �σr,
and σinel arise solely from the central Coulomb interaction of
the proton; the mass difference has a negligible effect and the
same bare potential and coupling interactions are used for both
projectiles. Concerning the proton cases, we remark that slight
differences in �JR and �JI from those in line (iv) of Table III
are the result of a slightly different form of inelastic coupling
to the vibrational state.

The calculations can be extended to include many vibra-
tional states. An obvious question is would a more realistic
collection of phonon excitations lead to an averaging out of the
oscillatory features? Smoother potentials would be consistent
with Woods-Saxon phenomenology and folding models based
on the local density approximation, e.g., Refs. [12,13]. To
investigate this, we calculated, ignoring proton spin, the con-
tribution of an array of 10 vibrational states of multipolarities
ranging from dipole, 1−, to 5−, and excitation energies up to
18 MeV. The vibrational states are those selected by Coulter
and Satchler [24] and were coupled with their deformation
lengths. Unlike most of the Ref. [24] calculations, we have
included a small central imaginary term in the bare potential,
with the same geometry as the real component, in part to
represent the coupling to pickup channels. The bare potential
did not depend upon the energy of the nucleons in the excited-
state channels. Pickup coupling was included in Ref. [24] but
is not included in the present calculations. There were no
multiple phonon excitations and no coupling between excited
channels justifying some absorption in the bare potential.

Alongside the proton calculations, we carried out identical
calculations for neutrons. In addition, proton calculations with
no Coulomb excitation were performed in order to identify
those differences in the DPP that are entirely due to the
presence of an undeformed Coulomb potential. The inversion
of the resulting Sl gave the DPPs shown in Fig. 7. Apart
from in the far surface region, the solid and dashed lines
(proton DPPs pot2 and pot3b) follow each other closely, as
do the dotted and dot-dashed (neutron DPPs potm5 and pot6)
lines. The labels “pot2,” “pot3b,” “potm5,” and “pot6” refer
to different inversions as explained below. Characteristics of
the same four inverted potentials are presented in Table V,
which quantifies the difference between the proton and neutron
DPPs. Further substantial differences between the proton and
neutron cases occur in the increase in the reaction cross section
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FIG. 7. For 30.3 MeV protons and neutrons scattering from 40Ca,
the DPPs arising from the coupling to ten phonons. The solid and
dashed lines repesent DPPs for two alternative inversion solutions for
protons, and the dotted and dot-dashed lines represent DPPs for two
alternative inversion solutions for neutrons. Panel (a) gives the real
part and panel (b) gives the imaginary part.

due to the coupling, �σr, and in the summed inelastic cross
section, σinel. It is unclear why the ratio �σr/σinel is 1.68 for
neutrons and 1.23 for protons, a difference that is unrelated to
inversion. In the earlier case of the single 3− excitation, see
Table IV, both �σr and σinel were greater for neutrons than
for protons, unlike the present case. A significant difference
was that the imaginary potential in the 3− case was of global

TABLE V. The contribution of 10 vibrational states to the scatter-
ing of protons and neutrons from 40Ca at 30.3 MeV. Characteristics
of two inverted potentials for neutrons (potm5 and pot6) and two
for protons (pot2 and pot3b) are presented, as in the text. Real and
imaginary volume integrals (in MeV fm3) of the DPPs are presented
as are differences in rms radii (in fm), �RR and �RI, between inverted
and bare potentials. �σr is the change in total reaction cross section
due to the coupling and σinel is the summed inelastic scattering cross
section to the 10 states.

Quantity Neutron Neutron Proton Proton
potm5 pot6 pot2 pot3b

�JR 52.95 53.62 38.24 39.15
�RR 0.043 0.052 − 0.0016 0.0244
�JI 91.74 90.71 75.45 72.68
�RI 0.1406 0.0911 − 0.3454 − 0.5757
�σr 638.7 mb 638.7 mb 533.2 mb 533.2 mb
σinel 379.3 mb 379.3 mb 431.9 mb 431.9 mb
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potential strength. When high-energy target states are excited,
the effect of the Coulomb potential for protons is enhanced
by the corresponding low energy of the protons. This deserves
study as a contribution to the difference between proton and
neutron OMPs.

Concerning the two independent solutions for each case, the
waviness of the DPP leads to some ambiguity in the Sl → V (r)
inversion, with a tendency for the undulations, especially in
the nuclear surface, to become more marked with increasing
precision with which Sl is reproduced. In particular the surface
undulations introduce uncertainties into the evaluation of
volume integrals and (especially) rms radii. Each pair of
solutions represents two different compromises between the
amplitude of the undulations in the surface region and the
precision of the fit to Sl . For protons the solutions are labeled
“pot2” and “pot3b” and for neutrons “potm5” and “pot6.” In
each case, the second listed potential has a lower value of the
S-matrix distance σ , as defined in Ref. [18]; i.e., it fits SL

more closely, together with somewhat greater undularity. All
four inverted potentials lead to angular distributions that are
graphically indistinguishable from those given directly by the
S-matrix from the relevant CC calculation.

We have shown that coupling to the 10 vibrational states
did not lead to a smooth DPP due to any averaging effect
when many undulatory contributions are added. Therefore,
the summed effect of the coupling to multiple vibrational
states, where there is no coupling between these states, yields
a DPP with strong undulations. Within a model based on the
excitation of vibrational states, the coupling between all pairs
of states, and also the coupling to multiple phonon multiplets,
is a challenge for the future. Although the coupling between
any two states involves both the annihilation and creation of
phonons, it is acknowledged that there are many such pairs. We
note that, as a result of dynamical nonlocality, the individual
contributions of phonons do not add precisely, so the addition
of the contributions from 10 separate collective excitations
would not precisely add to the DPP for all 10 included together,
as we have presented.

IV. CONCLUSIONS

The highly nonlocal and l-dependent nature of the con-
tribution of phonon coupling is indicated in the work of
Rawitscher [27] and others, e.g., Ref. [24], who begin with
the Feshbach expressions [28]. However, that work is not
easily related to local optical potential phenomenology and the
differential cross sections to the inelastic channels cannot be
easily monitored as they can with coupled channel calculations
followed by inversion of the elastic scattering S-matrix.

We have shown that the application of exact Slj → V (r) +
l · s VSO(r) inversion [16–18] relates coupling effects to local
potential phenomenology. We first presented a local potential
model of realistic GQR coupling that improved the fit to
angular distribution data in a specific case. The undulations
in this realistic case raised the question of the effect of more
general vibrational couplings. We showed that a justifiable
collection of vibrational states leads to strong undulations
having an amplitude disproportionate to the effect on JR,
therefore contributing much less to the energy dependence

of the real term than knock-on exchange. The relationship
of the undulatory nature of the local equivalent DPP to the
nonlocality and l-dependence of the underlying formal DPP,
and the consequences of this relationship for direct reactions
employing optical potentials in their analysis, are subjects
of previous [29] investigations as well as our own ongoing
investigations. The determination of DPPs by inversion is
highly generalizable since CC calculations can include (i)
coupling between inelastic channels, (ii) coupling to reaction
channels, and, in principle, (iii) exchange processes, although
none of these are included in the calculations reported here.

The present approach is complementary to the highly
developed folding model, e.g., [12–15], incorporating a local
density, LD, model. As remarked by Köhler [30] in the
context of core polarization in shell model calculations,
particle-hole excitations are allowed in finite systems. Models
in which elastic scattering is treated as a reaction involving
a nucleon in the continuum interacting with a finite nucleus,
taking into account the specific properties of that nucleus,
are much less well developed than LD folding models.
However, reaction models open up the possibility of angular
momentum dependence, which does not arise naturally within
current LD models. It is known that l-dependent potentials
have undulatory l-independent S-matrix equivalents. There
is evidence for the inconvenient existence of l-dependence;
this becomes most apparent with closed shell target nuclei for
which deep minima in elastic scattering angular distributions
are less obscured. The consistent patterns revealed in the
various undulatory potentials presented here, and the specific
discussion of alternative potentials in the 10-phonon case,
leave no room for dismissal of the existence of undulatory
effects as an artefact of the inversion procedure.

Specific results and conclusions of this study include the
following:

(i) The effect of GQR coupling, that had been found to
correct the backward angle angular distribution in a
well-known intransigent case, can be represented by a
local and l-independent but undulatory potential.

(ii) The generation of undulatory DPPs by collective
coupling is a general feature. The dependence of the
DPP upon multipolarity and excitation energy was
explored; evidence for dynamical nonlocality was pre-
sented; and various features such as different nonlinear
responses of the real and imaginary volume integrals
were found. The procedure is highly generalizable and
presents an opportunity for revealing a rich range of
phenomena.

(iii) The undulatory nature of the DPPs accounts for the
fact that the effect of collective coupling on scattering
is disproportionate to the contribution to volume
integrals and the overall energy dependence of the
nucleon OMP.

(iv) Within the specific model used, that omits coupling
between inelastic excitations, the inclusion of many
coupled excitations does not lead to a smooth DPP
through an averaging effect.

(v) Collective excitations generate a difference between
proton and neutron potentials for N = Z target nuclei.
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Final remarks: Why are (apparently) satisfactory optical
model potentials not more undulatory? The present work
suggests that the exact fitting of precise and wide angu-
lar range elastic scattering data, using model-independent
methods, leads to undulatory (wavy) potentials which are
not necessarily artifacts of the fitting procedure, but re-

flect true physical phenomena. Fitting high-quality elas-
tic scattering data (usually approximately) by means of
uniform renormalization of folding model potentials effec-
tively discards information contained in the data, infor-
mation concerning the processes described in the present
work.
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