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Regularization of zero-range effective interactions in finite nuclei
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The problem of the divergences which arise in beyond mean-field calculations, when a zero-range effective
interaction is employed, has not been much considered so far. Some of us have proposed, quite recently, a scheme
to regularize a zero-range Skyrme-type force when it is employed to calculate the total energy, at second-order
perturbation theory level, in uniform matter. Although this scheme looked promising, the extension for finite
nuclei is not straightforward. We introduce such a procedure in the current paper, by proposing a regularization
procedure that is similar, in spirit, to the one employed to extract the so-called Vlow-k from the bare force. Although
this has been suggested already by B. G. Carlsson and collaborators, the novelty of our work consists of setting
on equal footing uniform matter and finite nuclei; in particular, we show how the interactions that have been
regularized in uniform matter behave when they are used in a finite nucleus with the corresponding cutoff. We
also address the problem of the validity of the perturbative approach in finite nuclei for the total energy.
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I. INTRODUCTION

Self-consistent mean-field approaches provide a fairly good
starting approximation to describe atomic nuclei [1]. Whereas
so-called ab initio approaches are increasingly successful, they
cannot at present describe heavy systems and/or high-lying
excited states. Mean-field approaches, instead, are able to
reproduce both the experimentally observed trends of many
ground-state properties (masses, radii, deformations, etc.) and
several features of excited states (giant resonances, rotational
bands); moreover, they can be extended if needed. Either
nonrelativistic Hamiltonians of the Skyrme or Gogny type,
or covariant relativistic mean-field (RMF) Lagrangians have
been used indeed beyond the mean-field approximation, for
instance in second-order calculations [2,3], in multiparticle-
multihole schemes [4], in particle-vibration coupling (PVC)
models [5–17], or within the generator coordinate method
(GCM) approach [18–21].

In such approaches one introduces further correlations
on top of those implicit in the mean field. Within PVC,
the nucleons feel the effect of the dynamical fluctuations
of the mean field, on top of its static part; within GCM,
the variational space associated with a single mean-field
configuration is enlarged by superimposing several mean-field
configurations, each being connected with a different value
of some global parameter like the quadrupole deformation. If
effective interactions are fitted at mean-field level one would
imagine that a refit of these interactions is mandatory if they are
employed in a different framework. However, this is usually
not done and Skyrme and Gogny forces or RMF Lagrangians
are used as they are. We have in mind, for the followup of our
discussion, mainly the PVC case since we shall consider in
detail the lowest-order approximation to that model.

If single-particle (s.p.) nuclear states are calculated using
Skyrme or RMF Lagrangians, the corrections induced by PVC
at lowest order are typically several hundreds of keV, ranging
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from small values to ≈1–2 MeV [22]. These corrections
improve as a rule the agreement with experiment, leading to
a r.m.s. deviation with respect to experimental values of about
1 MeV or less in, e.g., 208Pb [6,23]. However, the convergence
of these results with respect to the model space is hard to
assess. Normally, one assumes that the model space is limited
by the fact that only collective vibrations should be taken into
account, but this does not set a cutoff in a clear-cut way.

At the same time, there is another practical and yet more
general point to be kept in mind. When zero-range forces are
used in a beyond mean-field approach like PVC, divergences
arise. In other words, diagrams beyond the Hartree-Fock (HF)
ones (like those displayed in Fig. 1 of Ref. [6]) can be shown,
by simple power counting arguments, to diverge as the model
space is enlarged. This is not a specific problem of Skyrme as
also Gogny forces possess a zero-range term. At present we
do not dispose of a reliable, fully microscopic nonrelativistic
Hamiltonian without zero-range terms. As a consequence, it
is necessary to devise a regularization technique to absorb this
divergence and go beyond the usual PVC calculations. In the
current work, we focus on the Skyrme case.

To simplify the formidable problem of finding a reliable
regularization technique for nuclei, we only consider in the
following the lowest-order (that is, second-order) approxima-
tion for PVC in which the phonon is replaced by a particle-hole
(p-h) pair, and we focus on the correction to the total energy
instead of the correction to the s.p. energies. This problem has
been already tackled in uniform matter [24,25], where it has
been shown that at least a cutoff regularization is possible for
a general Skyrme interaction and an arbitrary neutron/proton
ratio. A dimensional regularization technique [26] has also
been proposed, whereas the general study of the renormaliz-
ability of a Skyrme-type force has been recently addressed
in Ref. [27]. Also these studies concern only uniform matter.
The extension of the techniques introduced in Refs. [24,25] to
finite nuclei is far from straightforward and is the subject of
the current paper.

The total energy is depicted diagrammatically in Fig. 1.
We have drawn only the direct contributions but exchange
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FIG. 1. Diagrammatic representations of the first-order (Hartree-
Fock) and second-order total energy, respectively, in the upper and
lower parts of the figure. The labels outside (inside) parentheses are
those used in the text for the case of uniform matter (finite nuclei).

terms are properly included in our calculations. The first row
of the figure depicts the mean-field or Hartree-Fock (HF) total
energy and the second line the second-order contribution to
the same quantity. The labels outside (inside) parentheses are
momentum (generic) labels, appropriate for uniform matter
(nuclei) respectively.

In the case of uniform matter, a simple power counting
argument dictates that the second-order contribution diverges.
The simplest way to understand it is the following. The inte-
gration on momentum states is finite with respect to the hole
momentum states k1, k2 which have the Fermi momentum kF

as an upper limit. The center-of-mass momentum conservation
leaves only one further momentum scale, which has been
chosen in Refs. [24,25] to be the transferred momentum. If
we label the particle states needed for the calculation of the
second-order energy as k3, k4, the matrix elements are

〈k3,k4|V |k1,k2〉 = 〈k1 + q,k2 − q|V |k1,k2〉 (1)

(cf. Fig. 2), and the quantity

q ≡ k3 − k4 − k1 + k2

2
(2)

is the transferred momentum. For a zero-range interaction
without velocity dependence (i.e., a pure δ force) the second-
order contribution diverges linearly, or in other words it scales
as

∫
d3q

q2 , while the divergence is more severe if momentum-
dependent terms are included. In Refs. [24,25] it has been
shown that, by setting a cutoff � on the transferred momentum,
given an interaction V that provides a reasonable total energy

k1

k3

k2

k4

k1

k1 + q

k2

k2 − q

FIG. 2. Representation of matrix elements in the case of uniform
matter. We compare the notation used in the present paper (left) with
the one in which the transferred momentum q appears (right).

at mean-field level, it is possible to fit an interaction V� that
reproduces the same energy when the second-order correction
has been included with the cutoff �.

In finite nuclei, at variance with uniform matter, there is
no translational invariance, and in dealing with the matrix
elements (1) we are left with two free parameters or two energy
scales. In the current work we have dealt with the two scales
by defining in a precise fashion the relative and center-of-mass
coordinates and the associated momenta. Since the separation
of center-of-mass and relative motion wave functions can be
done in a neat way by using an harmonic oscillator basis, the
calculations that we shall discuss below have been performed
on that basis. We have systematically defined a cutoff λ on the
relative momenta (in initial and final channel) defined as

k ≡ k1 − k2√
2

,

(3)

k′ ≡ k3 − k4√
2

.

Then, in our study, we will show how a simplified Skyrme
interaction, in which only the t0, t3, and α parameters are kept
and which has been regularized in uniform matter, behaves
when it is used in a finite nucleus. We restrict ourselves to
the case of even-even, isospin-symmetric nuclei; in particular,
we will show results for 16O without Coulomb and spin-orbit
forces. Our approach is thus self-consistent in the sense that
we use the same Skyrme interaction both at mean-field and
second-order level, but we compute the total energy at second
order in a perturbative way, by adding the beyond mean-field
contribution on top of HF solutions. We will eventually address
the problem of the validity of such a perturbative approach for
the total energy of a finite nucleus.

The structure of the paper is the following. Section II
is devoted to a thorough explanation of the formalism we
wish to introduce: in particular, in Sec. II A we discuss the
interaction and its regularization, whereas in the next Sec. II B
we show the relationship between the new cutoff employed in
this work and the cutoff that had been introduced previously
in uniform matter. The specific formulas that implement the
regularized calculation of the total energy in a finite nucleus,
on the harmonic oscillator basis, are introduced in Sec. II C.
In Sec. III we describe the results obtained in the case of
16O. Conclusions and considerations related to the envisaged
followup of this work are in Sec. IV.

II. FORMALISM

A. The regularization of the interaction

The cutoff on the relative momentum components of the
effective interaction is analogous to that discussed in Ref. [28].
The underlying philosophy is the same as in the case of
the Vlow-k interaction and it seems quite natural, even by
invoking the original argument that the Skyrme interaction
is a polynomial expansion in the relative momentum that stops
at second order [29]. Therefore, we introduce the cutoffs on the
relative momenta of the initial and final states and we define
a regularized interaction through these cutoffs. In principle,
this procedure could be avoided by using a finite-range force.
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However, as we stressed in the Introduction, we miss at present
a widely used, reliable microscopic pure finite-range force.

To identify properly the relative momenta we introduce
center-or-mass and relative coordinates. We start by writing
the velocity-independent part of the Skyrme force in this form:

V (r ′
1,r

′
2,r1,r2)

= g

(
r1 + r2

2

)
δ(r1 − r2)δ(r1 − r ′

1)δ(r2 − r ′
2). (4)

Our desired change of variables reads(
r (′)

R(′)

)
=

(
1√
2

− 1√
2

1√
2

1√
2

) (
r (′)

1

r (′)
2

)
, (5)

so that the interaction (4) can be written as

V (r ′,R′,r ,R) =
√

2

4
g

(
R√
2

)
δ(r)δ(r ′)δ(R − R′)

=
√

2

4
g

(
R√
2

)
v(r ′,r)δ(R − R′), (6)

where g(R) = t0 + t3
6 [ρ (R)]α . The Fourier transform of the

interaction can be written in a straightforward way as

V (k3,k4,k1,k2)

=
√

2

4

1

�

∫
d3R d3R′ e−i

k3+k4√
2

·R′
g

(
R√
2

)
δ(R − R′)

× e
i

k1+k2√
2

·R 1

�

∫
d3r d3r ′ e−i

k3−k4√
2

·r ′
v(r ′,r) e

i
k1−k2√

2
·r
, (7)

by introducing a finite quantization volume �. The factor
appearing in the second line of this equation can be written
in terms of the variables k ≡ k1−k2√

2
and k′ ≡ k3−k4√

2
that are

the conjugate variables of the relative coordinates defined by
Eq. (5): these are the relative momenta (of the initial and final
states respectively) that we have already introduced in Eq. (3).
Thus we rewrite the factor in the second line of Eq. (7) as

v(k′,k) = 1

�

∫
d3r d3r ′ e−ik′·r ′

v(r ′,r)eik·r = 1

�
, (8)

where the last equality obviously holds if v(r ′,r) = δ(r)δ(r ′)
as we have written in Eq. (6) (we will keep this notation in
what follows).

Then, we introduce the regularized interaction as the
inverse Fourier transform of (8) in which two step functions

θ (λ − k)θ (λ′ − k′) are introduced. In this way, λ and λ′ are the
cutoffs in the relative momenta k and k′, respectively, and the
regularized interaction vλλ′

is obtained as

vλλ′
(r ′,r)

= 1

�

∫
d3k d3k′ eik′·r ′

v(k′,k)θ (λ − k)θ (λ′ − k′) e−ik·r

= 1

4π4

λ2λ′2

rr ′ j1(rλ)j1(r ′λ′) −−−−−→
λ → +∞
λ′ → +∞

δ(r)δ(r ′), (9)

where the usual expansion of the plane waves in spherical
components is used, and the limit in the last line comes from
Eq. (3.5) of Ref. [30].

In what follows, we will employ the regularized interaction
vλλ′

(r ′,r) to evaluate the matrix elements of the interaction (6),
and at times compare with the matrix elements obtained by
using the bare interaction v(r ′,r).

B. Uniform matter and the different choices for the cutoff

In this subsection, we wish to establish a connection
between the cutoff on the transferred momentum (2) [24,25]
and the cutoff on the relative momenta (3). At the same
time, we deal in this subsection with that fact that in the
procedure adopted in Refs. [24,25] there is no cutoff affecting
the HF energy. In the present scheme, we introduce a cutoff
consistently in the HF and second-order energies.

The HF potential energy, shown diagrammatically in the
upper part of Fig. 1, is

EHF = 1

2

∑
ij

〈ij |V̄ |ij 〉, (10)

where V̄ is the antisymmetrized interaction. If we write the HF
energy in symmetric nuclear matter as in Ref. [24], we obtain

E

A
= 8

dgk6
F

ρ(2π )6

4π

3

∫
d3k̃

(
1 − 3

2
k̃ + 1

2
k̃3

)
θ (1 − k̃)

= 3

8
gρ, (11)

where d is the level degeneracy (4 in the case of symmetric
nuclear matter) and k̃ is defined only in this subsection, for
the sake of convenience, as k̃ ≡ k/

√
2kF . If we now wish to

introduce the cutoff λ on k, we have to add a factor θ( λ√
2kF

− k̃).
Then, Eq. (11) becomes

E

A
= 8

dgk6
F

ρ(2π )6

4π

3

∫
d3k̃

(
1 − 3

2
k̃ + 1

2
k̃3

)
θ (1 − k̃)θ

(
λ√
2kF

− k̃

)

= 3

8
gρ(8β3 − 9β4 + 2β6), (12)

where β = min{1, λ√
2kF

}. Clearly, if λ >
√

2kF , then β = 1 and we recover the result of Eq. (11). This has been tested also
numerically, and the result is displayed in Fig. 3. Note the similar figure and reasoning in Ref. [28].
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FIG. 3. (Color online) Energy per particle at the HF level [cf.
Eqs. (10) and (12)] for different values of the cutoff λ on the relative
momentum k.

As for the second-order contribution to the total energy,
the relation between momenta used in the present work and

those employed previously [24,25] can be written, generalizing
Eq. (3), as

⎛
⎜⎝

k

k′

k′′

⎞
⎟⎠ =

⎛
⎜⎜⎝

1√
2

− 1√
2

0
1√
2

− 1√
2

√
2

1√
2

1√
2

0

⎞
⎟⎟⎠

⎛
⎜⎝

k1

k2

q

⎞
⎟⎠ . (13)

The determinant of the Jacobian matrix of this transformation
is 1. One can note that

k′ = k +
√

2q. (14)

The second-order contribution to the total energy, displayed in
the lower part of Fig. 1 with diagrams, is

�E = 1

2

∑
ijmn

〈mn|V |ij 〉〈ij |V̄ |mn〉
εi + εj − εm − εn

, (15)

where ε are HF s.p. energies. We evaluate this expression in
symmetric matter and we keep the notation of this subsection,
that is, k̃ ≡ k/

√
2kF and k̃

′ ≡ k′/
√

2kF , k̃
′′ ≡ k′′/

√
2kF in an

analogous way. Thus, we obtain

�E

A
= χ (ρ)

√
2

4π3

∫
D(k̃,k̃

′
,k̃

′′
)
d3k̃ d3k̃′ d3k̃′′ 1

k̃′2 − k̃2
, (16)

where χ (ρ) has been defined in Ref. [24], and the domain of integration is

D(k̃,k̃
′
,k̃

′′
) ≡ {k̃,k̃

′
,k̃

′′ ∈ R3 : k̃ � 1,k̃′′ � 1,(|k̃′′ + k̃| < 1 ∩ |k̃′′ − k̃| < 1) ∪ (|k̃′′ + k̃
′| > 1 ∩ |k̃′′ − k̃

′| > 1)}.

Our purpose is now to compare with the results of Ref. [24] and convince ourselves that we can use the interactions that have
been fitted therein. To this aim, we must consider the case in which the cutoff λ on relative momenta is larger than

√
2kF , since

otherwise the HF energy should be also modified compared to the calculation with the bare force performed in Ref. [24] (cf.
above). On top of this, the calculation of the integral appearing in Eq. (16) is rather cumbersome, and can be slightly simplified
if λ is larger than 2

√
2kF . In this case a detailed analytic evaluation has been carried out [31]. The result can be written as

�E

A
= χ (ρ)

{
− 11

105
+ 2

105
ln 2 + 2

35
λ̃ − 11

35
λ̃3 − 2

21
λ̃5 −

(
4λ̃5

5
− 4λ̃7

21

)
ln(λ̃)

+
(

1

35
− λ̃4

3
+ 2λ̃5

5
− 2λ̃7

21

)
ln(λ̃ − 1) −

(
1

35
− λ̃4

3
− 2λ̃5

5
+ 2λ̃7

21

)
ln(λ̃ + 1)

}
, (17)

where λ̃ ≡ λ√
2kF

. We have checked that the part that does not depend on λ is equal to the one already written in Ref. [24], as it
should, and that the divergence is linear.

To obtain a better understanding, we have evaluated numerically the two results given by Eq. (17) and Eq. (8) of Ref. [24].
The two calculations are almost indistinguishable when

λ =
√

2�. (18)

We will then use this latter equation in the following way: when we perform a calculation of a finite system with cutoff λ we will
adopt the interaction fitted in uniform symmetric matter with the value of λ given by Eq. (18). Ultimately, we would envisage to
cast uniform matter and finite nuclei in a single scheme, so to be able to fit an effective force in the same spirit of the original
Skyrme force (at second order and then beyond).
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C. The formalism for finite nuclei using the harmonic oscillator basis

In finite nuclei the second -order energy is still given by Eq. (15) but is more conveniently written in angular momentum-coupled
representation as

�E = 1

4

∑
pp′hh′J

(2J + 1)|〈(pp′)J |V̄ |(hh′)J 〉|2
εh + εh′ − εp − εp′

, (19)

where the particle-particle (pp) coupled matrix elements have been introduced, namely

〈(αβ)JMJ |V̄ |(γ δ)JMJ 〉 =
∑
mαmβ

mγ mδ

〈jαmαjβmβ |JMJ 〉〈jγ mγ jδmδ|JMJ 〉〈αβ|V̄ |γ δ〉

=
∑
mαmβ

mγ mδ

(−)jα−jβ+jγ −jδ Ĵ 2

(
jα jβ J
mα mβ −MJ

)(
jγ jδ J
mγ mδ −MJ

)
〈αβ|V̄ |γ δ〉, (20)

where we have introduced the common shorthand notation Ĵ 2 = 2J + 1. Actually, these latter matrix elements do not depend
on MJ because of rotational invariance. Therefore, in Eq. (19) they appear without this label; in that equation, the trivial sum
over MJ has been performed.

In our calculation, we expand the single-particle wave functions in harmonic oscillator basis. Then, the corresponding
matrix elements are evaluated by performing the transformation of the initial and final two-particle states to the center of
mass and relative motion coordinates. As is well known, this can be done in the HO case by exploiting the Brody-Moshinsky
transformations [32–34]. In this subsection we will collect only the main equations related to the matrix elements entering our
calculations; we shall provide some more details about the main steps of their derivation, together with other useful formulas, in
the Appendix.

We shall indicate with the label I = 0, σ , τ and στ the terms of the pp-coupled matrix elements (20) that are proportional,
respectively, to the identity in spin-isospin space, to σ (1)σ (2), to τ (1)τ (2) and to σ (1)σ (2) τ (1)τ (2). The final expression for
these terms reads

〈(nalajaτa,nblbjbτb)JMJ |V̄ |(nclcjcτc,nd ldjdτd )JMJ 〉I

= NIFI

∑
�L

i−la−lb+lc+ld L̂2�̂/2ĵa ĵbĵcĵdGI

⎧⎨
⎩

la lb L
1
2

1
2 �

ja jb J

⎫⎬
⎭

⎧⎨
⎩

lc ld L
1
2

1
2 �

jc jd J

⎫⎬
⎭

× λ2λ′2

π3

∑
niNi

nf Nf

ML(Nf Lnf 0; nalanblb)ML(NiLni0; nclcnd ld )
∫

dR R2RNf L(
√

2βR)g(R)RNiL(
√

2βR)

×
∫

dr rRni0(βr)j1(rλ)
∫

dr ′ r ′Rnf 0(βr ′)j1(r ′λ′). (21)

Here the single-particle states are labeled by the usual quantum numbers in spherical symmetry, n,l,j , together with the third
component of the isospin τ . These single-particle states are expanded in the harmonic oscillator basis, and β is the harmonic
oscillator parameter, β ≡ √

mω/�. The harmonic oscillator single-particle states and their radial wave functions R are defined in
Eq. (A1). The symbol ML corresponds to the Brody-Moshinsky coefficients. The quantitiesNI ,FI ,GI are defined in the Appendix.
Although the structure of the formula should look clear, as it includes the transformations (i) to LS coupling, (ii) to the harmonic
oscillator basis, and (iii) to the center-of-mass and relative coordinates, reading the Appendix may shed some further light on it.

The two-body matrix elements (21) constitute the backbone of our calculation. Nonetheless, since as explained above we
will also use the renormalized interaction at the mean field level, it is useful to provide in this subsection the final form of the
one-body matrix elements of the HF Hamiltonian, that are

h
(α)
ab = tab (22)

+
∑

β
εβ � εF

∑
cd

c∗
β,c〈ac|V̄ |bd〉cβ,d (23)

+ 1

2

∑
βγ

εβ,γ � εF

∑
cdef

c∗
β,cc

∗
γ,d〈cd| ∂V̄

∂c∗
α,a

|ef 〉cβ,ecγ,f , (24)
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where c denotes the expansion coefficients of the s.p. states on the harmonic oscillator basis, the Greek letters represent the set
of quantum number which identify a s.p. state and the Latin letters indicate the harmonic oscillator basis quantum number.

The explicit expression for the term (22) can be easily found in Ref. [35]. The second term (23) can be written using Eq. (21).
Nevertheless, the expression can be further simplified because of two simple considerations [36]:

(i) we are dealing with even-even nuclei, thus the matrix elements of the operator σ (1)σ (2) vanish;
(ii) there is no charge mixing of the HF states, so the isospin exchange operator Pτ reduces to a Kronecker delta.

With these simplifications and by using the orthogonality relations for the 9-j symbol, we get

∑
β

εβ � εF

∑
cd

c∗
β,c〈ac|V̄ |bd〉cβ,d =

∑
β

εβ � εF

∑
cd

∑
J

Ĵ 2

ĵ 2
α

c∗
β,c〈(ac)JM|V̄ |(bd)JM〉cβ,d

=
∑

β
εβ � εF

∑
cd

c∗
β,ccβ,d

∑
L

∑
niNi

nf Nf

L̂2ĵ 2
β

l̂2
αl̂2

β

ML(Nf Lnf 0; alαclβ)ML(NiLni0; blαdlβ)

×
(

1 − 1

2
δqα,qβ

) ∫
dR R2RNf L(

√
2βR)g(R)RNiL(

√
2βR)

× λ2λ′2

π3

∫
dr rRni0(βr)j1(rλ)

∫
dr ′ r ′Rnf 0(βr ′)j1(r ′λ′). (25)

Following the same strategy, the last term (24), which is the rearrangement term, can be written as

1

2

∑
βγ

εβ,γ � εF

∑
cd
ef

c∗
β,cc

∗
γ,d〈cd| ∂V̄

∂c∗
α,a

|ef 〉cβ,ecγ,f

= 1

2

∑
βγ

εβ,γ � εF

∑
cd
ef

c∗
β,cc

∗
γ,dcβ,ecγ,f

∑
L

∑
niNi

nf Nf

L̂2ĵ 2
γ ĵ 2

β

l̂2
γ l̂2

β

ML(Nf Lnf 0; clβdlγ )ML(NiLni0; elβf lγ )

×
(

1 − 1

2
δqγ ,qβ

)∫
dR R2RNf L(

√
2βR)g′(R)RNiL(

√
2βR)

λ2λ′2

π3

∫
dr rRni0(βr)j1(rλ)

∫
dr ′ r ′Rnf 0(βr ′)j1(r ′λ′),

(26)

where g′(R) = t3α
24π

Ralα (βR)Rblα (βR)ρα−1(R).

III. RESULTS

In our work we have focused on the calculation of the total
energy (19) in 16O. As explained in the previous sections, we
aim at using interactions fitted with a cutoff regularization
in uniform matter and check that this strategy is enough to
prevent the divergence of the total energy in the finite system.
The relation between the cutoffs that are used throughout our
procedure has been given in Eq. (18) above, and reads

λ =
√

2�.

The interactions V� associated with the refit of symmetric
matter, when the second-order contribution has an associated
cutoff �, are provided in Table I. As already mentioned, we
employ an harmonic oscillator basis. The oscillator parameter
β ≡ √

mω/� is 0.5 fm−1 and the number of oscillator shells
is nmax = 10. The radial wave functions are calculated up to a
maximum value of r given by R = 12 fm.

In Fig. 4 we display the mean-field energy obtained with
the renormalized interactions, as a function of λ, by means
of the line labeled with SkP�. As a reference we provide

the same quantity calculated with the bare interaction SkP
(line labeled with SkP), and the mean-field value (without
cutoff) which is associated with the horizontal line and is
−210.3 MeV. We stress here that the velocity-dependent
terms of the original SkP interaction have been dropped.
The original SkP set, if of course all terms (central terms,
both velocity-independent but also velocity-dependent ones,
spin-orbit term and Coulomb term) are retained, reasonably
reproduces the experimental value of the binding energy of
16O which is known to be −127.619 MeV [38]. The HF
result obtained with SkP can be understood, since when the
cutoff increases the calculation tends obviously to the exact
one, while reducing the momentum components amounts to
trying to minimize the energy in a Hilbert space which is
not complete: although the variational principle cannot be
rigorously invoked, it is plausible that the energy does not
attain its minimum and is instead smaller in absolute value. It
is instructive to note that the convergence to the exact result is
obtained only for λ of the order of 2.5 fm−1: in fact, inside this
light nucleus the density can rise up to 0.25 fm−3 (cf. Fig. 5)
and the associated maximum effective (local) kF is therefore
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TABLE I. Parameter sets (named SkP�) obtained in the fits associated with different values of the cutoff � compared with the original set
SkP, labeled with SkP (first line) [37].

t0 t3 α t0 t3 α

SkP −2931.70 18709.00 1/6
SkP0.1 −2937.45 18758.12 0.16674 SkP1.9 −649.68 7431.97 1.13340
SkP0.2 −2931.54 18723.70 0.16713 SkP2.0 −618.70 7062.93 1.16305
SkP0.3 −2906.45 18577.75 0.16881 SkP2.1 −593.41 6596.73 1.16744
SkP0.4 −2842.25 18204.63 0.17328 SkP2.2 −573.43 6052.99 1.14457
SkP0.5 −2719.66 17494.17 0.18249 SkP2.3 −558.79 5469.05 1.09369
SkP0.6 −2531.08 16406.95 0.19873 SkP2.4 −549.99 4892.54 1.01547
SkP0.7 −2288.58 15022.28 0.22432 SkP2.5 −548.24 4374.67 0.91252
SkP0.8 −2020.60 13517.37 0.26140 SkP3.0 −544.99 3624.67 0.66267
SkP0.9 −1758.46 12085.78 0.31144 SkP3.5 −514.79 3386.33 0.62361
SkP1.0 −1524.15 10862.96 0.37503 SkP4.0 −489.40 3180.44 0.59654
SkP1.1 −1326.93 9904.53 0.45153 SkP5.0 −448.19 2858.89 0.56329
SkP1.2 −1166.61 9204.84 0.53904 SkP8.0 −368.24 2279.23 0.52259
SkP1.3 −1038.29 8724.34 0.63454 SkP10.0 −334.14 2045.30 0.51106
SkP1.4 −935.83 8409.46 0.73409 SkP20.0 −244.47 1457.29 0.49046
SkP1.5 −853.56 8203.44 0.83327 SkP40.0 −176.94 1035.19 0.48119
SkP1.6 −786.87 8050.45 0.92736 SkP60.0 −145.95 846.69 0.47822
SkP1.7 −732.24 7899.09 1.01172 SkP80.0 −127.16 733.92 0.47675
SkP1.8 −687.11 7704.42 1.08184 SkP100.0 −114.20 656.81 0.47589

≈1.54 fm−1, so that the maximum value for the momenta
defined in Eq. (3) can be as high as 2.2 fm−1. The result
associated with the renormalized interaction is more subtle to
understand. For low values of the cutoff the renormalization
of the interaction is not significant (as one can notice from the
values of the parameters in Table I). This is understandable,
since for small values of λ the second-order contribution in
infinite matter is small, and one needs to weakly renormalize
the interaction in order to obtain in the same system the HF
energy associated with the bare interaction. As a consequence,
for small values of λ the curves associated with the bare and
renormalized interactions overlap. However, for large values
of λ the total energy still decreases in absolute value when it

0 0.5 1 1.5 2 2.5 3
λ [fm−1]

-250

-200

-150

-100

-50

0

50

E H
F [M

eV
]

SKP
SKPΛ

FIG. 4. (Color online) Total HF energy as a function of a cutoff λ.
The dashed (dot-dashed) curve corresponds to the result obtained with
SkP with only t0, t3 terms (SkP�). The thin dotted line corresponds to
the result without any cutoff, obtained with SkP with only t0, t3 term,
and is meant to guide the eye for the convergence of the dashed line.
See the text for a more detailed discussion.

is calculated with the renormalized interaction. In this case,
in fact, most of the momentum components are retained, but
the interaction is strongly renormalized (again, this can be
seen from the values of the parameters in Table I) and, as
a consequence, the mean-field total energy is small. As a
conclusion, we infer from Fig. 4 that for either too small
or too large values of λ the system calculated at mean-field
level with the renormalized interaction is far away from the
system we would like to reproduce by adding the second-order
contribution: in other words, perturbation theory is doomed to
fail for those values of λ, especially if we start from a situation
in which the total energy is positive at mean-field but not only
in that case. In practice, we restrict our following discussion
to, and draw conclusions from, values of λ between ≈2 and

0 2 4 6 8 10 12
r [fm]

10-3

10-2

10-1

ρ(
r)

 [f
m

−3
]

full HF

0 1 2

0.15

0.20

0.25

full HF

FIG. 5. (Color online) Total density profiles obtained with the
renormalized SkP� interactions. The thick black line refers to the
bare interaction. The inset shows some detail of the region in which
the density attains its largest values.
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FIG. 6. (Color online) Total energy at second order as a function of the maximum particle energy (left panel) or as a function of the cutoff
(right panel). All curves are obtained with renormalized interactions. See the text for a discussion.

2.7 fm−1 (although we will show in the figures some results
associated with a broader range of values for λ).

This view is in part confirmed by the results shown in
Fig. 5: here we display the different profiles for the total
density emerging from the HF calculations when different
renormalized interactions are employed. Along the same line
of the discussion in the previous paragraph, if the cutoff is
small a large fraction of the high momentum or small distance
components of the relative motion are cut, and the system
becomes very dilute, almost like a uniform unbound nucleon
gas.

We now discuss our main results, that are summarized in
the three panels of Figs. 6 and 7. In the left panel of Fig. 6, the
total energy calculated at second order with the renormalized
interactions is shown, for various values of λ, as a function
of the maximum particle energy εmax

p . For the sake of clarity
only a selection of the results obtained with the interactions
associated with different values of � are displayed. For values
of λ between ≈2 and 2.7 fm−1, the results are close to one
another. Even more importantly, these results do not depend
on the value of εmax

p , at least if this is larger than ≈80 MeV.
This can be understood on the basis of a simple semiclassical

FIG. 7. (Color online) The same as Fig. 6 in a three-dimensional
representation, that is, total energy at second order as a function of
both the maximum particle energy and the cutoff.

argument: particles having energies larger than ≈80 MeV,
and having thus very large kinetic energies, would contribute
to the total energy through matrix elements associated with
momentum components that are actually eliminated by our
choice of the cutoff. Therefore, the most important conclusion
is that our proposed renormalization procedure can work, and
the extra scale associated with the maximum value of the
particle energy, or with the total momentum, does not spoil
that procedure.

The stability of the renormalized results for the second-
order energy, is also visible in the right panel of Fig. 6. The
curves associated with values of λ between ≈2 and 2.7 fm−1,
for a broad range of values of εmax

p , lie in the shaded box that
corresponds to ≈10% error in the total energy. A quick glance
of the behavior of our results is allowed by the plot of Fig. 7,
that collects the same information already provided in the two
panels of Fig. 6 by means of a more intuitive three-dimensional
global representation.

IV. CONCLUSIONS

The problem associated with the fact that zero-range forces
produce divergent results when employed beyond mean field
has become object of a renewed interest. Skyrme forces
have zero-range character but also Gogny forces possess a
zero-range terms; pure finite-range forces have not been so
widely developed and systematically applied in nonrelativistic
approaches.

The problem of the renormalization of these divergences
has been tackled first in a simple system like uniform nuclear
matter, restricting to the case of the second-order correction to
the energy. The purpose of this work is to make a significant
first step in the direction of a full renormalization scheme
for the Skyrme force in finite nuclei. Our main idea is to
work in a harmonic oscillator basis, so that the center-of mass
and relative motion coordinates and associated momenta can
be neatly separated. The cutoff we set on the momentum
associated with the relative motion can be then related to the
one used in the previous calculations of nuclear matter. We
have illustrated such formal scheme in full detail in this paper.
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As a numerical application, we have limited ourselves to
16O calculated with a simple, momentum-independent Skyrme
force. Our main results are listed as follows:

(i) under certain conditions, it is possible to relate the
cutoff λ on the relative momentum to the cutoff � that
has been previously introduced in Refs. [24,25] [cf.
Eq. (18) and the related discussion];

(ii) if calculations of the total energy at second order are
envisaged, with a cutoff λ, the interactions introduced
in uniform matter using the associated value of � can
be employed;

(iii) the practical way to do these calculations is to work
in harmonic oscillator basis and change the form of
the interaction so that relative-momentum components
larger than λ are cut;

(iv) at least for a reasonable range of values, λ ≈ 2 −
2.7 fm−1, the results turn out to be stable, namely
the divergence does not show up;

(v) in particular, the second energy scale associated with
the total momentum, that in finite systems is associated
with the maximum value of the particle energy εmax

p ,
does not seem to spoil this stability. This can be
justified by semiclassical arguments.

In terms of perspectives, several issues remain to be
considered. Our results look promising only in a limited
window for values of the cutoff. We are inclined to think that
this is due to the choice of a perturbative scheme to calculate
the second-order energies. At variance with the case of infinite
matter, a consistent second-order calculation that employs the
proper equations (Dyson equation for the s.p. energies, Koltun
sum rule for the total energy) is probably called for. On top

of this, we are dealing with a simple Skyrme force which is
not very realistic and the extension to the full force must be
also envisaged. Only after this, one could judge if the plan of
devising a zero-range force that is fitted and consistently used
beyond mean field, is feasible. In this respect, our results can
be seen as promising but we can draw mainly qualitative, and
not very quantitative, conclusions at the present stage.
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APPENDIX: DERIVATION OF THE PP-COUPLED
MATRIX ELEMENTS

We discuss here, in some detail, the steps that are necessary
to evaluate the particle-particle coupled matrix elements of
Eq. (20) and we give some intermediate formulas which can
be useful for the reader.

Let us consider a two-particle state |nalajama,nblbjbmb〉
in a harmonic oscillator potential. The single-particle wave
functions are

|nljmτ 〉 = ψτ
nljm(r) = ilRnl(βr)

[
Yl(r̂) ⊗ χ 1

2

]
jm

ξτ , (A1)

where β2 = mω
�

. If the two states are coupled to total angular
momentum JM as in Eq. (20), we need to switch from the
j -j coupling scheme to the L-S one before making the Brody-
Moshinsky transformation. Then, the two-particle states read

|nalajamaτa,nblbjbmbτb〉 =
∑
JMJ

��

�̂�̂ĵaĵb〈jamajbmb|JMJ 〉
⎧⎨
⎩

la lb �
1
2

1
2 �

ja jb J

⎫⎬
⎭∣∣[nanb,(la,lb)�,

(
1
2 , 1

2

)
�,τaτb

]
JMJ

〉

=
∑
J��

∑
M�M�MJ

MlML

∑
σaσb

ila+lb (−)ja−jb+�+M�+�+M�+L+l Ĵ 2�̂2�̂2ĵa ĵb

⎧⎨
⎩

la lb �
1
2

1
2 �

ja jb J

⎫⎬
⎭

×
(

ja jb J
ma mb −MJ

)(
� � J

M� M� −MJ

)(
1
2

1
2 �

σa σb −M�

)(
L l �

ML Ml −M�

)

×
∑
nlNL

M�(NLnl; nalanblb)Rnl(βr)RNL(βR)YlMl
(r̂)YLML

(R̂)χσa
(1)χσb

(2)ξτa
(1)ξτb

(2), (A2)

where the center of mass and relative motion coordinates have been introduced as in Eq. (5) and the corresponding Brody-
Moshinsky coefficients are denoted by M� [32–34]. In addition, several intermediate quantum numbers are introduced.

We want to compute the matrix elements of the Skyrme interaction, written as in Eq. (4), between the two-particle states (A2).
We are interested in the antisymmetrized interaction V̄ = V (1 − PMPσ Pτ ), where PM is the Majorana exchange operator while
Pσ and Pτ are the spin and isospin exchange operators. In the case of the center of mass and relative motion coordinate system
the Majorana operator is nontrivial. The exchange operator acts on the two-particle state (A2) in the following way:

|nblbjbmbτb,nalajamaτa〉 = PMPσPτ |nalajamaτa,nblbjbmbτb〉

= ila+lb ĵa ĵb

∑
JMJ

∑
�M�

∑
�M�

∑
LML

∑
lMl

∑
Nn

∑
σaσb

(−1)la+lb−LĴ 2�̂2�̂2

⎧⎨
⎩

la lb �
1
2

1
2 �

ja jb J

⎫⎬
⎭
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× (−1)ja−jb+�+M�+�+M�+L+lM�(NLnl; nalanblb)Rnl(βr)RNL(βR)YlMl
(r̂)YLML

(R̂)

×
(

ja jb J
ma mb −MJ

)(
� � J

M� M� −MJ

)(
1
2

1
2 �

σa σb −M�

)(
L l �

ML Ml −M�

)
×Pσ [χσa

(1)χσb
(2)]Pτ [ξτa

(1)ξτb
(2)],

that is equal to Eq. (A2) except for the Pσ , Pτ operators and the phase factor (−1)la+lb−L. This can be checked by direct calculation.
As mentioned in the main text (cf. Sec. II C) we provide separately the expressions for the different spin and isospin terms of

the pp-coupled matrix elements (20), and we shall use for them, respectively, the label I that can assume the values I = 0,σ,τ,στ .
We also introduce the following quantities:

FI =
⎧⎨
⎩

δτaτc
δτbτd

if I = 0,σ,∑
μ(−)1+τa+τb+μ

(
1
2 1 1

2
τc μ −τa

)(
1
2 1 1

2
τd −μ −τb

)
if I = τ,στ,

GI =
⎧⎨
⎩

1 if I = 0,τ,

(−)1+�

{
1
2

1
2 �

1
2

1
2 1

}
if I = σ,τ,

NI =
⎧⎨
⎩

3
4 if I = 0,

− 3
2 if I = σ,τ,

−9 if I = στ,

MI =
{

1 − 1
4 (−1)lc+ld−L if I = 0,

(−1)lc+ld−L if I = στ.

Then, the general expression for the four terms of the matrix elements reads
〈(nalajaτa,nblbjbτb)JMJ |V̄ |(nclcjcτc,nd ldjdτd )JMJ 〉I

= NIFI

∑
��
Ll

i−la−lb+lc+ld (−)lMIGI

⎧⎨
⎩

la lb �
1
2

1
2 �

ja jb J

⎫⎬
⎭

⎧⎨
⎩

lc ld �
1
2

1
2 �

jc jd J

⎫⎬
⎭

× �̂2�̂2ĵa ĵbĵcĵd

l̂

∑
niNi

nf Nf

M�(Nf Lnf l; nalanblb)M�(NiLnil; nclcnd ld )

×
∫

dR R2RNf L(
√

2βR)g(R)RNiL(
√

2βR)
∫

dr dr ′ r2r ′2Rnf l(βr ′)vlm(r ′,r)Rnil(βr). (A3)

It can be a useful exercise to insert in this expression the standard coefficients of the multipole expansion of the velocity-
independent part of the Skyrme interaction, that are

vlm(r ′,r) = (−)l l̂

4π

δ(r)

r2

δ(r ′)
r ′2 . (A4)

Then the matrix element reads
〈(nalajaτa,nblbjbτb)JMJ |V̄ |(nclcjcτc,nd ldjdτd )JMJ 〉I

= NIFI

∑
�L

i−la−lb+lc+ld
L̂2�̂2ĵa ĵbĵcĵd

4π
GI

⎧⎨
⎩

la lb L
1
2

1
2 �

ja jb J

⎫⎬
⎭

⎧⎨
⎩

lc ld L
1
2

1
2 �

jc jd J

⎫⎬
⎭

×
∑
niNi

nf Nf

ML(Nf Lnf 0; nalanblb)ML(NiLni0; nclcnd ld )

× Rni0(0)Rnf 0(0)
∫

dR R2RNf L(
√

2βR)g(R)RNiL(
√

2βR). (A5)

This expression does not include isospin coupling (when this is considered, cf. the analogous expression in, e.g., Ref. [32]).
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For the renormalized interaction the multipole expansion coefficients can be found, instead, as

vλλ′
lm (r ′,r) = 1

4π4

λ2λ′2

rr ′ j1(λr)j1(λ′r ′)
(−)l

l̂

∑
m

∫
dr̂ ′ dr̂ Y ∗

lm(r̂)Ylm(r̂ ′)

= 1

4π4

λ2λ′2

rr ′ j1(λr)j1(λ′r ′)
(−)l

l̂

∑
m

4πδl,0δm,0 = 1

4π3

λ2λ′2

rr ′ j1(λr)j1(λ′r ′)δl,0; (A6)

then, the corresponding matrix element reads

〈(nalajaτa,nblbjbτb)JMJ |V̄ |(nclcjcτc,nd ldjdτd )JMJ 〉I

= NIFI

∑
�L

i−la−lb+lc+ld L̂2�̂2ĵa ĵbĵcĵdGI

⎧⎨
⎩

la lb L
1
2

1
2 �

ja jb J

⎫⎬
⎭

⎧⎨
⎩

lc ld L
1
2

1
2 �

jc jd J

⎫⎬
⎭

× λ2λ′2

π3

∑
niNi

nf Nf

ML(Nf Lnf 0; nalanblb)ML(NiLni0; nclcnd ld )

×
∫

dR R2RNf L(
√

2βR)g(R)RNiL(
√

2βR)
∫

dr rRni0(βr)j1(rλ)
∫

dr ′ r ′Rnf 0(βr ′)j1(r ′λ′).

These are the matrix elements displayed in Eq. (21) in the main text.
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