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Background: An unexpected enhancement in the γ -ray strength function, as compared to the low-energy tail
of the giant dipole resonance (GDR), has been observed for Sc, Ti, V, Fe, and Mo isotopes for Eγ < 4 MeV.
This enhancement was not observed in subsequent analyses on Sn isotopes, but a pygmy dipole resonance
(PDR) centered at Eγ ≈ 8 MeV was however detected. The γ -ray strength functions measured for Cd isotopes
exhibit both features over the range of isotopes, with the low-energy enhancement decreasing and PDR strength
increasing as a function of neutron number. This suggests a transitional region for the onset of low-energy
enhancement, and also that the PDR strength depends on the number of neutrons.
Purpose: The γ -ray strength functions of 105–108Pd have been measured in order to further explore the proposed
transitional region.
Method: Experimental data were obtained at the Oslo Cyclotron Laboratory by using the charged particle
reactions (3He, 3He′γ ) and (3He, αγ ) on 106,108Pd target foils. Particle-γ coincidence measurements provided
information on initial excitation energies and the corresponding γ -ray spectra, which were used to extract the
level densities and γ -ray strength functions according to the Oslo method.
Results: The γ -ray strength functions indicate a sudden increase in magnitude for Eγ > 4 MeV, which is
interpreted as a PDR centered at Eγ ≈ 8 MeV. An enhanced γ -ray strength at low energies is also observed for
105Pd, which is the lightest isotope measured in this work.
Conclusions: A PDR is clearly identified in the γ -ray strength functions of 105–108Pd, and a low-energy
enhancement is observed for 105Pd. Further, the results correspond and agree very well with the observations
from the Cd isotopes, and support the suggested transitional region for the onset of low-energy enhancement
with decreasing mass number. The neutron number dependency of the PDR strength is also evident.
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I. INTRODUCTION

Astrophysical models aiming at explaining the nature of
the s- and r-process nucleosyntheses are highly dependent
on neutron capture cross sections and corresponding reaction
rates. This is also true for other applied cases, e.g., modeling
of isotope production in reactors. The γ -ray strength function
is an important input parameter in calculations of radiative
neutron capture (n,γ ) cross sections, and information on the γ -
ray strength function for energies below the neutron separation
energy is essential for reliable estimates of these cross sections.

Nuclear level densities and γ -ray strength functions are
average quantities used to describe nuclear thermodynamic
and electromagnetic properties, respectively, in the quasi-
continuum of excited states. The onset of quasicontinuum
is typically at a few MeV of excitation energy above the
ground state, and denotes the region of energy where the
density of levels is so high that their widths and level spacing
are comparable in size. The nuclear physics group at the
University of Oslo has developed the Oslo method, which
allows for extraction of both level density and γ -ray strength
from the onset of quasicontinuum and up to the nucleon
binding energies [1]. The present work concerns analyses of
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these quantities for 105–108Pd, with most focus on the γ -ray
strength functions.

In previous analyses of 43–45Sc [2,3], 44–46Ti [4–6],
50,51V [7], 56,57Fe [8], and 93–98Mo [9] isotopes using the Oslo
method, an unexpected enhancement in the γ -ray strength
was discovered at low γ energies, i.e., Eγ < 4 MeV. This
low-energy enhancement was recently supported by results
from a different experimental approach for 95Mo [10], which
gives confidence to the results of the Oslo method. The feature
has drawn a lot of attention, and it has recently been shown that
the low-energy enhancement in 56Fe is dominated by dipole
transitions [11]. However, the electromagnetic character has
not yet been determined, and there are theoretical explanations
suggesting both electric [12] and magnetic [13] characters.

In similar analyses of 116–119Sn [14] and 121,122Sn [15] using
the Oslo method, there were no signs of the low-energy en-
hancement. However, enhancement at higher energies (Eγ >
4 MeV) was observed for these nuclei, and this was interpreted
as a pygmy dipole resonance (PDR) centered at Eγ ≈ 8 MeV.

The motivation for investigating the Pd isotopes was to
further examine the γ -ray strength functions for nuclei in the
mass region where the characteristics of the γ -ray strength
function seem to change. Indications of a transition have
recently been observed for 105,106,111,112Cd [16], where the
results show enhancement at low energy (Eγ < 4 MeV)
for 105,106Cd, but not for 111,112Cd. Enhanced strength for
Eγ > 4 MeV is observed for all the Cd isotopes, corresponding
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to the PDR seen in Sn isotopes. However, the Cd isotopes
show that the PDR strength increases as a function of neutron
number, which was not seen for the Sn isotopes. The Pd
isotopes investigated in this work are very close to the Cd
isotopes in both proton and neutron numbers, and the results
are expected to reveal more information on these matters.

The article is structured in the following way: The experi-
mental approach and the Oslo method are explained in Secs. II
and III. Analyses and results are discussed in Secs. IV and V,
and a concluding summary is provided in Sec. VI.

II. EXPERIMENT

The experiments were conducted at the Oslo Cyclotron
Laboratory (OCL) at the University of Oslo, where the MC-35
Scanditronix cyclotron was used to accelerate 3He ions to a
kinetic energy of 38 MeV. In two separate runs, the accelerated
ion beam was directed at self-supporting 106,108Pd target foils
of thicknesses ≈ 1 mg/cm2, and the excited states of 105–108Pd
were populated through the charged-particle reactions (3He,
αγ ) and (3He, 3He′γ ). The energies of the ejected particles
and coinciding γ -ray emissions were measured for a period of
seven days in both runs, and detected events were stored in list
mode for offline sorting.

Particle energies were measured with SiRi [17], which is a
composite detector system consisting of 8 trapezoidal-shaped
silicon �E-E telescopes put together to form a hollow,
truncated cone-like geometry. The modules consist of a
1550-μm-thick E detector with a 130-μm-thick �E detector
in front, and the �E detectors are further segmented into
8 curved strips covering scattering angles between 40◦ and
54◦ relative to the beam direction. This makes up 64 particle
telescopes in total. The system was positioned in the forward
direction, with the center of the detector modules at an angle
of 45◦ and a distance of 5.0 cm from the target.

Coincident γ rays were measured by CACTUS, a detector
system consisting of 28 spherically distributed, collimated,
5′′ × 5′′ NaI(Tl) γ -ray detectors. The detectors have a total
efficiency of ≈ 15%, and an energy resolution of ≈ 7%
FWHM at Eγ = 1332 keV. The detector front ends were
positioned 22.0 cm from the center of the target.

The measured events were sorted according to reaction
channels by gating on the corresponding �E-E curves, and the
resulting particle and γ -ray energy spectra were calibrated to
known level and γ -transition energies. The excitation energy
of residual nuclei was calculated from the reaction kinematics,
and the measured data were arranged in (Eγ ,Ex) coincidence
matrices, where Eγ and Ex are the γ -ray and excitation
energies, respectively. The raw coincidence matrix of 107Pd
is depicted in Fig. 1(a).

III. THE OSLO METHOD

The first step of the Oslo method is to unfold the raw γ -ray
spectra, which has to be done before useful information can
be extracted from the coincidence matrices. The γ -ray spectra
were unfolded by applying the folding iteration method [18]
with the measured response functions of CACTUS. This
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FIG. 1. (Color online) Coincidence matrices for 107Pd. Details
are provided in the text.

procedure corrects the γ -ray spectra for unwanted contribu-
tions due to the detector response.
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Further, primary γ rays have to be deduced from the
unfolded spectra. Extraction of primary γ rays is necessary
because γ decay may, and generally does, occur through a
cascade of transitions that cannot be distinguished in time.
As a consequence, the measured γ -ray spectra contain all
generations of γ rays in the cascade, but only the first
generation (i.e., primary) γ rays provide information which is
relevant to the Oslo method. A method for extracting the first
generation γ -ray spectra has been developed [19], in which a
weighted sum of all γ spectra corresponding to Ex < E′

x is
subtracted for each E′

x . The weights are found by an iterative
procedure, and matrices of first-generation γ -ray spectra are
extracted from the unfolded (Eγ ,Ex) coincidence matrices.
Figures 1(a)–1(c) show the matrices of 107Pd for each step of
this procedure.

The γ -ray spectra of the first-generation matrix are then
normalized to unity for each Ex bin. This is performed for
energies above Eγ,min and Ex,min, and results in a matrix
of relative γ -decay probabilities P (Eγ ,Ex). The lower limit
Eγ,min is determined on the basis of the first-generation γ -ray
spectra, because the extraction method generally leads to
oversubtraction at low γ -ray energies due to a mismatch with
the spin distribution in the lowest excitation energy region.
The lower limit Ex,min is set to exclude discrete levels from the
analysis. Figure 1(d) shows the normalized matrix for 107Pd.

The probability of γ decay, from an initial state Ex to a final
state Ef by a γ ray of energy Eγ = Ex − Ef , is proportional
to the level density at the final state ρ(Ef ) and a γ -ray
energy dependent transmission coefficient T (Eγ ). Hence, the
normalized first generation γ -ray matrix can be factorized
into [1]

P (Eγ ,Ex) ∝ T (Eγ )ρ(Ex − Eγ ), (1)

which is built on the assumption that the nucleus reaches a
compound state after excitation, and that the manner of the
subsequent γ decay is mainly statistical and independent of
how the state was formed. According to the Brink hypothe-
sis [20], any collective decay mode has the same properties
whether it is built on the ground state or on an excited state,
and the γ -ray transmission coefficient is therefore assumed
to depend on γ -ray energy only. It can also be noted that the
factorization is closely related to Fermi’s golden rule, e.g.,
Ref. [21].

A mathematical representation of the relative γ -decay
probability matrix is given by the expression [1]

Pth(Eγ ,Ex) = T (Eγ )ρ(Ex − Eγ )∑Ex

Eγ =Eγ,min
T (Eγ )ρ(Ex − Eγ )

, (2)

and unique functional forms of T (Eγ ) and ρ(Ex − Eγ )
are derived by fitting Eq. (2) to the matrices of relative
decay probabilities by a least-squares method described in
Ref. [1]. Unfortunately, there is an infinite set of equally good
normalizations for the two extracted functions that lead to
reproduction of Pth(Eγ ,Ex). However, all the solutions can be
reached by applying the transformations [1]

ρ̃(Ex − Eγ ) = ρ(Ex − Eγ )Aeα(Ex−Eγ ), (3)

T̃ (Eγ ) = T (Eγ )BeαEγ , (4)

where A and B are scaling coefficients, and α adjusts the
slopes of the functions. In order to determine the most physical
solutions of Eqs. (3) and (4), the extracted data are normalized
to known experimental data as described in the following.

The determination of A and α is performed by normalizing
the extracted level density at both low and high excitation
energies. At low excitation energies, this is done by matching
the extracted level density to the number of known levels
per Ex bin. In the high-energy region, it is normalized to a
semi-experimental level density derived from the backshifted
Fermi gas (BSFG) model and data from neutron resonance
experiments.

In the BSFG model, the total level density for all spins and
parities is given by [22]

ρ(Ex) = 1

12
√

2σ

e2
√

a(Ex−E1)

a1/4(Ex − E1)5/4
, (5)

where Ex is the excitation energy, a is the level density
parameter, E1 is the energy backshift parameter, and σ is
the spin-cutoff parameter. Further, the spin-dependent level
density is described by

ρ(Ex,J ) = ρ(Ex)

[
(2J + 1)e−(J+1/2)2/2σ 2

2σ 2

]
, (6)

where J denotes the spin of the nucleus. The bracketed part of
Eq. (6) is the spin distribution g(Ex,J ) of the level density [23],
and the spin-cutoff parameter is given by [22]

σ 2(Ex) = 0.391A0.675(Ex − 0.5Pa′)0.312, (7)

where Pa′ is the deuteron pairing energy. The uncertainty of
the spin-cutoff parameter was determined by assuming that
the lowest reasonable value is 10% less than calculated by
Eq. (7), and that the highest reasonable value is 5% higher
than estimated by [24],

σ 2(Ex) = 0.0146A5/3 1 + √
1 + 4a(Ex − E1)

2a
. (8)

This approach was chosen because Eq. (8) gives a relatively
higher value of the spin-cutoff parameter than Eq. (7).

In a neutron resonance experiment where It is the spin of the
target nucleus, and when assuming equal parity distribution,
the neutron resonance spacing D0 can be written in terms of
the spin dependent level density as

1

D0
= 1

2

∑
j

ρ(Bn,|It ± j |), (9)

where j = |� ± s| represents the component of the total
angular momentum of the neutron. Since D0 denotes the
resonance spacing for s-wave neutrons, it implies that � = 0
and hence j = 1/2. The relation of Eq. (9) is justified by the
fact that all levels with Jf = |It ± 1/2| is accessible in an
s-wave neutron resonance experiment, and the expression is
divided by 2 due to the assumption of equal parity distribution
at the neutron binding energy. The total ρ(Bn) is found by
combining Eqs. (6) and (9), and rearranging with respect to
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FIG. 2. Normalization of the level density of 108Pd. Data points
are fitted between the arrows, and further details are provided in the
text.

the level density,

ρ(Bn) = 2

D�

1∑
j g(Bn,Jf )

. (10)

The semi-experimental level density, to which the experi-
mental data are normalized at high Ex , is given by Eq. (5) and
scaled to match the value of the deduced ρ(Bn). Interpolation
by this semi-experimental level density is necessary because
the experimental data can only be extracted up to Ex =
Bn − Eγ,min. Figure 2 depicts the normalization for 108Pd.

The absolute normalization of T (Eγ ), i.e., finding the
scaling parameter B, is performed by using experimental
values of the average total radiative width 〈�γ 〉 at the neutron
binding energy, and the s-wave neutron resonance spacing D0.
The average total radiative width of excited states with energy
Ex , spin J and parity π can be described by [25]

〈�γ (Ex,J,π )〉 = 1

2πρ(Ex,J,π )

∑
XL

∑
J ′,π ′

∫ Ex

Eγ =0
dEγTXL(Eγ )

× ρ(Ex − Eγ ,J ′,π ′), (11)

where X and L denote the electromagnetic character and
multipolarity respectively, and the summation and integration
are over all final states with

J ′ =
L∑

L′=−L

J + L′, (12)

and π ′ accessible by γ transitions of energy Eγ .
It is well known that nature favors the lowest multipolarity

allowed for a transition, and due to the high density of
levels in the quasicontinuum and the relatively low spin states
populated by the 3He reactions, γ -ray transitions of the lowest
multipolarity are far more likely to occur than the higher
ones. It is thus assumed that the main contribution to the

experimental γ -ray transmission coefficient T (Eγ ) is of dipole
character, i.e., L = 1. The γ -ray transmission coefficients are
then essentially described by

T (Eγ ) =
∑
XL

TXL(Eγ ) ≈ [TE1(Eγ ) + TM1(Eγ )]. (13)

Under the assumption that there is an equal number of
accessible states for both parities from any excitation energy
and spin, the level density is expressed as

ρ(Ex,J, ± π ) = 1
2ρ(Ex,J ). (14)

The average total radiative width of neutron capture
resonances can be expressed in terms of the experimental γ -ray
transmission coefficients as

〈�γ (Bn,Jf )〉 = B

2πD0

∫ Bn

Eγ =0
dEγTL=1(Eγ )

× ρ(Bn − Eγ )
1∑

L′=−1

g(Bn − Eγ ,Jf + L′),

(15)

where B is the normalization coefficient. The spin distribution
of the experimental level density is normalized so that∑

J g(Ex,J ) ≈ 1, for all available spins J . The experimental
value of 〈�γ 〉 at the neutron binding energy is then a weighted
sum of the level widths of excited states with spin Jf , and
the transformation coefficient B can be determined by using
the experimental 〈�γ (Bn)〉 and D0 available in Ref. [26].
Because of the integral in Eq. (15), the normalization requires
transmission coefficients in the entire energy range Eγ ∈
[0,Bn]. The T (Eγ ) is therefore extrapolated with exponential
functions at low and high energies. Normalization of the
transmission coefficient for 108Pd is shown in Fig. 3. Note that
the high Eγ exponential fit was performed to data somewhat
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TABLE I. Input parameters [22,26] used in the normalization procedure.

Nucleus Bn a E1 Pa′ σ (Bn) It D0 ρ(Bn) 〈�γ 〉
(MeV) (MeV−1) (MeV) (MeV) (eV) (105 MeV−1) (meV)

105Pd 7.094 11.8 −0.79 0.199 4.12+0.87
−0.41 0 194(30) 1.80+1.30

−0.53 148(10)
106Pd 9.561 12.8 0.85 2.625 4.20+0.95

−0.42 5/2 10.9(5) 7.09+3.11
−1.24 151(5)

107Pd 6.536 12.5 −0.73 0.083 4.09+0.84
−0.41 0 174(25) 1.98+1.35

−0.57 85(10)a

108Pd 9.228 13.4 1.01 2.613 4.19+0.93
−0.42 5/2 14.8(8) 5.20+2.31

−0.94 169(39)b

aEstimated from two s-wave resonances in Ref. [26].
b〈�γ 〉 = 130 meV is used in the normalization.

lower than the highest points, which was due to achieve a better
match to the normalization of the other isotopes.

Finally, the γ -ray strength function f (Eγ ) is deduced
through its relation to the γ -ray transmission coefficient [27]

TXL(Eγ ) = 2πE2L+1
γ fXL(Eγ ), (16)

when assuming L = 1 to be the dominating multipolarity for
transitions in the quasicontinuum. The parameters used for
determining the normalization coefficients are provided in
Table I. The 〈�γ 〉 value for 107Pd was not directly available for
s-wave neutrons, but was deduced from two s-wave neutron
resonances at higher energies listed in Ref. [26]. Note that for
108Pd the lowest value of 〈�γ 〉 within the uncertainty had to be
used in order to match the magnitude of the strength functions
for the other isotopes.

The extracted level densities and γ -ray strength functions
are depicted in Fig. 4, where the error bars represent statistical
uncertainties and propagated errors from the unfolding and
first-generation method. Generally, low count rates are respon-
sible for the uncertainties at high γ -ray energies, while the
propagated errors are most significant for low Eγ . A detailed
discussion can be found in Ref. [28]. The strength functions
are also compared to the sum of the average fE1 and fM1

from [29], which has slightly lower magnitude. However, it
was not possible to obtain a normalization giving a lower
magnitude for the strength functions and at the same time
a good agreement between the level densities and strength
functions for the measured isotopes. The normalization applied
for the functions in Fig. 4 is therefore regarded as the best
choice.

IV. LEVEL DENSITIES

The normalized level densities of the four nuclei are
depicted in Fig. 4(a). They seem to be quite parallel above
≈ 3 MeV, which is satisfying since the level densities of
neighboring nuclei are generally parallel on a logarithmic
scale. The level densities are higher for the even-odd 105,107Pd
isotopes due to the last valence neutron, which may occupy
additional single-particle levels. This typically results in seven
times the amount of accessible states for the even-odd nuclei
above ≈ 3 MeV, as compared to their even-even 106,108Pd
neighbor isotopes. Single particle levels are not accessible
to even-even nuclei below the pair-breaking energy, and the
energy required to break a nucleon pair in 106,108Pd is about
Ebr ≈ 2.8–2.9 MeV. This energy is given by Ebr,p(n) ≈ 2�p(n),

where the pair gap parameters �p(n) are given by differences
in binding energy Bp(n); see, e.g., Ref. [30]. The pair gap
parameters for 105–108Pd are listed in Table II. The few excited
states observed below the pair-breaking energy for 106,108Pd
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FIG. 4. (Color online) Extracted level densities (a) and γ -ray
strength functions (b) of 105–108Pd.

044311-5



T. K. ERIKSEN et al. PHYSICAL REVIEW C 90, 044311 (2014)

TABLE II. Nucleon pair gap parameters. See text for explanation.

Nucleus �n �p

(MeV) (MeV)

105Pd 1.34 1.18
106Pd 1.37 1.47
107Pd 1.43 1.09
108Pd 1.44 1.40

are caused by collective vibrational motion, and breaking of
pairs can be recognized in Fig. 4(a) as the level densities show
a logarithmically constant increase in magnitude above the
respective pair-breaking energies.

Above the pair-breaking energies the characteristics of the
level densities can be described by the constant temperature
formula [22]

ρCT(Ex) = 1

T
e(Ex−E0)/T , (17)

where T is the temperature, Ex is the excitation energy, and
E0 is the energy shift. As a test, the constant temperatures
were estimated by letting T and E0 be free parameters, and
fitting Eq. (17) to the level densities by a least square fit. The
fitted temperatures are provided in Table III and they seem
to agree with each other, as well as with the predicted values
of Ref. [22] shown in column 3. The good agreement gives
confidence to the slope found in the normalization procedure.

V. GAMMA-RAY STRENGTH FUNCTIONS

The largest and most important resonances of atomic nuclei
are the giant electric dipole resonance (GEDR) and the giant
magnetic dipole resonance (GMDR). The GEDR accounts
for most of the strength, and is often referred to as the
giant dipole resonance (GDR). In the following, the extracted
γ -ray strength functions will be compared to empirical models
developed for these resonances. These models are summarized
in Ref. [27]. The models used in this work are the standard
Lorentzian model for the magnetic dipole (M1) spin-flip
resonance [31], and the generalized Lorentzian model for the
electric dipole (E1) resonance. The standard Lorentzian is

TABLE III. Temperatures estimated from fitting the constant
temperature formula, Eq. (17), to the experimental level densities.
Column 2 indicates the fit limits. Column 4 shows temperatures
from [22].

Nucleus Ex,1–Ex,2 Tfit TCT

(MeV) (MeV) (MeV)

105Pd 2.0–5.0 0.72+0.04
−0.05 0.75(3)

106Pd 3.0–6.0 0.71+0.02
−0.03 0.71(2)

107Pd 2.0–4.7 0.69+0.04
−0.05 0.70(4)

108Pd 3.0–6.0 0.68+0.02
−0.03 0.68(2)

described by [20,32]

f SLo
M1 (Eγ ) = k × σrEγ �2

r(
E2

γ − E2
r

)2 + E2
γ �2

r

, (18)

where σr , Er , and �r is the peak cross section, energy
centroid, and width of the resonance respectively. The fac-
tor k = (3π2

�
2c2)−1 = 8.674 × 10−8 mb−1MeV−2 gives the

conversion of the differential cross section (mb/MeV) to units
of MeV−3, which is the unit of the γ -ray strength function
for dipole transitions. The generalized Lorentzian is described
by [33]

f GLo
E1 (Eγ ,T ) = k × σr�r

[
Eγ �En

(Eγ ,T )(
E2

γ − E2
r

)2 + E2
γ �2

En
(Eγ ,T )

+ 0.7 × �En
(0,T )

E3
r

]
, (19)

where

�En
(Eγ ,T ) = �r

E2
r

(
E2

γ + 4π2T 2
)
. (20)

This model takes into account that the width of the E1
resonance is dependent of Eγ and T , and includes a nonzero
limit as Eγ → 0 MeV.

The GDR models were fitted to experimental (γ ,n) data
from Ref. [34], and the resulting parameters are listed in
Table IV. The temperatures, T , were taken as free, constant
parameters in the fits. Further, the deformation parameter β2

was also needed in order to calculate two-component GDR
models, and this was taken from theoretically derived values
calculated within the finite-range droplet model (FRDM) [35].

Figures 5(a)–5(d) depict the extracted γ -ray strength
functions, experimental (γ,n) data, and giant dipole resonance
models for comparison. The PDR model, which is also
included in these figures, will be explained in the following
discussion.

First of all, an abrupt enhancement is observed in the
experimental γ -ray strength functions for Eγ > 4 MeV, as
compared to the GDR. This feature is interpreted as a PDR,
and seems to be increasing as a function of neutron number.
Enhancement for Eγ < 4 MeV is evident for 105Pd, but not for
the other isotopes. The observations correspond to discoveries
made for cadmium isotopes [16], which showed a resonance
for Eγ > 4 MeV, and also enhanced strength at low energy, i.e.,
Eγ < 4 MeV. The results showed that both the enhancements
above and below Eγ ≈ 4 MeV seems to be dependent on
neutron number, with the low-energy enhancement inversely
proportional and the PDR strength proportional to the number
of neutrons. However, it should be stressed that it is not
believed there is any connection between the two enhancement
mechanisms; the limit of Eγ = 4 MeV is simply used as a
delimiter to distinguish them. Further, the enhancement in
the γ -ray strength functions above Eγ ≈ 4 MeV is also very
similar to the results found for tin isotopes [14,15]. However, a
neutron number dependency of the strength was not observed
for these isotopes, and the tin isotopes also completely lacked
the low-energy enhancement.
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TABLE IV. The parameters used in the systematic GDR models.

Nucleus Er1 �r1 σr1 Er2 �r2 σr2 Er,M1 �r,M1 σr,M1 β2 T

(MeV) (MeV) (mb) (MeV) (MeV) (mb) (MeV) (MeV) (mb) (MeV)

105Pd 15.00 5.95 111.37 17.34 7.84 55.68 8.69 4.0 1.35 0.171 0.50+0.17
−0.05

106Pd 15.06 5.99 111.41 17.40 7.90 55.71 8.66 4.0 1.26 0.171 0.47+0.08
−0.15

107Pd 14.79 5.79 113.12 17.48 7.97 56.56 8.64 4.0 1.37 0.198 0.51+0.17
−0.04

108Pd 14.53 5.60 118.70 17.07 7.61 59.35 8.61 4.0 1.43 0.190 0.49+0.27
−0.08

The Oslo method cannot distinguish between M1 and E1
strength, and the low-energy enhancement for Eγ < 4 MeV for
105Pd thus cannot be assigned a specific electromagnetic char-
acter experimentally. As discussed in the Introduction, there
are two different theoretical works predicting either E1 [12] or
M1 [13] character of the low-energy enhancement; at present,
neither of them can be excluded based on the experimental
information at hand. Similarly, the electromagnetic character
of the increased strength for Eγ > 4 MeV is also uncertain. In

a recent study of the (p,p′)90Zr reaction [36], the authors find
comparable cross sections for E1 and M1 resonances centered
at excitation energies of 9.15 and 9.53 MeV, respectively.
The former was interpreted as an E1 PDR, and the latter as
an M1 spin-flip resonance with energy centroid and width
following the systematics in RIPL-3 (the Reference Input
Parameter Library at IAEA) [27] reasonably well. In addition,
considerable E1 strength has been observed in the same energy
region in (γ,γ ′) experiments involving A ∼ 140 nuclei [37].
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FIG. 5. (Color online) The extracted f (Eγ ) compared to models. The shaded area indicates systematical errors in the normalization
procedure due to uncertainties in σ , D0, and 〈�γ 〉. The error bars of the Oslo data contain statistical errors, as well as uncertainties in the
unfolding and extraction of first-generation γ -ray spectra.
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TABLE V. Fitted parameters of the pygmy resonances.

Nucleus Epyg �pyg σpyg

(MeV) (MeV) (mb)

105Pd 7.81 2.81 0.64+0.76
−0.40

106Pd 7.81 2.81 1.08+0.47
−0.16

107Pd 7.81 2.81 1.55+2.59
−0.89

108Pd 7.81 2.81 2.05+3.14
−0.26

Based on these facts, it was thus assumed in the present work
that the M1 spin-flip resonance follows the systematics given
in Ref. [27], and that the additional strength is due to the E1
pygmy resonance (PDR).

As for the Sn and Cd isotopes, it was not possible to make
a good fit to the pygmy resonance with a single Lorentzian
distribution Eq. (18). When this problem was encountered for
the Sn and Cd isotopes, a single Gaussian distribution was
used instead. Such a Gaussian shape has also been used for the
E1 pygmy in exotic, neutron-rich nuclei, e.g., for 68Ni [38].
It is possible that this single Gaussian distribution represents
the sum of a number of narrow Lorentzians, but there is no
theoretical foundation to our knowledge that supports this.
However, as distinct structures have been observed in the PDR
for A ∼ 140 nuclei in (γ,γ ′) experiments [37], and a splitting
into an isovector and isoscalar part has been measured in the
same mass region [39,40], it could very well be true that the
assumed Gaussian shape is composed of complex, underlying
structures. In order to keep the fit on a basic level in terms of
free parameters, the pygmy resonance was chosen to be fitted
by a single Gaussian distribution also in this work,

fpyg = k ×
√

2

π
× σpyg

�pyg
e−2(Eγ −Epyg)2/�2

pyg , (21)

where the functional form has been expressed in such a way
that the PDR parameters follow the same notation as the GDR
parameters.

A systematic investigation of the γ -ray strength functions
was performed by adopting the description of the total strength,

ftot = f GLo
E1 + f SLo

M1 + fpyg, (22)

and fitting it to the experimental data. Note that the fE1 and fM1

resonance parameters were maintained, and the parameters
Epyg and �pyg were adopted from a free fit to the 108Pd data.
This was done because the dataset of 108Pd covers the largest
range, and because it is assumed that the centroid and width
of the PDR do not change considerably for the neighboring
nuclei. Thus, only the pygmy resonance parameter σpyg was
treated as a free parameter for the 105–107Pd isotopes. The
parameters were determined by a least-squares fit, and the
resulting values are shown in Table V. It is possible to identify
systematic trends among the peak cross sections; i.e., they
seem to increase by a fixed value (≈ 0.5 mb) with every
additional neutron.

As can be seen in Figs. 5(a)–5(d) the pygmy resonance is
well reproduced by a Gaussian distribution. The shaded area
in the figures represents errors imposed by uncertainties in

TABLE VI. Integrated strengths of the pygmy resonances.

Nucleus σTRK σpyg,int σpyg,int/σTRK

(MeV mb) (MeV mb) (%)

105Pd 1550.86 6.41+7.59
−4.01 0.41+0.49

−0.26
106Pd 1562.26 10.76+4.74

−1.56 0.69+0.30
−0.10

107Pd 1573.46 15.47+25.93
−8.87 0.98+1.65

−0.56
108Pd 1584.44 20.52+31.38

−2.62 1.30+1.98
−0.17

the spin cutoff parameter σ , neutron resonance parameter D0,
and the radiative width 〈�γ 〉. It is assumed that neighboring
isotopes have more or less overlapping strength functions, and
the errors are thus constrained by the small uncertainties of
106Pd data.

Assuming that all the PDR strength is caused by E1
transitions, the integrated pygmy strengths were compared to
the TRK sum rule [41–43]

σTRK ≈ 60
NZ

A
MeV mb. (23)

In Table VI it can be seen that the ratio of the integrals
increase by ≈ 0.3% with increasing neutron number, which
roughly follows the predictions of Ref. [44]. Further, the excess
strength exhausts ≈ 1–2 % of the TRK sum rule, in agreement
with other experimental results [37,39,40].

A commonly accepted explanation for the PDR is that a
collective skin of excess neutrons oscillate with respect to
a Z ≈ N core [44–46]. Microscopic calculations have been
performed within this picture, with promising results [47].
However, the collectivity of the resonance is still under debate,
and another set of microscopic calculations [48] actually
oppose the idea of a collective mode. The latter work states
that the resonance might instead be caused by rapidly varying
particle-hole excitations, which are said to be mixed proton
and neutron excitations, and that the neutrons carry more
strength. Both the collective and noncollective pictures might
thus explain the neutron number dependency of the PDR
strength. Figure 6 shows the integrated PDR strengths of the
cadmium and palladium isotopes plotted as a function of N/Z.
The data indicate that the PDR strength increases as a function
of neutron number; however, the functional form cannot be
determined due to the large error bars.

VI. SUMMARY AND CONCLUSIONS

The level densities and γ -ray strength functions of 105–108Pd
have been extracted and analyzed. The recommended normal-
ization of the extracted data is supported by the good agreement
between all the data sets.

The level densities seem to correspond well to known
characteristics. The temperatures deduced from the logarith-
mically constant slopes of the level densitites agree very well
in value, both compared to each other and to empirical values.
This indicates that the level densities are quite parallel, and
further supports the slopes determined in the normalization
procedure. The extracted level densities may be used for
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FIG. 6. (Color online) The integrated PDR strengths of the
Cd [16] and Pd isotopes.

further investigation of the thermodynamic properties of the
Pd isotopes.

The γ -ray strength functions were compared to parameter-
ized GDR models, and for Eγ > 4 MeV they all exhibited
an abrupt enhancement of the strength relative to these
models. This corresponds to previous observations for tin
and cadmium isotopes. The 105Pd data also clearly indicate a
low-energy enhancement, in contrast to the other Pd isotopes

which have only very weak or no indications of this. These
findings are consistent with previous observations for the
cadmium isotopes, and supports the idea of a transitional
region. There are rather large uncertainties in the deduced
PDR data, however, when assuming that the γ -ray strength
functions should be very similar for neighboring nuclei, the
most reasonable values are constrained by the low uncertainty
of the 106Pd data.

The results show that the strength of the pygmy resonance
increases as a function of neutron number, which indicates
that the resonance is related to the excess neutrons in a
systematical way. The nature of the resonance cannot be
concluded based on this behavior, because both the collective
and noncollective pictures suggest a neutron dependency. In
the collective neutron-skin picture it is trivial that the strength
increases with excess neutrons, and in the noncollective picture
it is stated that most of the strength is carried by neutrons.
However, the Gaussian shape of the PDR suggests that there
is a large number of narrow resonances in this energy region,
which opposes the idea of a single collective neutron-skin
resonance.
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A. Lagoyannis, T. Lönnroth, K. Mazurek, M. Norrby, H. T.
Nyhus, G. Perdikakis, A. Schiller, S. Siem, A. Spyrou, N. U. H.

Syed, H. K. Toft, G. M. Tveten, and A. Voinov, Phys. Rev. C
83, 014312 (2011).

[7] A. C. Larsen, R. Chankova, M. Guttormsen, F. Ingebretsen,
S. Messelt, J. Rekstad, S. Siem, N. U. H. Syed, S. W. Ødegård,
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