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Collective Hamiltonian for wobbling modes
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The simple, longitudinal, and transverse wobblers are systematically studied within the framework of a
collective Hamiltonian, where the collective potential and mass parameter included are obtained based on the
tilted axis cranking approach. Solving the collective Hamiltonian by diagonalization, the energies and the wave
functions of the wobbling states are obtained. The obtained results are compared with those by the harmonic
approximation formula and particle rotor model. The wobbling energies calculated by the collective Hamiltonian
are closer to the exact solutions by the particle rotor model than the harmonic approximation formula. It
is confirmed that the wobbling frequency increases with the rotational frequency in simple and longitudinal
wobbling motions while decreases in transverse wobbling motion. These variation trends are related to the
stiffness of the collective potential in the collective Hamiltonian.
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I. INTRODUCTION

Atomic nuclei possess a wide variety of shapes in both
their ground and excited states. The shapes may range
from spherical to deformed, from quadrupole to octupole,
and even more exotic shapes, such as superdeformed and
tetrahedral. For deformed nuclei, they in general possess an
axially symmetric shape. The loss of axial symmetry would
lead to a triaxial shape. The triaxiality has been invoked to
describe many interesting phenomena including the γ band [1],
signature inversion [2], anomalous signature splitting [3],
chiral symmetry breaking [4–6], and the wobbling motion [1].
The wobbling motion and chirality are regarded as fingerprints
of stable triaxial nuclei.

The wobbling motion within nuclear rotation was originally
introduced by Bohr and Mottelson [1] in the context of the
triaxial rotor model (TRM). For a rotating triaxial even-even
nuclei, the rotation motions about any of the axes are all
possible and the corresponding TRM Hamiltonian reads

Ĥrot = Î 2
1

2J1
+ Î 2

2

2J2
+ Î 2

3

2J3
, (1)

with three distinct moments of inertia Jk (usually defines J1

as maximal) associating with each of the principle axes. It
is pointed out that although the triaxial nucleus energetically
favors the rotation about the axis with the largest moment
of inertia (i.e., one axis), contributions from rotations about
the other two axes (two and three axes) would quantum
mechanically disturb this rotation and force the angular
momentum vector off the one axis. As a consequence, besides
the uniform rotation about one axis, there is a wobbling
motion [1]. The energies of wobbling states, characterized
by the wobbling phonon number n together with total angular
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momentum I , are

E(n,I ) = I (I + 1)

2J1
+

(
n + 1

2

)
��wob. (2)

The quantum number n describes the wobbling motion of the
axes with respect to the direction of I . For small amplitudes,
this motion has the character of a harmonic vibration with
wobbling frequency given by

��wob = 2I

√(
�2

2J2
− �2

2J1

)(
�2

2J3
− �2

2J1

)
, (3)

which is related to the moments of inertia of three axes and
found to be proportional to the spin. Similar to Ref. [7], such
type of wobbling motion for a triaxial rotor is also denoted as
simple wobbler at the present investigation.

The wobbling motion appears not only in the even-even
nuclei but also in the odd-A nuclei. For rotating odd-A triaxial
nuclei, there are two types of wobbling motions suggested
by Frauendorf and Dönau [7] very recently according to
the relation between the orientation of quasiparticle angular
momentum vector with respect to the rotor axis with the largest
moment of inertia. If the quasiparticle angular momentum
vector is aligned with the axis with the largest moment of
inertia, it is called longitudinal wobbler. If the quasiparticle
angular momentum vector is perpendicular to the axis with
the largest moment of inertia, it is called transverse wobbler.
Assuming frozen alignment of the quasiparticle with one
of the rotor axes and harmonic oscillations (HFA), a rather
simple analytic expression for the wobbling frequency of
these two types of wobbling motions is derived [7]. According
to this analytic expression, the increasing trend of wobbling
frequency for a longitudinal wobbling motion and decreasing
trend for transverse wobbling can be expected.

On the experimental side, although the wobbling phe-
nomenon has been predicted for a long time [1], it was not
observed until the beginning of this century when the first
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experimental evidence was reported in 163Lu [8]. Subse-
quently, it has been extensively studied in the triaxial strongly
deformed (TSD) region around N = 94, where the wobbling
bands have been identified in 161,163,165,167Lu [9–14] and
167Ta [15]. All wobbling bands in this mass region are based
on the πi13/2 configuration. Very recently, a new candidate
wobbling band was proposed in 135Pr [7], which is built
on πh11/2 configuration, differing from the configuration of
previous known examples. For even-even nuclei, however, the
wobbling spectra are scarce since stable triaxial ground states
are rare. The best example identified so far is 112Ru [16].

On the theoretical side, the wobbling motion was first
investigated by TRM [1]. Following the discovery of the first
wobbling structure in odd-A163Lu [8], the quantal particle
rotor model (PRM) was used to describe the wobbling
mode, see Refs. [7,17–20]. Based on the framework of
mean field theory, there are many efforts to extend the
cranking model to study the wobbling motion. Due to the
mean-field approximation, the cranking model yields only
the yrast sequence for a given configuration. Therefore, in
order to describe the wobbling excitations, one has to go
beyond the mean-filed approximation. At present, this has
been done by incorporating the quantum correlations by
means of random phase approximation (RPA) [21–28] or
by the generator coordinate method after angular momentum
projection (GCM + AMP) based on the cranking intrinsic
states [29].

Another promising method is to construct a collective
Hamiltonian on the top of cranking mean field solutions.
By taking into account the quantum fluctuation along the
collective degree of freedom, the collective Hamiltonian goes
beyond the mean-field approximation and restores the broken
symmetry [30]. This has been implemented based on the
framework of tilted axis cranking (TAC) single-j shell model
to investigate the chiral vibration and rotation motions [31,32].
The chiral symmetry broken in the intrinsic reference frame
is restored and chiral doublet bands are obtained in the
laboratory reference frame. For the wobbling motion, the
wobbling states are formed due to the quantum fluctuation
of the total angular momentum deviating from the principle
axes of the rotor. It is thus interesting to extend the collec-
tive Hamiltonian to describe the phenomenon of wobbling
motion.

In this work, the collective Hamiltonian will be extended
to study the simple, longitudinal, and transverse wobbling
motions, in particular, to examine the trend of the wobbling
frequency with respect to the rotational frequency. In the
collective Hamiltonian, the collective potentials are calculated
from the TAC model and the mass parameter is obtained with
the assumption of harmonic approximation (HA) for simple
wobbling motion or HFA approximation for longitudinal and
transverse wobbling motions. The energy levels and wave
function of wobbling states are obtained by diagonalizing
the collective Hamiltonian. The corresponding energy spectra
will be in comparison with the results obtained by HA (HFA)
analytic expression as well as TRM (PRM) for simple (longi-
tudinal and transverse) wobbling to evaluate the accuracy of
the collective Hamiltonian.

The paper is organized as follows. In Sec. II, a brief
introduction to the collective Hamiltonian is given. The
corresponding numerical details adopted in the calculations
are presented in Sec. III. In Sec. IV, the obtained potential
energy and the mass parameter are respectively shown for
the three types of wobbling motions and the corresponding
energy levels and wave functions obtained by the collective
Hamiltonian are discussed in details. A brief summary is given
in Sec. V.

II. THEORETICAL FRAMEWORK

The collective Hamiltonian, in terms of a few numbers of
collective coordinates and momenta, is an effective method for
describing various collective processes which involve small
velocities. The well-known Bohr Hamiltonian describes the
collective rotational and vibrational degrees of freedom with
the five collective intrinsic variables β, γ , and Euler angles
� [1]. In Ref. [30], to describe the chiral motions in triaxial
rotational nuclei, a collective Hamiltonian based on the TAC
solutions was constructed. Therein, the orientation of nucleus
in rotating mean field, described by polar angle θ and azimuth
angle ϕ in the spherical coordinate as illustrated in Fig. 1, is
considered as collective variable. As the motion along the ϕ
direction is much easier than the θ direction, the collective
Hamiltonian has been restricted to one-dimensional motion
along ϕ direction [30].

For the wobblers caused by the quantum fluctuation of
the total angular momentum orientation, the azimuth angle
ϕ can also be taken as collective coordinate to the wobbling
motions and the wobbling excitation is restricted to the one-
dimensional motion along the ϕ direction. It is necessary to
mention that in a semiclassical model for wobbling motion, the

azimuth angle defined as cos−1( 〈Î1〉
I

) has been interpreted as
the wobbling angle of the total angular momentum vector [33].
The two azimuth angles are consistent with each other when
θ = 90◦.

The detailed theoretical framework of collective Hamil-
tonian based on the TAC solutions has been formulated in
Ref. [30]. The formalism can be analogized to describe the
wobbling motion. Here for completeness, a brief introduction
to the formalism is presented.

FIG. 1. (Color online) Orientation of the rotational frequency ω

with respect to the principal axes.
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A. Collective Hamiltonian

Taking ϕ as the collective variable, the classical form of
the collective Hamiltonian is written as the sum of kinetic and
potential terms

Hcoll = Tkin(ϕ) + V (ϕ) = 1
2B(ϕ)ϕ̇2 + V (ϕ), (4)

where V (ϕ) is collective potential and B(ϕ) mass parameter.
The quantized form of the collective Hamiltonian is obtained
according to the Pauli prescription [34]

Ĥcoll = − �
2

2
√

B(ϕ)

∂

∂ϕ

1√
B(ϕ)

∂

∂ϕ
+ V (ϕ). (5)

By solving this Hamiltonian on the basis states with appropri-
ate boundary condition on ϕ, e.g., box boundary condition [30],
the wobbling levels and corresponding wave functions can be
obtained.

B. Collective potential V (ϕ)

Both the collective potential V (ϕ) and the mass parameter
B(ϕ) in the collective Hamiltonian (4) can be determined based
on the TAC model.

Let us first discuss V (ϕ) for the cases of longitudinal and
transverse wobblers. For schematic discussions, we consider
a system of a high-j particle coupled to a triaxial rotor. The
cases for more than one particle coupled to triaxial rotor can
be easily extended as well. The cranking Hamiltonian reads

ĥ′ = ĥdef − ω · ĵ ,

ω = (ω sin θ cos ϕ,ω sin θ sin ϕ,ω cos θ ), (6)

where ĵ is the single particle angular momentum and deformed
single particle Hamiltonian ĥdef is taken as the single-j shell
Hamiltonian

ĥdef =1

2
C

{(
ĵ 2

3 − j (j + 1)

3

)
cos γ

+ 1

2
√

3
(ĵ 2

+ + ĵ 2
−) sin γ

}
. (7)

Diagonalizing the cranking Hamiltonian, one obtains the total
Routhian

E′(θ,ϕ) = 〈h′〉 − 1

2

3∑
k=1

Jkω
2
k, Jk : moments of inertia.

(8)

Minimizing the total Routhian with respect to θ for given ϕ,
the collective potential V (ϕ) is finally obtained.

For simple wobbler, i.e., a simple triaxial rotor without
coupling any particles, the total Routhian (8) is degenerated to

E′(θ,ϕ) = −1

2

3∑
k=1

Jkω
2
k, (9)

and similarly the collective potential V (ϕ) is obtained by
minimizing the total Routhian with respect to θ for given ϕ.

C. Mass parameter B

In Ref. [30], the mass parameter is calculated by the
cranking method. However, for the simple wobbler with
a frozen rotor assumption, the full single particle levels
are not available in the present TAC model. Therefore, in
the following, we apply another approximated method to
determine the mass parameter.

Before discussing how to calculate the mass parameter, it
is worth noting once more that as pointed out by Bohr and
Mottelson [1], the wobbling motion as a small amplitude
vibration has the character of a harmonic oscillation with
frequency �wob. As is well known, the oscillation frequency
� for a harmonic oscillator system is related to the mass
parameter B of the oscillator and the stiffness parameter C
of the harmonic oscillator potential by

� =
√

C

B
. (10)

Therefore, once the stiffness parameter C and oscillation
frequency � are determined, the mass parameter B can be
obtained.

To extract the stiffness parameter C of the collective
potential V (ϕ), one can expand the collective potential V (ϕ)
by Taylor series at ϕ = 0◦ up to ∼ϕ2 terms, i.e., the harmonic
approximation (HA) is adopted. For the total Routhian surface
calculation (9) of a simple wobbler, one can find that its
minimum along the θ direction is always at θ = 90◦ for any
value of ϕ. Therefore, the collective potential becomes

V (ϕ) = − 1
2ω2(J1 cos2 ϕ + J2 sin2 ϕ) (11)

≈ − 1
2J1ω

2 + 1
2ω2(J1 − J2)ϕ2, for ϕ → 0◦. (12)

Equation (12) suggests that the collective potential can be
regarded as the sum of a rotational energy term along the one
axis with frequency ω and a harmonic oscillation potential term
along ϕ direction with stiffness parameter C = ω2(J1 − J2).
Thus the wobbling frequency �wob and the mass parameter B
are related each other by

��wob = �

√
C

B
= �ω

√
J1 − J2

B
. (13)

To determine the mass parameter B in Eq. (13), we
further recall the wobbling frequency (3) given by Bohr and
Mottelson [1]

��wob = 2I

√(
�2

2J2
− �2

2J1

)(
�2

2J3
− �2

2J1

)

= �
2I

J1

√
(J1 − J2)(J1 − J3)

J3J2

= �ω

√
(J1 − J2)(J1 − J3)

J3J2
. (14)

Combining Eqs. (13) and (14), the mass parameter is obtained
for simple wobbler

B = J2J3

J1 − J3
. (15)
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It is determined only by the moments of inertia of three
principal axes and independent of rotational frequency.

For longitudinal and transverse wobblers, we introduce
the harmonic frozen alignment (HFA) approximation as in
Ref. [7], i.e., the angular momentum of the odd particle is
assumed to be firmly aligned with the short axis (one axis)
and can be considered as a number. Then for a given rotational
frequency ω, the moment of inertia of the one axis is treated
as a ω-dependent effective moment of inertia

J ∗
1 (ω) = J1ω + j

ω
= J1 + j

ω
. (16)

The odd-particle contributes a ω-dependent term to the
effective moment of inertia, which will decrease with the
increasing rotational frequency.

Similar to a simple wobbler, it can be also found that
for the longitudinal and transverse wobblers the collective
potential obtained from the total Routhian surface calculation
E′(θ,ϕ) (8) is minimized at θ = 90◦ for any given ϕ. Therefore,
the collective potential is written as

V (ϕ) = 〈ĥdef〉− ωj cos ϕ

− 1

2
ω2(J1 cos2 ϕ + J2 sin2 ϕ) (17)

≈ 〈ĥdef〉 − ωj

(
1 − ϕ2

2

)
− 1

2
J1ω

2

+1

2
ω2(J1 − J2)ϕ2, for ϕ → 0

= 〈ĥdef〉 − 1

2
ωj − 1

2

(
J1 + j

ω

)
ω2

+1

2
ω2

[(
J1 + j

ω

)
− J2

]
ϕ2

= 〈ĥdef〉 − 1

2
ωj − 1

2
J ∗

1 ω2 + 1

2
ω2[J ∗

1 (ω) − J2]ϕ2.

(18)

This formula is similar to Eq. (12) except that the moment
of inertia of the one axis J1 has been replaced by the effect
moment of inertia J ∗

1 (ω), thereby one expects that the mass
parameter for longitudinal and transverse wobblers has the
similar form as a simple wobbler

B(ω) = J2J3

J ∗
1 (ω) − J3

= J2J3

(J1 − J3) + j
ω

. (19)

Differing from the mass parameter (15) for a simple wobbler,
it is determined not only by the moments of inertia of three
principal axes, but also by the angular momentum of the
odd particle and the rotational frequency. As the rotational
frequency increases, the mass parameter for longitudinal and
transverse wobblers will increase as well.

The wobbling frequency for the longitudinal and transverse
wobbling motions can be then obtained from Eq. (13)

��wob =
√
J ∗

1 (ω) − J2

B(ω)
�ω

= �

√
[(J1 − J3)ω + j ][(J1 − J2)ω + j ]

J2J3
. (20)

This formula is nothing but the HFA formula in Ref. [7] by
replacing the spin with J1ω + j . For longitudinal wobbling
motion, since J1 > J2,J3, the wobbling frequency increases
with the rotational frequency. While for transverse wobbling
motion, since J2 > J1, the wobbling frequency decreases
with the rotational frequency, and will reach zero at a critical
rotational frequency �ωc = j/(J2 − J1).

III. NUMERICAL DETAILS

In the following calculations, a triaxial rotor with the
deformation parameters β = 0.25 and γ = −30◦ is considered
to investigate the simple wobbling motion. Following the
notation in Ref. [35], for such deformation, three principal
axes, the one, tow, and three axis respectively correspond
to short (s), intermediate (i), and long (l) axis. For the
investigation of the longitudinal and transverse wobbling
motions, the triaxial rotor is assumed to be further coupled
with a h11/2 proton particle. Thus the proton aligns its
angular momentum along short axis (namely, one axis). The
longitudinal (transverse) wobblers are achieved by choosing
the one axis to be (perpendicular to) the axis with largest
moments of inertia.

With regard to the moments of inertia, both the rigid body
type

J rig
k = 2

5
mAR2

0

[
1 −

√
5

4π
β cos

(
γ − 2π

3
k

)]

= J rig
0

[
1 −

√
5

4π
β cos

(
γ − 2π

3
k

)]
, k = 1,2,3

(21)

and the irrotational flow type

J irr
k = 3

2π
mAR2

0β
2 sin2

(
γ − 2π

3
k

)

= J irr
0 sin2

(
γ − 2π

3
k

)
, k = 1,2,3 (22)

are often assumed [35]. J rig
k shows less dependence on the

deformation β than J irr
k (∼β2). In the γ dependence, J irr

vanishes about the symmetry axes while J rig does not and
the largest moment of inertia axes of them are different.
For the present deformation parameters β = 0.25 and γ =
−30◦, the largest moment of inertia axis is the one axis (s-axis)
for rigid body type while the two axis (i-axis) for irrotational
flow type.

In the present investigation, the wobbling angle ϕ in a
collective Hamiltonian is restricted to −π/2 � ϕ � π/2, or
in other words the wobbling motion happens around the one
axis. For a simple wobbler, the rigid body type of moment
of inertia (21) is adopted for the one axis being the axis with
the largest moment of inertia. Similarly, the rigid body type
of moment of inertia is also applied to longitudinal wobbler
so that the orientation of the proton angular momentum
(one axis) is parallel to the axis with largest moments of
inertia. For the transverse wobbler, while the orientation
of proton angular momentum (one axis) is required to be
perpendicular to the axis with largest moments of inertia, the
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irrotational flow type of moment of inertia (22) is adopted.
In the calculations, the constants J rig

0 and J irr
0 in Eqs. (21)

and (22) are respectively taken as J rig
0 = 256π/15 �

2/MeV
and J irr

0 = 40 �
2/MeV. In details, for a rigid type of moment

of inertia, J rig
1 = 60.9 �

2/MeV, J rig
2 = 53.6 �

2/MeV, and
J rig

3 = 46.3 �
2/MeV; for an irrotational flow type of moment

of inertia, J irr
2 = 40 �

2/MeV and J irr
1 = J irr

3 = 10 �
2/MeV.

IV. RESULTS AND DISCUSSION

A. Simple wobbler

We first present the results of our calculations for the simple
wobbling motion by means of the TAC model and collective
Hamiltonian. As described in Sec. II, the collective potential
and the mass parameter included in the collective Hamiltonian
are respectively calculated by the TAC model and Eq. (15).
The obtained wobbling energies will be compared with the
HA formula and the exact TRM.

1. Collective potential

In the contour plots of Figs. 2(a)–2(d), the total Routhian
surface calculation E′(θ,ϕ) (9) in the (θ , ϕ) plane at the
rotational frequencies �ω = 0.1, 0.2, 0.3, and 0.4 MeV are
shown. All the potential energy surfaces are symmetrical
with respect to ϕ = 0◦ line. With the increasing rotational
frequency, the minima in the potential energy surfaces always
locate at (θ = 90◦,ϕ = 0◦), which corresponds to uniform
rotation about the axis with the largest moment of inertia.

Minimizing the total Routhian E′(θ,ϕ) with θ for a given
ϕ, we find that the minimum along the θ direction is always
at θ = 90◦ for any value of ϕ at each rotational frequency.
The corresponding extracted collective potentials V (ϕ) are
shown in the upper panels of Figs. 2(a)–2(d), respectively, for
�ω = 0.1, 0.2, 0.3, and 0.4 MeV. Again, the potential energy

FIG. 2. (Color online) Lower panels: Contour plots of the total
Routhian surface calculation E′(θ,ϕ) for a triaxial rigid body rotor
with γ = −30◦ at the frequencies �ω = 0.1, 0.2, 0.3, and 0.4 MeV.
All energies at each rotational frequency are normalized with respect
to the absolute minimum. Upper panels: The collective potential V (ϕ)
as a function of ϕ extracted from the corresponding total Routhian
surface calculation.

is symmetrical about ϕ = 0◦ in correspondence with the results
displayed in the lower panels of Figs. 2(a)–2(d). For all cases,
the potential V (ϕ) is a harmonic oscillator type that has only
one minimum at ϕ = 0◦, corresponding to the rotation about
the one axis. The stiffness of the collective potential becomes
larger as the rotational frequency increases. This is directly
reflected by the increase of the energy difference between
ϕ = ±90◦ and ϕ = 0◦. For example, the value is only ∼30 keV
at �ω = 0.1 MeV while reaches ∼600 keV at �ω = 0.4 MeV.

2. Collective levels and wave functions

The collective potential obtained above and the mass
parameter obtained using Eq. (15) are combined to construct
the collective Hamiltonian for investigating the simple wob-
bling motion. Diagonalizing the collective Hamiltonian, the
collective energy levels and wave functions at each cranking
frequency are yielded. Taking �ω = 0.1 MeV and 0.4 MeV
for example, the obtained ten lowest wobbling energy levels
and corresponding wave functions are presented in Fig. 3. It
is obviously seen that the wave functions are symmetric for
even-n levels and antisymmetric for odd-n levels with respect
to the ϕ → −ϕ transformation. Thus the broken signature
symmetry in the TAC model is restored in the collective
Hamiltonian by the quantization of wobbling angle ϕ and the
consideration of quantum fluctuation along the ϕ motion. In
addition, it is also shown that the wave function of the most
favored wobbling energy levels are symmetric.

The wobbling frequency ��wob defined as the energy
difference between the lowest two levels for a certain rotational
frequency in the collective Hamiltonian is shown in Fig. 4
in comparison with those from the HA formula (14). It
is seen that both collective Hamiltonian and HA give the
linear increasing trend of wobbling frequency with respect to
rotational frequency. For the HA results, this is just expected

since the coefficient
√

(J1−J2)(J1−J3)
J3J2

in the HA formula (14) is a
positive constant value. For the collective Hamiltonian results,
this can be also readily understood according to the stiffness
of the collective potential, as shown in the upper panels
of Figs. 2(a)–2(d), which becomes larger with increasing
rotational frequency. The wobbling frequency given by the HA
formula is a bit larger than that by the collective Hamiltonian
results from the fact that the simple harmonic approximation
for the collective potential would overestimate the stiffness of
the potential, as shown in Fig. 5.

3. Comparison with TRM solutions

The simple wobbler solutions discussed here can be
exactly obtained by TRM. To study the accuracy of collective
Hamiltonian scheme, in Fig. 6, the energies of the four
lowest wobbling bands n = 1,2,3,4 relative to the n = 0 yrast
sequence obtained by the collective Hamiltonian are displayed
in comparison with those from TRM and HA. In the TRM, the
states possesses D2 symmetry so that the spectrum is restricted
to the states with (−1)n = (−1)I [1], i.e., only even spins
for even-n wobbling bands while only odd appear for odd-n
wobbling bands. Hence, the wobbling excitation energies are
calculated in different ways for even-n and odd-n wobbling
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(a)

(b) (c)

(f)(e)

(d)

FIG. 3. (Color online) The collective levels and wave functions obtained from the collective Hamiltonian. Upper panel: The ten lowest
energy levels labeled as n = 0–9 (left) and the corresponding wave functions for even-n (middle) and odd-n (right) states at the frequency
�ω = 0.1 MeV. Lower panel: The ten lowest energy levels labeled as n = 0–9 (left) and the corresponding wave functions for even-n (middle)
and odd-n (right) states at the frequency �ω = 0.4 MeV.

bands. For even-n wobbling bands, the wobbling energies
are directly calculated as the energy difference with respect

FIG. 4. (Color online) The simple wobbling frequency ��wob

obtained by the collective Hamiltonian in comparison with those
of the HA formula (14).

to n = 0 wobbling bands En
wob = En(I ) − E0(I ), while for

odd-n wobbling bands calculated as the energy difference
with respect to the interpolated energies by n = 0 wobbling
band En

wob(I ) = En(I ) − [E0(I + 1) + E0(I − 1)]/2. In the
TRM, the spin is a good quantum number, while in the
collective Hamiltonian not but an expectation value of angular

FIG. 5. (Color online) The collective potentials obtained by
HA (12) in comparison with those by TAC (11) at frequencies
�ω = 0.1 and 0.4 MeV.
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FIG. 6. (Color online) Energy spectra of four simple wobbling
bands n = 1,2,3,4 relative to the n = 0 yrast sequence obtained
by collective Hamiltonian in comparison with TRM and HA. In
the TRM, the wobbling energies for even-n wobbling bands are
calculated as En

wob = En(I ) − E0(I ), while for odd-n wobbling bands
En

wob(I ) = En(I ) − [E0(I + 1) + E0(I − 1)]/2.

momentum operator on the rotational state with given rota-
tional frequency.

As shown in Fig. 6, for each wobbling band, the wobbling
energy is found to increase with spin. With an increase in n, the
HA results gradually deviate from TRM, which indicates that
the wobbling motion gradually deviates from the harmonic
oscillation character. The collective Hamiltonian excellently
reproduces the TRM results even for the large-n wobbling
bands. The collective Hamiltonian based on TAC approach,
however, provides a new perspective to interpret the variation
trend of wobbling frequency with spin by exploring the
variation trend of stiffness of the collective potential.

B. Longitudinal wobbler

Now we discuss the longitudinal wobbler, where a h11/2

proton particle is assumed to couple to a triaxial rotor
and its angular momentum is parallel to the axis with the
largest moment of inertia. The rigid body type of moment of
inertia (21) is used here too.

1. Collective potential

In the contour plots of Figs. 7(a)–7(d), the total Routhian
surface calculations for longitudinal wobbling motions ob-
tained by TAC are shown at the rotational frequencies
�ω = 0.1, 0.2, 0.3, and 0.4 MeV. Similar to the case of
simple wobbling, the total Routhian is also symmetrical with
respect to the ϕ = 0◦ line and the minima always locate at
(θ = 90◦,ϕ = 0◦) regardless of how fast the nucleus rotates.
This is very clear since both the proton particle and triaxial
rotor angular momenta in the longitudinal wobbling system
are oriented along the short axis, the axis with the largest
moment of inertia.

With the total Routhian, the extracted collective potentials
V (ϕ) are presented at �ω = 0.1, 0.2, 0.3, and 0.4 MeV in
the upper panels of Figs. 7(a)–7(d). It is clearly seen that the
collective potentials presented here are very similar to those
presented in the upper panels of Figs. 2(a)–2(d) for simple

FIG. 7. (Color online) Same as Fig. 2 but for longitudinal wob-
bling motion, where a proton h11/2 particle coupled to a triaxial rigid
body rotor with γ = −30◦.

wobbling motions, while the only difference is that the stiffness
here becomes larger. Therefore, similar discussions for simple
wobbling motion still hold true here. It is worth stressing
that the deeper potentials here are attributed to the proton
particle and its contribution would become larger at larger
rotational frequency. For example, at �ω = 0.1 MeV, the
energy difference between ϕ = ±90◦ and ϕ = 0◦ is ∼540 keV
and reaches ∼2080 keV at �ω = 0.4 MeV. Comparing with
the simple wobbling motions, one obtains the contribution
from proton increases from ∼510 keV at �ω = 0.1 MeV to
1480 keV at 0.4 MeV.

2. Mass parameter

The mass parameter for longitudinal wobbling motion is
calculated by Eq. (19) and shown in Fig. 8. As discussed in
Sec. II, since the effective moments of inertia for the one axis
decreases with the rotational frequency, the mass parameter
increases with increasing rotational frequency. This increasing
characteristic is different from the simple wobbler, where the
mass parameter is constant at any rotational frequency.

FIG. 8. (Color online) The calculated mass parameter as a func-
tion of rotational frequency �ω for longitudinal wobbling motion.
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3. Collective levels and wave functions

The obtained collective energy levels and corresponding
wave functions are illustrated in Fig. 9 for �ω = 0.1 and
0.4 MeV. Again, the wave functions presented here are similar
as those presented in Fig. 3 for simple wobbling motions.

In Fig. 10, the obtained wobbling frequency calculated by
the collective Hamiltonian, is in comparison with the results
obtained by the HFA approximation (20). It is found that both
the collective Hamiltonian and HFA give the increased wob-
bling frequency as function of rotational frequency. However,
the HFA results are larger than the collective Hamiltonian ones
over the whole range of rotational frequency. To understand
the origin of the differences between HFA and collective
Hamiltonian, the collective potential obtained by the HFA
approximation in comparison with the results obtained by
TAC at �ω = 0.1 MeV and �ω = 0.4 MeV are shown in
Fig. 11. It is seen that the stiffness of the collective potential
calculated by HFA are larger than the collective Hamiltonian
at both �ω = 0.1 and 0.4 MeV. Since the mass parameter in
the collective Hamiltonian is the same as that in the HFA,
the wobbling frequency of HFA is larger than the collective
Hamiltonian. Aside from the harmonic approximation as a

FIG. 10. (Color online) The longitudinal wobbling frequency
��wob obtained by collective Hamiltonian in comparison with those
of the HFA approximation (20).

simple wobbling motion, the HFA further introduces that the
proton particle rigidly aligns its angular momentum along
the short axis. Hence it deviates larger from the collective
Hamiltonian for the longitudinal wobbling motion (∼20 keV,

(a)

(d)

(e) (f)

(c)(b)

FIG. 9. (Color online) Same as Fig. 3 but for longitudinal wobbling motion.
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FIG. 11. (Color online) The collective potentials obtained by
HFA (18) in comparison with those by TAC (17) at frequencies
�ω = 0.1 and 0.4 MeV.

see Fig. 10) than HA for the simple wobbling motion (∼5 keV,
see Fig. 4).

4. Comparison with PRM solutions

The exact solutions for longitudinal wobbling motion can
be obtained by PRM. In order to investigate the quality of
the collective Hamiltonian, the energies of the two lowest
wobbling bands n = 1,2 relative to the n = 0 yrast sequence
obtained by the collective Hamiltonian are shown in Fig. 12
in comparison with those from PRM. In PRM, for even-n, the
wobbling energies are calculated as En

wob = En(I ) − E0(I ),
while for odd-n wobbling bands are calculated as En

wob(I ) =
En(I ) − [E0(I + 1) + E0(I − 1)]/2. It is found that the col-
lective Hamiltonian can reproduce the PRM very well. With
increasing spin, the wobbling energy increases. The results
calculated by HFA are also shown in Fig. 12. The wobbling
energies given by HFA are larger than those obtained by both
PRM and collective Hamiltonian.

Both HFA and collective Hamiltonian are approximate
solutions with respect to PRM. In the HFA approximation,
the harmonic oscillator potential and the frozen alignment of
proton particle are assumed. In the collective Hamiltonian,
however, only the mass parameter is calculated with the HFA
approximation, while the collective potential is calculated by

FIG. 12. (Color online) Energy spectra of two longitudinal wob-
bling bands n = 1,2 relative to the n = 0 yrast sequence obtained
by collective Hamiltonian in comparison with PRM and HFA. In
the PRM, the wobbling energies for even-n, the wobbling energies
are calculated as En

wob = En(I ) − E0(I ), while for odd-n En
wob(I ) =

En(I ) − [E0(I + 1) + E0(I − 1)]/2.

FIG. 13. (Color online) Same as Fig. 2 but for transverse wob-
bling, where a proton h11/2 particle coupled to a triaxial irrotational
flow rotor with γ = −30◦.

the TAC model without prior assuming the frozen alignment
with respect to any axis for proton particle. The PRM exactly
diagonalizes the particle rotor coupling Hamiltonian and thus
gives the exact solutions. From this point of view, the collective
Hamiltonian has improved the descriptions for the collective
potential and provides a more accurate solution than HFA.

C. Transverse wobbler

For transverse wobbling motions, the proton particle angu-
lar momentum is supposed to be perpendicular to the axis with
the largest moment of inertia. In the present investigation, the
irrotational flow type of moment of inertia (22) is employed to
satisfy this requirement.

1. Collective potential

The total Routhian calculated by TAC for a h11/2 proton
particle coupled to a triaxial irrotational flow rotor with
γ = −30◦ in the (θ,ϕ) plane are displayed at the rotational
frequencies �ω = 0.1, 0.2, 0.3, 0.4 MeV in contour plots
of Figs. 13(a)–13(d). The potential energy surfaces are also

FIG. 14. (Color online) Same as Fig. 8 but for transverse wob-
bling motion.
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(a)

(d)

(e) (f)

(c)(b)

FIG. 15. (Color online) Same as Fig. 3 but for transverse wobbling motion.

symmetric with the ϕ = 0◦ line. In contrast to the simple and
longitudinal wobbling motions, the minima in the potential
energy surfaces change from ϕ = 0◦ to ϕ �= 0◦ with the
increasing frequency. As discussed in Ref. [7], this implies
the axis of uniform rotation is tilted from s axis into the s-i
plane.

The extracted collective potentials V (ϕ) for transverse
wobbling motion are shown in the upper panels of Fig. 13(a)–
13(d). For �ω = 0.1 MeV, the potential V (ϕ) is a harmonic
oscillator type which has only one minimum at ϕ = 0◦, which
corresponds to the uniform rotation around the one axis.
For �ω � 0.20 MeV, the potential V (ϕ) has two symmetrical
minima, which correspond to the tilted rotation. Due to the
appearance of the potential barrier, the tilted solutions are
achieved in the body-fixed frame. The heights of barrier
defined as 
V = V (0) − Vmin (in MeV) with Vmin being
the value of the potential at the minimum presented also
in the figure. It is found that the potential barrier increases
with the rotational frequency, e.g., from 0.046 MeV at �ω =
0.20 MeV to 1.145 MeV at �ω = 0.40 MeV.

2. Mass parameter

The obtained mass parameter calculated by Eq. (19) as a
function of rotational frequency is shown in Fig. 14. Since here
the irrotational flow type of moment of inertia (22) with γ =
−30◦ assumed, i.e., J1 = J3, the deduced mass parameter is
linearly dependent on rotational frequency. The mass param-
eter (19) is derived based on the assumption of the harmonic
frozen alignment approximation, therefore, it is strictly speak-
ing valid only at the wobbling motion region and will becomes
invalid in the tilted rotation region. Nevertheless, as a rough
approximation, the mass parameter formula (19) is used for
the calculations over the whole range of rotational frequency.

3. Collective levels and wave functions

The obtained collective levels and wave functions are shown
in Fig. 15 for �ω = 0.1, 0.4 MeV. Similar to the simple
and longitudinal wobbling motions, the wave functions are
symmetric for even-n levels and antisymmetric for odd-n
levels. For n = 0, the peak of the wave function locates
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FIG. 16. (Color online) Same as Fig. 10 but for transverse wob-
bling motion.

around ϕ = 0◦ at �ω = 0.1 MeV, while moves towards to
ϕ = 90◦ at �ω = 0.4 MeV. In addition, when the rotational
frequency increases, the probability distributions determined
by the absolute square of wave functions tend to show a similar
pattern for n = 0 and n = 1 levels. This is consistent with
their energy differences, as shown in the left panel of Fig. 15,
tending to zero.

The calculated wobbling frequencies are shown in Fig. 16.
It can be seen from Fig. 16 that the wobbling frequency
decreases with the rotational frequency. This decreasing is
attributed to the increase of the potential barrier, as shown in
the upper panels of Fig. 13, which will suppress the tunneling
probability between the two symmetrical TAC solutions. At
�ω � 0.3 MeV, the wobbling frequency tends to zero, which
implies the transverse wobbling motion is terminated. For
comparison, the wobbling frequencies calculated by HFA are
also shown in Fig. 16. The decreasing trend is clearly observed.
As discussed above, at the critical rotational frequency
�ωc = jπ/(J2 − J1) ≈ 0.183 MeV the wobbling frequency
becomes zero and above it the HFA formula becomes invalid.
Comparing with the collective Hamiltonian, the HFA gives
about 50 keV smaller values of wobbling frequency. It is
also worthy to mention that the HFA gives a more rapid
decreasing trend than the collective Hamiltonian since the
quantum fluctuations are not taken into account in the HFA
beyond the region of transverse wobbling motion.

FIG. 17. (Color online) Same as Fig. 12 but for transverse wob-
bling motion.

4. Comparison with PRM solutions

In Fig. 17, the energies of the two lowest wobbling bands
n = 1,2 relative to the n = 0 yrast sequence obtained by
collective Hamiltonian are shown in comparison with the
PRM solutions and HFA results. It is found that the collective
Hamiltonian can reproduce the PRM results well at the
region of wobbling motions. For I � 16.5�, the wobbling
energies of n = 1 increase in the PRM, which indicates
the onset of transitions from the transverse to longitudinal
wobbling motions as discussed in Ref. [7]. In the present
collective Hamiltonian, however, the longitudinal wobbling
motion could not be given since the adopted box boundary
condition prohibits any of the quantal fluctuation around
ϕ = 90◦. Therefore, the transition is not reproduced. If one
wants to reproduce the longitudinal wobbling and to describe
the transition from the transverse to the longitudinal wobbler,
one should use the periodic boundary condition to replace
the box boundary condition or alternatively choose a new
collective coordinate, which is defined as the angle between
the angular momentum and the two axis. Further investigation
on this topic will be done in the future.

V. SUMMARY

In summary, three types of wobbling modes for the
nucleus have been studied in the framework of the col-
lective Hamiltonian. The simple wobbler is a pure triaxial
rotor assumed with rigid body type of moments of inertia.
With an odd h11/2 proton of particle character coupling to
the triaxial rotor, the longitudinal wobbler is achieved by
arranging the moments of inertia as rigid body type, while
the transverse wobbler achieved as irrotational body type.
The collective potentials in the collective Hamiltonian are
calculated based on the TAC approach. The mass parameters
are obtained by HA for simple wobbling motion, while by the
HFA approximation for longitudinal and transverse wobbling
motions.

Diagonalizing the collective Hamiltonian, the energies
and the wave functions of the wobbling states are yielded.
The obtained wobbling energies of the simple wobbler are
compared with the results calculated by HA and TRM, while
those of longitudinal and transverse wobblers energies are
compared with HFA and PRM. It is found that the results of
the collective Hamiltonian are in good agreement with those
exact solutions by TRM or PRM.

In accordance with those obtained by the HA or HFA
formula [7], and RPA model [36], it is observed that the
wobbling frequency increases with the rotational frequency
for the simple and longitudinal wobbling motions, while
decreases for the transverse wobbling motion. It is presented
here that these variation trends of the wobbling frequency are
in association with the stiffness of the collective potentials.
It should be mentioned that the present work has provided
a new way to understand the wobbling phenomena, which
in particular may further contribute to the investigation of
nuclear wobbling based on a realistic TAC theory such as
tilted axis cranking density functional theory [37]. It should
also be mentioned that only the ϕ is considered as the
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collective coordinate in the present collective Hamiltonian.
To further quantitatively consider the fluctuations in both
the θ and ϕ directions is a very interesting work. We are
going to do this work in the near future, in which a two-
dimensional collective Hamiltonian including the dynamic
motions of both ϕ and θ and their couplings would be
constructed.
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