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Building relativistic mean field models for finite nuclei and neutron stars
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Background: Theoretical approaches based on density functional theory provide the only tractable method to
incorporate the wide range of densities and isospin asymmetries required to describe finite nuclei, infinite nuclear
matter, and neutron stars.
Purpose: A relativistic energy density functional (EDF) is developed to address the complexity of such diverse
nuclear systems. Moreover, a statistical perspective is adopted to describe the information content of various
physical observables.
Methods: We implement the model optimization by minimizing a suitably constructed χ2 objective function
using various properties of finite nuclei and neutron stars. The minimization is then supplemented by a covariance
analysis that includes both uncertainty estimates and correlation coefficients.
Results: A new model, “FSUGold2,” is created that can well reproduce the ground-state properties of finite nuclei,
their monopole response, and that accounts for the maximum neutron-star mass observed up to date. In particular,
the model predicts both a stiff symmetry energy and a soft equation of state for symmetric nuclear matter,
suggesting a fairly large neutron-skin thickness in 208Pb and a moderate value of the nuclear incompressibility.
Conclusions: We conclude that without any meaningful constraint on the isovector sector, relativistic EDFs
will continue to predict significantly large neutron skins. However, the calibration scheme adopted here is
flexible enough to create models with different assumptions on various observables. Such a scheme—properly
supplemented by a covariance analysis—provides a powerful tool to identify the critical measurements required
to place meaningful constraints on theoretical models.
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I. INTRODUCTION

Finite nuclei, infinite nuclear matter, and neutron stars are
complex, many-body systems governed largely by the strong
nuclear force. Although quantum chromodynamics (QCD) is
the fundamental theory of the strong interaction, enormous
challenges have prevented us from solving the theory in the
nonperturbative regime of relevance to nuclear systems. To
date, these complex systems can be investigated only in the
framework of an effective theory with appropriate degrees of
freedom. Among the effective approaches, the one based on
density functional theory (DFT) is most promising, as it is the
only microscopic approach that may be applied to the entire
nuclear landscape and to neutron stars. In the past decades nu-
merous energy density functionals (EDFs) have been proposed
which can be grouped into two main branches: nonrelativistic
and relativistic. Skyrme-type functionals are the most popular
ones within the nonrelativistic domain, where nucleons inter-
act via density-dependent effective potentials. Using such a
framework, the Universal Nuclear Energy Density Functional
(UNEDF) Collaboration [1] aims to achieve a comprehensive
understanding of finite nuclei and the reactions involving them
[2–4]. On the other end, relativistic mean field (RMF) models,
based on a quantum field theory having nucleons interacting
via the exchange of various mesons, have been successfully
used since the 1970s and provide a covariant description of
both infinite nuclear matter and finite nuclei [5–10].
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In the traditional spirit of effective theories, both nonrel-
ativistic and relativistic EDFs are calibrated from nuclear
experimental data that is obtained under normal laboratory
conditions, namely, at or slightly below nuclear saturation
density and with small to moderate isospin asymmetries.
The lack of experimental data at both higher densities and
with extreme isospin asymmetries leads to a large spread
in the predictions of the models, even when they may all
be calibrated to the same experimental data. Consequently,
fundamental nuclear properties, such as the neutron density
of medium-to-heavy nuclei [11–14], proton and neutron drip
lines [15,16], and a variety of neutron-star properties [17–19],
remain largely undetermined.

It has been a common practice for a long time to supplement
experimental results with uncertainty estimates. Indeed, no
experimental measurement could ever be published without
properly estimated “error bars.” Often, the most difficult part
of an experiment is a reliable quantification of systematic
errors, and improving the precision of the measurement
consists of painstaking efforts at reducing the sources of such
uncertainties. On the contrary, theoretical predictions merely
involve reporting a “central value” without any information on
the uncertainties inherent in the formulation or the calculation.
Thus, to determine whether a theory is successful or not, the
only required criterion is to reproduce the experimental data.
Although this approach has certain value—especially if the
examined model reproduces a vast amount of experimental
data—such a criterion is often neither helpful nor meaningful.
The situation becomes even worse if the predictions of an
effective theory are extrapolated into unknown regions, such
as the boundaries of the nuclear landscape and the interior

0556-2813/2014/90(4)/044305(17) 044305-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevC.90.044305


WEI-CHIA CHEN AND J. PIEKAREWICZ PHYSICAL REVIEW C 90, 044305 (2014)

of neutron stars. How can a model provide experimental or
observational guidance without supplementing its predictions
with theoretical errors? In recent years, “the importance of
including uncertainty estimates in papers involving theoretical
calculations of physical quantities” has been underscored [20].
This is particularly critical when theoretical models are used
to extrapolate experimental data to uncharted regions of the
observable landscape. Thus, theoretical uncertainty estimates
are critical in assessing the reliability of the extrapolations.
Moreover, if these theoretical errors are large, then one can
perform a correlation analysis to uncover observables that
can help reduce the size of the uncertainties. Several papers
highlighting the role of information and statistics in nuclear
physics have been published recently [21–27]. Moreover, at the
time of this writing, a focus issue devoted to “Enhancing the
interaction between nuclear experiment and theory through
information and statistics” was under development.

In this work we develop a modeling scheme within the
framework of the RMF theory that consists of both the opti-
mization of a theoretical model and the follow-up covariance
analysis. However, unlike the UNEDF Collaboration, our goals
are rather modest as we do not attempt to study all the facets of
finite nuclei. Instead, we limit ourselves to a treatment of the
ground-state properties of magic (or semimagic) finite nuclei,
centroid energies of monopole resonances, and properties
of neutron stars. We would like to emphasize that all the
data that we use in the optimization of the relativistic EDF
consists of real physical observables without any reliance
on bulk properties of infinite nuclear matter. This is now
possible attributable to the remarkable advances in land- and
space-based telescopes that have started to place meaningful
constraints on the high-density component of the equation of
state. In particular, observations made with the Green Bank
Telescope have provided highly precise measurements of two
massive (of about 2M�) neutron stars [18,19]. Further, an
enormous effort is also being devoted to the extraction of stellar
radii from x-ray observations [28–31]. Such astronomical
observations will be instrumental in constraining the nuclear
EDF in regions inaccessible to laboratory experiments. Note
that apart from the recent work of Ref. [32], we are unaware
of any other calibration procedure that includes the properties
of both finite nuclei and neutron stars.

Not having to rely on the bulk properties of nuclear matter
in the calibration procedure implies that these properties
now become genuine model predictions—with associated
theoretical errors—that may be compared against results
from ab initio calculations or other microscopic approaches
[33–37]. Although not directly measurable, a determination of
the bulk properties of infinite nuclear matter provides valuable
constraints on the equation of state (EOS) of dense neutron-
rich matter. Moreover, some of these critical parameters are
known to be strongly correlated to observables that may
be directly measured. This fact provides a powerful bridge
between observation, experiment, and theory. However, until
very recently most of these correlations were inferred by
comparing a large set of EDFs; see Ref. [14] for a particularly
illustrative example. Although such an analysis provides
critical insights into the systematic errors associated with the
biases and limitations of each model, it is essential that it

be supplemented with a proper statistical analysis. Indeed,
such a covariance analysis represents the least biased and
most reliable approach to uncover correlations among physical
observables [21–27].

The paper has been organized as follows. Following this
Introduction, we outline the theoretical framework in Sec. II.
We follow closely the approach developed in Ref. [27] that
starts from a Gaussian approximation to a suitably defined
likelihood function. To demonstrate the power of the approach,
we construct in Sec. III a brand new functional (FSUGold2)
that is calibrated from the ground-state properties of finite
nuclei, their isoscalar monopole response, and a maximum
neutron-star mass. Finally, we conclude with a summary and
outlook in Sec. IV.

II. THEORETICAL FRAMEWORK

In this section we outline the theoretical framework required
to accurately calibrate an EDF. The section itself is divided into
three components. First, we introduce the RMF model that will
be used to compute all required nuclear properties, from finite
nuclei to neutron stars. Second, we develop, to our knowledge
for the first time in the RMF context, a transformation that links
the model parameters to “pseudodata” in the form of bulk
properties of infinite nuclear matter. Such a transformation
enables us to implement the optimization in the space of
pseudodata, resulting in a both more intuitive and more
efficient approach. Finally, in the third and last section we
describe details of the optimization procedure followed by a
covariance analysis that is used to estimate both theoretical
uncertainties and correlations among observables.

A. Relativistic mean field theory

In the framework of the RMF theory, the basic degrees
of freedom include nucleons (protons and neutrons), three
“mesons,” and the photon. The nucleons are the constituents of
the nuclear many-body system, which interact via the transfer
of the force carriers, with the various mesons conveying the
strong force between the nucleons and the photons mediating
the additional electromagnetic force between the protons. The
interactions among the particles can be depicted by an effective
Lagrangian density of the form [5,6,38–40],

Lint = ψ̄

{
gsφ −

[
gvVμ + gρ

2
τ · bμ + e

2
(1 + τ3)Aμ

]
γ μ

}
ψ

− κ

3!
(gsφ)3 − λ

4!
(gsφ)4 + ζ

4!
g4

v(VμV μ)2

+�v
(
g2

ρ bμ · bμ
)(

g2
vVνV

ν
)
, (1)

where ψ is the isodoublet-nucleon field, Aμ is the photon field,
and φ, Vμ, and bμ represent the isoscalar-scalar σ -, isoscalar-
vector ω-, and isovector-vector ρ-meson fields, respectively.
The first line of the above equation contains the conventional
Yukawa couplings between the nucleons and the mesons,
while the second line includes some nonlinear self- and mixed
interactions between the mesons. In the spirit of an effective
field theory, one should incorporate all possible meson
interactions that are allowed by symmetry considerations to
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a given order in a power-counting scheme. Moreover, once the
dimensionful meson fields have been properly scaled using
strong-interaction mass scales, the remaining dimensionless
coefficients of the effective Lagrangian should all be “natural,”
namely, of order one (i.e., neither too small nor too large)
[41–45]. However, given the limited experimental database
of nuclear observables, certain empirical coefficients—or
linear combinations of them—may remain poorly constrained
after the optimization procedure. This results in “unnatural”
coefficients that deviate significantly from unity. Therefore,
in an effort to avoid this problem only a subset of nonlinear
meson interactions is retained in the formalism. For instance,
in the interaction Lagrangian density depicted in Eq. (1),
one only keeps the four meson interactions denoted by the
coefficients κ , λ, ζ , and �v. In particular, these terms are found
to have a clear physical connection to various properties of the
nuclear EOS. Two of the isoscalar parameters, κ and λ, were
introduced by Boguta and Bodmer [46] to reduce the nuclear
incompressibility coefficient of symmetric nuclear matter from
an unreasonably large value in the original Walecka model
[5,6] to one that can be made consistent with measurements
of giant monopole resonances in finite nuclei. In turn, ζ may
be used to efficiently tune the maximum neutron-star mass
without sacrificing the agreement with other well-reproduced
observables [38]. Finally, �v is highly sensitive to the density
dependence of symmetry energy—and in particular to its slope
at saturation density—which has important implications in the
structure and dynamics of neutron stars [40,47–49].

With the Lagrangian density given in Eq. (1), one can
derive the equation of motion for each of the constituent
particles in the mean field limit [50]. The nucleons satisfy a
Dirac equation in the presence of mean field potentials having
Lorentz scalar and vector character. In turn, the various mesons
satisfy nonlinear and inhomogeneous Klein-Gordon equations
with the various nuclear densities acting as source terms. Last,
the photon obeys the Poisson equation with the proton density
being the relevant source term. Given that the nuclear densities
act as sources for the meson fields and, in turn, the meson fields
determine the mean field potentials for the nucleons, the set of
equations must be solved self-consistently. Once solved, these
equations determine the ground-state properties of the nucleus
of interest, such as its total binding energy, single-nucleon
energies and wave functions, distribution of meson fields, and
density profiles.

The solution of the mean field equations is simplified
significantly in the case of infinite nuclear matter, which we
assume to be spatially uniform. For this uniform case, the
meson fields are uniform (i.e., constant throughout space)
and the nucleon orbitals are plane-wave Dirac spinors with
medium-modified effective masses and energies. By forming
the energy-momentum tensor in the mean field approximation
[6], one can readily infer (in the rest frame of the fluid) the
energy density and pressure of the system as a function of the
conserved baryon density ρ = ρn + ρp and the neutron-proton
asymmetry α ≡ (ρn − ρp)/(ρn + ρp). In particular, the energy
per nucleon of the system may be expanded in even powers of
α. That is,

E

A
(ρ,α) − M ≡ E(ρ,α) = ESNM(ρ) + α2S(ρ) +O(α4), (2)

where ESNM(ρ) = E(ρ,α ≡ 0) is the energy per nucleon of
symmetric nuclear matter (SNM) and the symmetry energy
S(ρ) represents the first-order correction to the symmetric
limit. Note that no odd powers of α appear as the nuclear
force is assumed to be isospin symmetric and electromagnetic
effects have been “turned off.” Also note that, although model
dependent, to a very good approximation the symmetry energy
has a very intuitive interpretation: It represents the energy cost
required to convert symmetric nuclear matter into pure neutron
matter (PNM):

S(ρ) ≈ E(ρ,α = 1) − E(ρ,α = 0). (3)

It is also customary to characterize the behavior of both
symmetric nuclear matter and the symmetry energy in terms
of a few bulk parameters. To do so, we perform a Taylor series
expansion around nuclear-matter saturation density ρ0. That is
[51],

ESNM(ρ) = ε0 + 1
2Kx2 + · · · , (4a)

S(ρ) = J + Lx + 1
2Ksymx2 + · · · , (4b)

where x = (ρ − ρ0)/3ρ0 is a dimensionless parameter that
quantifies the deviations of the density from its value at
saturation. Here ε0 and K represent the energy per nucleon and
the incompressibility coefficient of SNM; J and Ksym are the
corresponding quantities for the symmetry energy. However,
unlike symmetric nuclear matter whose pressure vanishes at
ρ0, the slope of the symmetry energy L does not vanish at
saturation density. Indeed, assuming the validity of Eq. (3),
L is directly proportional to the pressure of PNM (P0) at
saturation density, namely,

P0 ≈ 1
3ρ0L. (5)

Finally, one can go a step further and apply the above
formalism to neutron-star matter, which we assume to consist
of neutrons, protons, electrons, and muons in β equilibrium.
Note that no “exotic” degrees of freedom—such as hyperons,
meson condensates, or quarks—are included in the formalism.
At the densities at which neutron-star matter is uniform,
electrons and muons may be treated as relativistic Fermi
gases that contribute to the total energy density and pressure
of the system. In β equilibrium only the baryon density
needs to be specified, as the neutron-proton asymmetry is
adjusted to minimize the total energy density of the system.
Given that uniform neutron-rich matter is unstable against
cluster formation, we supplement our RMF predictions for the
EOS with the standard parametrization for the outer crust by
Baym, Pethick, and Sutherland [52]. Finally, we resort to a
polytropic EOS to interpolate between the solid outer crust
and the uniform liquid core [48,53]. Given that the EOS is the
only input required to solve the Tolman-Oppenheimer-Volkoff
equation, one can predict a variety of neutron-star properties
that can then be compared against observation. Particularly
relevant in this work will be the predictions for the maximum
stellar mass and the radius of a “canonical” 1.4M� neutron
star.
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B. An insightful transformation

The main goal of the present work is the accurate calibration
of a relativistic EDF by relying exclusively on measured
properties of finite nuclei and neutron stars. The fitting protocol
requires both the specification of a theoretical model and
the selection of physical observables to constrain the fit. The
conventional approach to the calibration of the EDF consists of
first minimizing the objective function and then validating the
model against observables not included in the fit. Traditionally,
the optimization of the model is carried out in parameter
space. That is, one searches for those model parameters (e.g.,
gs,gv, . . .) that minimize the objective function. Given that the
connection between the model parameters and our physical
intuition is tenuous at best, the searching algorithm often
ends up wandering aimlessly in search of the minimum. A
remarkable, but little known, fact in the framework of the
RMF theory is that many of the model parameters can be
expressed in terms of a few bulk properties of infinite nuclear
matter [54]. Although relatively new, it appears that such a
transformation between the model parameters and the bulk
properties of infinite nuclear matter (or “pseudodata”) is better
known in the case of the nonrelativistic Skyrme interaction
[2,55,56]. To avoid interrupting the flow of the narrative, we
only summarize here the central points of the transformation. A
detailed account of the transformation has been reserved to the
Appendix.

For the Lagrangian density given in Eq. (1), we identify five
isoscalar (gs, gv, κ, λ, and ζ ) and two isovector (gρ and �v)
parameters. Note that in a mean field approximation, the
properties of infinite nuclear matter are only sensitive to the
combinations g2

s /m2
s , g2

v/m2
v, and g2

ρ/m2
ρ . The transformation

starts in the isoscalar sector and links the first four isoscalar
parameters listed above with four bulk properties of symmetric
nuclear matter; these are the density ρ0, the binding energy
per nucleon ε0, the effective nucleon mass M∗, and the
incompressibility coefficient K , all evaluated at saturation
density. The fact that the pressure of SNM vanishes at
saturation density implies, through the Hugenholtz-van Hove
theorem, that the energy per nucleon must equal the nucleon
Fermi energy. This fact, together with the classical equation of
motion for the vector field, is sufficient to determine g2

v/m2
v for

a given value of ζ . Note that ζ will remain as a model parameter
throughout the optimization. To determine the three scalar
parameters (gs,κ,λ) one requires three pieces of information.
These are (a) the binding energy per nucleon at saturation,
(b) the classical equation of motion for the scalar field, and
(c) the incompressibility coefficient. Although the algebraic
manipulations are involved, they ultimately yield a system of
three simultaneous linear equations [54]. That is, the solution
is unique. Once the transformation has been completed in
the isoscalar sector, one may proceed to determine the two
remaining (isovector) parameters g2

ρ/m2
ρ and �v in terms of

the value of symmetry energy J and its slope L at saturation
density. This derivation—that to our knowledge has never been
published in the literature—benefits greatly from the fact that
the symmetry energy has a relatively simple analytic form
[47]; for further details, see the Appendix.

In summary, we have carried out a transformation be-
tween the model parameters defining the Lagrangian density

and various bulk parameters of infinite nuclear matter. As-
suming that the nucleon mass as well as the masses of
the two vector mesons in free space are fixed at their
experimental value, i.e., M = 939 MeV, mv = 782.5 MeV,
and mρ = 763 MeV, a point in an eight-dimensional La-
grangian parameter space may be written as follows: q =
(ms,g

2
s /m2

s ,g
2
v/m2

v,g
2
ρ/m2

ρ,κ,λ,�v,ζ ). As already mentioned,
in a mean field approximation the bulk properties of in-
finite nuclear matter are only sensitive to the combination
g2

s /m2
s . Hence, the range of the intermediate-range attraction,

expressed as the Compton wavelength of the scalar meson
rs = �c/msc

2, can only be determined from the properties
of finite nuclei, primarily from their charge radii. Moreover,
given that most bulk properties of infinite nuclear matter at
saturation density depend weakly on the value of ζ [38], the
value of ζ must be determined from observables sensitive to
the high-density component of the EOS, such as the maximum
neutron-star mass. In this way, the transformation enables
one to write a point in the space of pseudodata as p =
(ms,ρ0,ε0,M

∗,K,J,L,ζ ). Note that the very existence of such
transformation allows us to perform the model optimization
in the space of pseudodata rather than in the Lagrangian
parameter space.

There are several advantages to represent a point in
parameter space in terms of p rather than q. First, that a
unique algebraic solution exists for the Lagrangian parameters
in terms of bulk properties of nuclear matter makes the
theory well defined. Second, the parameters have evolved from
abstract coupling constants to quantities with a precise physical
meaning and with values narrowed down by experiment to
a fairly small range. Thus, running the optimization in the
space of pseudodata increases significantly the efficiency of
the searching algorithm. Finally, given that the fitting protocol
relies exclusively on experimental and observational data, the
culmination of the optimization procedure provides bona fide
theoretical predictions for all bulk properties with meaningful
error bars. These predictions may be compared against other
theoretical approaches that could provide a bridge between ab
initio calculations and phenomenological approaches.

C. Optimization and covariance analysis

The aim of the optimization procedure is to determine the
set of model parameters that minimizes the objective function,
or goodness-of-fit parameter χ2, that is defined as

χ2(p) ≡
N∑

n=1

[O(th)
n (p) − O(exp)

n

]2

�O2
n

, (6)

where p = (p1, . . . ,pF ) is a point in the F -dimensional
parameter space, O(exp)

n is the measured experimental value
of the nth observable (out of a total of N ), and O(th)

n (p) the
corresponding theoretical prediction. Although, in principle,
the adopted error �On is associated with the experimental
uncertainty, in practice, it must be supplemented by a “theo-
retical” contribution. The main reason for adding a theoretical
error is that the objective function is weighted by the error
associated with each observable: The smaller is the error, the
larger is the weight. Given that certain observables, such as
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nuclear binding energies, are known with enormous precision,
the minimization of the objective function could be biased by
such observables. However, it is important to recognize that
no universal protocol exists for the selection of theoretical
errors, although Ref. [26] provides a useful guiding principle.
Most of the formalism required for the use of information
and statistics in theoretical nuclear physics may be found in
Refs. [21–23,26,27] and in references contained therein. In
turn, most of the central ideas presented in those references
are contained in the two excellent texts by Brandt [57] and
Bevington [58]. However, in the interest of clarity we present
a succinct summary of the main concepts.

A concept of great pedagogical significance and closely
connected to the objective function is the likelihood function:

L(p) = e− 1
2 χ2(p). (7)

Clearly, minimizing the objective function χ2(p) is fully
equivalent to maximizing the likelihood function L(p). How-
ever, the great merit of the likelihood function is that it
may be regarded as a probability distribution. That is, given
two arbitrary parameter sets (or “models”) p1 and p2, the
likelihood function provides the relative probability that the
given models reproduce the given experimental data. In
particular, the optimal (or most likely) parameter set is the one
that maximizes the likelihood function. Using the probabilistic
nature of the likelihood function one can efficiently sample the
full parameter space via, for example, a standard Metropolis
Monte Carlo algorithm. Averages, variances, and correlation
coefficients can then be computed in a standard fashion. For
example, if {p1,p2, . . . ,pM} represent the M models generated
by the sampling algorithm, then the average of a generic
observable A is simply given by

〈A〉 = lim
M→∞

1

M

M∑
m=1

A(pm). (8)

Although the method of maximum likelihood along with a
sampling algorithm is simple and insightful, generating a large
set of model parameters, except in a few simple cases, is highly
impractical. Indeed, certain observables adopted in the fit, such
as giant monopole energies, are computationally expensive to
evaluate. For such cases, one must resort to other methods to
minimize the objective function, so we rely on the well-known
Gaussian approximation where the parameter exploration is
limited to the immediate vicinity of the χ2 minimum. Denoting
by p0 the optimal parameter set, the Gaussian approximation
consists of studying the small (quadratic) oscillations around
the χ2 minimum. That is,

χ2(p) ≈ χ2(p0) + 1

2

F∑
i,j=1

(p − p0)i(p − p0)j

(
∂2χ2

∂pi∂pj

)
0

≡ χ2
0 + xT M̂0 x, (9)

where we have introduced the following dimensionless scaled
variables:

xi ≡ (p − p0)i
(p0)i

. (10)

Note that the behavior of the χ2 function around its minimum
value is determined by the curvature matrix M̂0, whose
matrix elements are defined in terms of its second derivatives
evaluated at the optimal point. That is,

(M0)ij ≡ 1

2

(
∂2χ2

∂xi∂xj

)
0

. (11)

In this work we employ the Levenberg-Marquardt method
[59] to minimize the objective function. Initially, the algorithm
uses the inverse Hessian method and then switches continu-
ously to the method of steepest decent on its way toward the
minimum. Furthermore, we take advantage of the fact that
the objective function to be minimized is neither arbitrary
nor totally unknown. Rather, it is defined directly in terms
of the physical observables appearing in the definition of the
objective function given in Eq. (6). This fact enables us to
write the curvature matrix—which is essential for both the
optimization and the covariance analysis—as follows:

Mij =
N∑

n=1

1

�O2
n

[(
∂O(th)

n

∂xi

)(
∂O(th)

n

∂xj

)

+ (O(th)
n − O(exp)

n

)(∂2O(th)
n

∂xi∂xj

)]
. (12)

Notice that (O(th)
n − O(exp)

n ) in the above expression represents
the difference between the experimental value and the theoret-
ical prediction of a given observable. Assuming that the model
is rich enough to reasonably describe the set of observables
included in the fit, then this term should be small. Moreover,
we may expect that such a deviation is not only small but
also random in sign. Therefore, the contributions from all
observables to the second term in Eq. (12) will tend to cancel
each other and the curvature matrix may be computed without
ever having to evaluate any second derivatives of O(th)

n . That
is, in the linear approximation one obtains [57,58]

Mij ≈
N∑

n=1

1

�O2
n

(
∂O(th)

n

∂xi

)(
∂O(th)

n

∂xj

)
. (13)

The Levenberg-Marquardt method along with this simplified
expression for the curvature matrix has been shown to be
very stable and efficient, and has become one of the standard
routines for nonlinear optimization [59].

As mentioned in the Introduction, the importance of
including theoretical uncertainties in the prediction of physical
quantities is gaining significant momentum. Knowledge of the
curvature matrix is all that is needed to compute any statistical
quantity, at least in the Gaussian approximation. For example,
the covariance between any two observables A and B is
given by

cov(A,B) = cov(B,A) =
F∑

i,j=1

(
∂A

∂xi

)
0

�ij

(
∂B

∂xj

)
0

, (14)

where the covariance matrix �̂ = M̂−1
0 is equal to the inverse

of the curvature matrix evaluated at the optimal point. In
the case in which A = B, this equation gives the variance
of A which equals the square of its uncertainty. That is,
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cov(A,A) ≡ var(A) = σ 2
A. Note that the theoretical errors (σA)

that will be reported in the next section have been computed in
precisely this manner. Finally, given the covariance between A
and B and their corresponding variances, the Pearson product
moment correlation coefficient (or simply the correlation
coefficient) is given by [57]

ρ(A,B) = cov(A,B)

σAσB

. (15)

In identifying a connection between two observables, the
correlation coefficient provides a unique opportunity to infer
the value of an observable that may not be accessible in
either experiments or observations. Moreover, the correlation
coefficient has an intuitive geometric interpretation. Suppose
that a large number of M values for both A and B are generated
according to the likelihood function L. Then, by defining the
following two unit vectors in M dimensions,

am ≡ 1√
M

(
Am − 〈A〉

σA

)
and bm ≡ 1√

M

(
Bm − 〈B〉

σB

)
,

(16)

the correlation coefficient becomes equal to the cosine of the
angle between these two unit vectors. That is,

ρ(A,B) = â · b̂ ≡ cos(â,b̂). (17)

In particular, a value of ρ(A,B) = ±1 implies that the two
observables are fully correlated/anticorrelated, whereas a value
of ρ(A,B) = 0 means that the observables are totally uncor-
related. In the next section we will implement a covariance
analysis to estimate theoretical uncertainties (i.e., “errors”) in
the model parameters, the fitting observables, as well as a
variety of observables that were not included in the calibration
procedure. Moreover, we examine correlations between: (i)
observables, (ii) model parameters, and (iii) observables and
model parameters. All three sets of correlations are insightful
and provide complementary information on the strengths and
weaknesses of the model. In the first case, a strong correlation
between two experimentally accessible observables prevents
redundancy. However, if one of the observables is not acces-
sible either experimentally or observationally, a strong corre-
lation provides a clear path for its determination. In the case
of correlations among model parameters the situation is vastly
different. Indeed, rather than suggesting redundancy, a strong
correlation between model parameters underscores the need
for both. Finally, correlations between observables and model
parameters reveal the sensitivity of the parameters to a partic-
ular kind of physics. Relying on such a covariance analysis
makes it possible to connect a variety of physical phenomena
to the underlying microscopic theory and provides a unique
and powerful tool for improving the quality of the models.

III. RESULTS

Having developed in the previous section most of the
required formalism, we are now in a position to implement
the calibration of a new relativistic EDF. We provide details
that involve the optimization and the subsequent covariance
analysis. Whenever appropriate, we supplement our results

with properly estimated theoretical errors. Moreover, in a few
instances, we provide correlation coefficients involving both
observables and model parameters. The new relativistic EDF
may be regarded as an improvement over the almost decade-old
FSUGold parametrization [10]. Accordingly, we name this
newer version FSUGold2.

A. FSUGold2: An accurately calibrated interaction
for finite nuclei and neutron stars

Based on the relativistic Lagrangian density given in Eq. (1),
there are a total of 11 model parameters: 7 coupling constants,
1 nucleon mass, and 3 meson masses. The mass of the nucleon
will be fixed at its free space value of M = (Mp + Mn)/2 ≈
939 MeV. Given the effective character of the theory, the
three meson masses should, in principle, be treated as model
parameters that should be determined by the fitting procedure.
However, we have found—as many others have found before
us—that with the exception of the scalar meson, the masses
of the two vector mesons (mv and mρ) may be fixed near their
experimental values: mv ≈ 782.5 MeV and mρ ≈ 763 MeV.
Note that the mass of the scalar meson controls the range of the
scalar attraction and is therefore critical for an accurate repro-
duction of charge radii [6]. As mentioned earlier, having fixed
the masses of the vector mesons, the transformation between
model parameters q and pseudodata p may be represented
as follows: q = (ms,g

2
s /m2

s ,g
2
v/m2

v,g
2
ρ/m2

ρ,κ,λ,�v,ζ ) ↔ p =
(ms,ρ0,ε0,M

∗,K,J,L,ζ ). In essence, the objective function
χ2(p) is a function of the pseudodata, but the theoretical predic-
tions depend on the model parameters q. The transformation
outlined in the Appendix uniquely determines p in terms of q,
and vice versa.

Having defined the parameters that must be optimized, we
must now introduce the experimental and observational data
that will be used to constrain the fit. The fitting observables
that we use in the optimization include (a) binding energies, (b)
charge radii, (c) giant monopole resonance (GMR) of semi-
and doubly magic nuclei across the nuclear chart, and (d)
the maximum neutron-star mass observed up to date. Note
that all these observables are genuine experimental or obser-
vational quantities; no properties of infinite nuclear matter
are incorporated in the definition of the objective function.
The ground-state properties and collective excitations of finite
nuclei are effective in constraining the EOS of nuclear matter
around saturation density with small to moderate values of the
neutron-proton (i.e., isospin) asymmetry. However, neutron-
star properties—such as the maximum neutron-star mass—
may be used to constrain the high-density component of the
EOS of neutron-rich matter. We believe that no laboratory
experiment may constrain the EOS of cold, fully catalyzed,
nuclear matter at high densities.

One of the greatest challenges involved in the definition
of the χ2 function introduced in Eq. (6) is the choice of
errors �On associated with each observable On. Given the
remarkable precision that has been achieved in measuring
binding energies and charge radii, the χ2 function would
be dominated by the terms associated with these two sets of
observables if we naively adopt their associated experimental
errors. Although the optimization could still be carried out in
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TABLE I. Model parameters for the newly optimized FSUGold2 relativistic EDF along with two accurately calibrated RMF models: NL3
[8] and FSUGold [10]. The parameter κ and the meson masses ms, mv, and mρ are all given in MeV. The nucleon mass has been fixed at
M = 939 MeV in all the models.

Model ms mv mρ g2
s g2

v g2
ρ κ λ ζ �v

NL3 508.194 782.501 763.000 104.3871 165.5854 79.6000 3.8599 −0.015 905 0.0000 0.000 000
FSU 491.500 782.500 763.000 112.1996 204.5469 138.4701 1.4203 +0.023 762 0.0600 0.030 000
FSU2 497.479 782.500 763.000 108.0943 183.7893 80.4656 3.0029 −0.000 533 0.0256 0.000 823

such case, the overall quality of the EDF would be poor, as
binding energies and charge radii would be well reproduced
at the expense of all remaining observables. Therefore, to
mitigate this deficiency one should manipulate the errors in
such a way that the relative weights of all observables be
commensurate with each other. By necessity, this implies some
“trial and error” as there is no clear choice for the optimal
protocol [26]. The choice of error for each observable adopted
in the fit is discussed below.

Once the objective function has been properly defined
by specifying a theoretical model and a set of observables
with properly defined errors, the Levenberg-Marquardt method
was used to obtain the optimal set of parameters p =
(ms,ρ0,ε0,M

∗,K,J,L,ζ ). In turn, the model parameters q may
be obtained from the transformation outlined in the Appendix.
The resulting set of model parameters for the newly built
functional FSUGold2 (or “FSU2” for short) are displayed in
Table I. Also shown for comparison are two canonical sets
of parameters, NL3 [8] and FSUGold (or “FSU” for short)
[10]. Given that the EOS for symmetric nuclear matter and
the symmetry energy are both stiff in the case of NL3 and

TABLE II. Experimental data for the binding energy per nucleon
(in MeV) [60] and charge radius (in fm) [61] for all the nuclei involved
in the optimization. Also displayed are the theoretical results obtained
with NL3 [8], FSUGold [10], and FSUGold2.

Nucleus Observable Experiment NL3 FSU FSU2

16O B/A 7.98 8.06 7.98 8.00
Rch 2.70 2.75 2.71 2.73

40Ca B/A 8.55 8.56 8.54 8.54
Rch 3.48 3.49 3.45 3.47

48Ca B/A 8.67 8.66 8.58 8.63
Rch 3.48 3.49 3.48 3.47

68Ni B/A 8.68 8.71 8.66 8.69
Rch — 3.88 3.88 3.86

90Zr B/A 8.71 8.70 8.68 8.69
Rch 4.27 4.28 4.27 4.26

100Sn B/A 8.25 8.30 8.24 8.28
Rch — 4.48 4.48 4.47

116Sn B/A 8.52 8.50 8.50 8.49
Rch 4.63 4.63 4.63 4.61

132Sn B/A 8.36 8.38 8.34 8.36
Rch 4.71 4.72 4.74 4.71

144Sm B/A 8.30 8.32 8.32 8.31
Rch 4.95 4.96 4.96 4.94

208Pb B/A 7.87 7.90 7.89 7.88
Rch 5.50 5.53 5.54 5.51

both soft for FSU, such a comparison is very informative.
However, when comparing these models, one should keep in
mind that different models are calibrated using different sets
of observables and associated errors. This introduces some
inherent biases into the models that ultimately become an
important source of systematic errors.

B. Ground-state properties

We start this section by displaying in Table II ground-state
binding energies and charge radii for all the nuclei involved
in the optimization. Experimental data for these observables
were obtained from the latest atomic-mass evaluation [60] and
charge radii compilation [61], respectively. In turn, the errors
assigned to the binding energies and charge radii are 0.1%
and 0.2%, respectively. As mentioned earlier, these adopted
errors are several orders of magnitude larger than the quoted
experimental uncertainties [60,61]. Only by doing so can one
prevent the optimization from being dominated by these two
ground-state observables. Also displayed in Table II are the
theoretical predictions from all three models. Because the
influence of pairing correlations in both the binding energies
and charge radii are very small, we did not take pairing into
consideration for the open-shell nuclei 116Sn and 144Sm. Note
that the theoretical errors predicted by FSU2 (of about 1 part
in 1000) are too small to be displayed in the table. Also note
that the quoted theoretical value for the charge radius was
obtained by adding to the extracted nuclear point proton radius
the intrinsic charge radius of the proton r = 0.8783(86) fm
[61]. That is, Rch = (R2

p + r2)1/2. We can see that both the
binding energies and charge radii are very well reproduced
by all the models. In the particular case of FSU2, with the
exception of the charge radius of 16O, the discrepancy relative
to experiment is less than 0.5%. The slightly larger than 1%
deviation in the case of 16O should not come as a surprise, as
with only 16 nucleons oxygen barely qualifies as a “mean field”
nucleus. It is important to stress that neither binding energies
nor charge radii have a significant impact on the stiffness of
the EOS. Indeed, NL3 and FSU predict significantly different
stiffness for the EOS (see below), yet they both reproduce fairly
accurately the experimental results for these two observables.

C. Giant monopole resonances

In optimizing the FSUGold2 functional, we have also
incorporated GMR energies for 90Zr, 116Sn, 144Sm, and
208Pb. In Table III we display constrained GMR energies
EGMR = √

m1/m−1 extracted from measurements at the Texas
A&M University (TAMU) cyclotron facility [62] and at the
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TABLE III. Constrained energies EGMR = √
m1/m−1 (in MeV)

for the GMR in 90Zr, 116Sn, 144Sm, and 208Pb obtained from exper-
iments at TAMU [62] and RCNP [63–67]. Theoretical results were
obtained by following the constrained RMF formalism developed in
Ref. [68].

Nucleus TAMU RCNP NL3 FSU FSU2

90Zr 17.81 ± 0.35 — 18.76 17.86 17.93 ± 0.09
116Sn 15.90 ± 0.07 15.70 ± 0.10 17.19 16.39 16.47 ± 0.08
144Sm 15.25 ± 0.11 15.77 ± 0.17 16.29 15.55 15.59 ± 0.09
208Pb 14.18 ± 0.11 13.50 ± 0.10 14.32 13.72 13.76 ± 0.08

Research Center for Nuclear Physics (RCNP) in Osaka, Japan
[63–67]. Here m1 and m−1 are suitable moments of the
strength distribution that represent the energy-weighted and
inverse-energy-weighted sums, respectively. The theoretical
results listed on the table were obtained by following the
constrained RMF formalism developed in Ref. [68]. Moreover,
it was found in Ref. [69] that pairing correlations have a very
minor impact on the GMR energies. Therefore, pairing was not
included in the case of the open-shell nuclei 116Sn and 144Sm.
The same information has been displayed in graphical form in
Fig. 1. Note that the red solid line in the figure represents a fit
to the FSU2 predictions of the form Efit = 72.8 A−0.31 MeV;
this compares favorably against the macroscopic expectation
of EGMR ≈ 80A−1/3 MeV [70,71]. We find both intriguing
and unsettling that the TAMU and RCNP data—particularly
for 208Pb—are inconsistent with each other. Given the critical
nature of this information, we trust that the discrepancy may be
resolved in the near future. In the meantime, and to account for
the experimental discrepancy, we have adopted slightly larger
errors in the optimization of the functional, namely, 2% for
90Zr and 1% for the rest.

90 116 144 208
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FSU2

Efit=72.8A-0.31 MeV

FIG. 1. (Color online) Constrained giant monopole energies for
90Zr, 116Sn, 144Sm, and 208Pb. Experimental data were obtained
from experiments carried out at TAMU [62] and RCNP [63–67].
Theoretical predictions are presented for NL3 [8], FSUGold [10],
and FSUGold2 supplemented with theoretical errors. The red solid
line represents a best fit to the FSUGold2 predictions of the form
Efit = 72.8A−0.31 MeV.

Our results indicate that the predictions from FSU and
FSU2 are compatible with each other. This is consistent with
the notion that GMR energies probe the incompressibility
coefficient of SNM, that is, K (see Table IV). Moreover, with
the exception of 116Sn, both FSU and FSU2 reproduce the
experimental data, although they both favor the smaller RCNP
measurement in the case of 208Pb. Note that the answer to the
question of why tin is so soft [51,64,65] continues to elude
us to this day [69,72–78]. By the same token NL3, with a
significantly larger value of K than both FSU and FSU2,
overestimates the experimental data, except in the case of
the TAMU data for 208Pb [79]. Although, in principle, GMR
energies of neutron-rich nuclei probe the incompressibility
coefficient of neutron-rich matter [51], in practice the neutron-
proton asymmetry for these nuclei is simply too small to
provide any meaningful constraint on the density dependence
of the symmetry energy. This is the main reason behind the
agreement between FSU and FSU2, even though they predict
radically different values for the slope of the symmetry energy
L (see Table IV).

D. Neutron-star structure

The last observable that was included in the calibration
of the new FSU2 functional was the maximum neutron-star
mass. Displayed in Fig. 2 with horizontal bars are the two
most massive, and accurately measured, neutron stars [18,19].
Clearly, those observations place stringent constraints on the
high-density component of the EOS, as models that predict
limiting masses below 2M�—such as FSUGold—must be
stiffened accordingly. Therefore, for the optimization of the
FSU2 functional, we have adopted a value of Mmax = 2.10M�
with a relatively small 1% error. If required by future
observations, this input can be easily modified by a suitable
tuning of the quartic vector coupling constant ζ .

Also displayed in Fig. 2 are theoretical predictions for
the mass-vs-radius (M-R) relations for the three models
considered in the text. As alluded to earlier, with a stiff EOS
NL3 predicts large stellar radii and a maximum neutron-
star mass of almost 3M�. In contrast, FSUGold with a
relatively soft EOS predicts smaller values for both. The new
FSUGold2 functional displays a M-R relation that appears
intermediate between NL3 and FSUGold. In particular, after
the optimization we obtain a maximum stellar mass of Mmax =
(2.07 ± 0.02)M�, safely within the bounds set by observation.
Given the large impact that the quartic vector coupling constant
ζ has on the EOS at high densities, these results are totally
consistent with our expectations (see Table I). However, stellar
radii seem to be controlled by the density dependence of
the symmetry energy in the immediate vicinity of saturation
density [80]. Thus, models with large values of L tend to
predict neutron stars with large radii [47]. This is the main
reason behind the relatively uniform “shift” between FSU
and FSU2 (see Table IV). It is important to realize that no
observable highly sensitive to the density dependence of the
symmetry energy, such as the neutron-skin thickness of 208Pb
or stellar radii, was used in the calibration of FSU2. Such
a choice was deliberate, as at present there are no stringent
experimental or observational constraints on the isovector
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TABLE IV. Bulk properties of nuclear matter predicted by the models: NL3 [8], FSUGold [10], and FSUGold2. The results from FSUGold2
are supplemented with their theoretical errors.

Model ρ0(fm−3) ε0 (MeV) M∗/M K (MeV) J (MeV) L (MeV)

NL3 0.1481 −16.24 0.595 271.5 37.28 118.2
FSU 0.1484 −16.30 0.610 230.0 32.59 60.5
FSU2 0.1505 ± 0.0007 −16.28 ± 0.02 0.593 ± 0.004 238.0 ± 2.8 37.62 ± 1.11 112.8 ± 16.1

sector of the nuclear density functional. Although the Lead
Radius Experiment (“PREX”) at the Jefferson Laboratory has
provided the first model-independent evidence on the existence
of a neutron-rich skin in 208Pb [81,82], the determination
came with an error that is too large to impose any significant
constraint. That is,

R208
skin = 0.33+0.16

−0.18 fm. (18)

In the case of stellar radii, the present situation is highly
unsatisfactory, as further illustrated in Fig. 2. First, an initial
attempt by Özel and collaborators to determine simultaneously
the mass and radius of three x-ray bursters resulted in predic-
tions for stellar radii between 8 and 10 km [28]. Shortly after,
Steiner et al. supplemented Özel’s study with three additional
neutron stars and concluded that systematic uncertainties make
the most probable radii lie in the 11-to-12-km region [29].
However, even this more conservative estimate has been put
into question by Suleimanov and collaborators, who suggested
a lower limit on the stellar radius of 14 km on neutron
stars with masses below 2.3M� [30]. That is, three different
analyses of (mostly) the same sources seem to differ in their
conclusions by more than 5 km in the radius of a typical neutron
star. Recognizing this unacceptable situation and the many
challenges posed by the study of x-ray bursters, Guillot and
collaborators concentrated on the determination of stellar radii

6 8 10 12 14 16 18
R(km)

0

1

2

3

M
/M

su
n

NL3

FSU

FSU2

4U 1608-52
EXO 1745-248
4U 1820-30

Demorest

Antoniadis

Suleimanov
R>14km for
M<2.3Msun

Ozel

Steiner

Guillot

FIG. 2. (Color online) Mass-vs-radius relation predicted by the
three models considered in the text: NL3 [8], FSUGold [10], and
FSUGold2. Also shown are recent observational constraints on
neutron-star masses [18,19] and radii [28–31]. The FSUGold2 results
are supplemented with two sets of theoretical errors: one (red) in
which the maximum neutron-star mass was included in the calibration
of the functional and the other (gray) estimated also using FSUGold2,
but with the impact of the maximum neutron-star mass being removed
from the curvature matrix, as explained in the text.

by studying five quiescent low-mass x-ray binaries (qLMXB)
in globular clusters. By clearly and explicitly stating all their
assumptions, some of them apparently not without controversy
[83], Guillot et al. were able to determine a rather small
neutron-star radius of [31]

R0 = 9.1+1.3
−1.5 km. (19)

Note that this value represents the “common” radius of all
neutron stars, a critical assumption in the analysis of Ref. [31].
Given such an unfortunate state of affairs concerning stellar
radii, we have then decided against including such information
into the calibration of FSUGold2. This, of course, does not
prevent us from offering FSU2 predictions for stellar radii, as
displayed in Fig. 2. In particular, we find the radius of a “canon-
ical” 1.4M� neutron star to be R1.4 = (14.42 ± 0.26) km. Note
that the large stellar radii predicted by FSU2 satisfy the
constraint set by Suleimanov et al., but only for neutron stars
with masses below � 1.8M�. Moreover, we should mention
that although no assumptions on either the neutron-skin
thickness of 208Pb or stellar radii were incorporated into
the calibration of FSUGold2, a manuscript that contemplates
various possible scenarios is in preparation.

Finally, we close this section by exploring the impact of
the maximum neutron-star mass Mmax on the estimation of
errors. Recall that Mmax is the only observable included in
the calibration that is sensitive to the high-density component
of the EOS. Although we preserve the same optimal set
of parameters as FSUGold2, we assess the impact of Mmax

by removing its contribution to the curvature matrix. This
invariably results in some flattening of certain directions in
parameter space. In particular, the additional set of theoretical
errors displayed (in gray) in Fig. 2 were estimated in precisely
this manner. As expected, the (gray) theoretical “error band”
becomes significantly thicker when the maximum neutron-
star mass is removed from consideration. Particularly, the
uncertainty in Mmax is increased significantly from 0.02M�
to 0.15M� and the error in the radius of a 1.4M� neutron
star becomes almost three times as large. It is clear that
the inclusion of Mmax in the calibration of the functional is
essential to constrain the high-density component of the EOS.
Indeed, we believe that no terrestrial experiment can reliably
constrain the EOS of neutron-star matter.

E. Predictions and correlations

With the exception of stellar radii, up until now we have
concentrated on physical observables that were included in
the calibration of the density functional. In the present section,
we shift our attention to genuine theoretical predictions of a
variety of observables that were not incorporated into the fit.
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We start by displaying in Table IV a few bulk properties of
nuclear matter at saturation density. These properties are of
critical importance in constraining the EOS of neutron-rich
matter and the covariance analysis developed here serves to
determine whether the physical observables incorporated into
the fit impose meaningful constraints on these properties. We
note that the four isoscalar properties that characterize the
EOS of SNM (i.e., ρ0, ε0, M∗/M , and K) are all accurately
determined (to about 1%). In particular, we attribute the
small theoretical error associated with the incompressibility
coefficient (K = 238.0 ± 2.8 MeV) to the inclusion of GMR
energies into the calibration of FSUGold2. Moreover, we find
good agreement with the isoscalar predictions from both NL3
and FSU except in the case of K for NL3.

However, the situation is radically different in the isovector
sector. Although the ground-state properties of neutron-rich
nuclei, such as 48Ca, 132Sn, 208Pb, are able to constrain the
value of the symmetry energy J to about 3%, its slope L
remains poorly constrained (to about 15%). We attribute this
situation to the lack of well-measured isovector observables,
such as the neutron skin of heavy nuclei. We reiterate that
when relativistic models of the kind given in Eq. (1) do not
incorporate strong isovector constraints, they tend to generate
a fairly stiff symmetry energy. Note that although the density
dependence of the symmetry energy remains rather uncertain,
all three models considered in the table are consistent at
a subsaturation density of ρ̃0 ≈ 0.10 fm−3 ≈ 2ρ0/3. Indeed,
according to Eq. (4b) one obtains

J̃ ≡ S(ρ̃0) ≈ J + L
(ρ̃0 − ρ0)

3ρ0
≈

(
J − L

9

)
≈ (25 − 26) MeV. (20)

This point has been emphasized repeatedly in various refer-
ences [11,12,40,84–87]. That is, the above correlation between
J and L that emerges from the masses of neutron-rich nuclei
determines rather accurately the value of the symmetry energy
at an average between the central nuclear density ρ0 and some
characteristic density at the surface. Clearly, more information
is required to determine both J and L.

The large theoretical error attached to the prediction of L
suggests that relatively large changes in L from its average
value only produce a mild deterioration in the quality of
the fit. This indicates that there are directions in the model
space that are relatively “soft” or “flat.” An equivalent and
highly intuitive way to illustrate this effect is to diagonalize
the 8 × 8 curvature matrix M̂ defined in Eq. (13). This
then becomes effectively a small-oscillations problem. In
particular, each eigenvalue λi of M̂ controls the deterioration
in the quality of the fit as one moves along a direction
defined by its corresponding eigenvector [22]. A flat direction,
characterized by a small eigenvalue λi , involves a particular
linear combination of parameters that is poorly constrained
by the choice of observables included in the calibration of the
functional. To illustrate such a behavior we have plotted in
Fig. 3 the components of four of the eight eigenvectors along
the original directions in the pseudoparameter space. Note that
we have considered only those eigenvectors having the two
largest and two smallest eigenvalues, with the largest eigen-
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FIG. 3. (Color online) Amplitude decomposition of the eigen-
vectors of the curvature matrix corresponding to the two largest [(a)
and (b)] and the two smallest [(c) and (d)] eigenvalues, with the largest
eigenvalue normalized to one. The two different colors (blue and red)
indicate that the amplitudes contribute with opposite signs.

value being normalized arbitrarily to one. The blue and red
rectangles serve to indicate components having opposite signs.
The eigenvectors associated with the two largest eigenvalues
determine the two stiffest directions in parameter space. Small
departures from the minimum along those two eigenvectors
result in a rapid deterioration of the quality of the fit. Perhaps
not surprisingly given the importance of ground-state energies
and charge radii (see Table II), the scalar-meson mass, the
saturation density, and the binding energy per nucleon are
the most accurately determined parameters. Note that the
scalar mass was determined with a small 0.3% theoretical
error: ms = (497.479 ± 1.492) MeV. In stark contrast, the
eigenvalues associated with the two softest directions are down
by five to seven orders of magnitude. These two directions are
represented by almost “pure” eigenvectors with amplitudes
in excess of 0.95 along the original ζ and L directions,
respectively. The reason for L to remain poorly constrained
has already been discussed earlier. However, the reason for ζ
to remain largely undetermined is slightly more subtle. From
the work of Müller and Serot it is already known that the
value of ζ is insensitive to ground-state properties of finite
nuclei that probe densities near nuclear-matter saturation [38].
However, Müller and Serot showed that the value of ζ may be
efficiently tuned to control the high-density component of the
EOS and ultimately the maximum neutron-star mass Mmax.
Naively then, one would have expected a better constraint
on ζ from the inclusion of Mmax in the calibration of the
functional. We believe that the poor determination of ζ may
be attributed to the large value of L suggested by FSUGold2
(see Table IV). Indeed, when L is small as in the case of
FSUGold, the high-density component of the EOS needs to
be stiffened to account for the existence of massive stars.
This can be efficiently done by only tuning ζ , as was done
in Ref. [88]. However, if the symmetry energy is already stiff
and no isovector constraints are available, then it appears that
only a linear combination of L and ζ can be constrained.
This analysis reinforces the urgent need for well-measured
isovector observables.

A more comprehensive view of the behavior of infinite
nuclear matter is given in Fig. 4, where predictions for the
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FIG. 4. (Color online) (a) Binding energy per nucleon of sym-
metric nuclear matter and (b) symmetry energy as a function of
density in units of nuclear-matter saturation density ρ0 = 0.148 fm−3.
Predictions are included from the three models discussed in the
text: NL3 [8], FSUGold [10], and FSUGold2 supplemented with
theoretical errors.

EOS of SNM (left panel) and the symmetry energy (right
panel) are displayed for the three RMF models considered
in this work. Owing to the inclusion of GMR energies into
the calibration of FSUGold2, the incompressibility coefficient
was fairly accurately determined (see Table IV) and this, in
turn, generates small theoretical errors on the EOS up to 2–3
times saturation density. The larger theoretical uncertainty
with increasing density is a reflection of the inability of
ground-state properties and GMR energies to constrain the
high-density behavior of the EOS. In principle, the inclusion
of a maximum neutron-star mass Mmax into the fit should have
served to constrain the EOS at high density. However, given
that the symmetry energy is stiff (see right-hand panel), one
can satisfy the Mmax constraint without imposing stringent
limits on the EOS of SNM at high densities. However, the
situation is radically different in the case of the symmetry
energy, as the model has lost its predicability at densities
only slightly above saturation density. Although we expect to
mitigate this situation once strong isovector observables, such
as neutron skins and stellar radii, are incorporated into the
calibration of the density functional, our results underscore
the importance of including theoretical uncertainties. Whereas
the symmetry energy predicted by FSUGold2 is stiff at
saturation density, it is consistent at the 1σ level with a
symmetry energy almost as soft as FSUGold and as stiff as
(or even stiffer than) NL3 at high densities. The impact of a
stiff symmetry energy on the neutron-skin thickness of all the
nuclei used in the calibration procedure is displayed in Table V.
These results help to reinforce the recent claim that, at present,
there is no compelling reason to rule out models with large
neutron skins [89]. We close this part of the discussion with
a brief comment on the EOS of PNM. Given that the EOS of
PNM may be approximated as that of SNM plus the symmetry
energy, the EOS of PNM at low densities for FSUGold2
strongly resembles the one for NL3. Although PNM is not
experimentally accessible, there are important theoretical
constraints that have emerged from the universal behavior of
dilute Fermi gases in the unitary limit [33]. As mentioned

TABLE V. Predictions for the neutron skins, Rskin ≡ Rn − Rp (in
fm), of all the nuclei included in the calibration procedure for NL3
[8], FSUGold [10], and FSUGold2 supplemented with theoretical
error bars.

Nucleus NL3 FSU FSU2

16O −0.028 −0.029 −0.028 ± 0.005
40Ca −0.049 −0.051 −0.050 ± 0.004
48Ca 0.226 0.197 0.232 ± 0.008
68Ni 0.261 0.211 0.268 ± 0.010
90Zr 0.114 0.088 0.117 ± 0.008
100Sn −0.076 −0.080 −0.077 ± 0.008
116Sn 0.167 0.122 0.172 ± 0.011
132Sn 0.346 0.271 0.354 ± 0.019
144Sm 0.145 0.103 0.149 ± 0.011
208Pb 0.278 0.207 0.287 ± 0.020

earlier, without additional isovector constraints the symmetry
energy predicted by RMF models tends to be fairly stiff. There-
fore, whereas FSUGold is consistent with most theoretical
constraints [33–35,90], both FSUGold2 and NL3 are not.

So far, we have discussed the results from the optimization
and the theoretical errors associated with a large number
of physical quantities. We now turn the discussion to the
important topic of correlations based on Eqs. (14) and (15).
We start in Fig. 5 by displaying correlation coefficients in
graphical form for various physical quantities. From these,
only GMR energies and the maximum neutron-star mass
were included in the calibration procedure. As anticipated,
we find a strong correlation of the GMR energies to
the nuclear incompressibility coefficient K , verifying the

FIG. 5. Correlation coefficients (in absolute value) depicted in
graphical form for a representative set of observables. The set includes
four GMR energies (for 90Zr, 116Sn, 144Sm, and 208Pb), two neutron
radii (for 48Ca and 208Pb), several bulk properties of nuclear matter
(ε0 , ρ0 , M∗, K , J , and L), and two neutron-star observables (the
maximum mass Mmax and the radius of a 1.4M� neutron star R1.4).
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age-old idea of extracting a fundamental parameter of the
EOS from laboratory measurements of the breathing mode.
To our knowledge, this is the first time that GMR energies
are directly incorporated into the calibration of a relativistic
EDF. In the case of the two fundamental parameters of the
symmetry energy J and L, we observe a strong correlation
with “size” parameters, specifically with the neutron radius
of 48Ca and 208Pb, as well as with the radius of “canonical”
1.4M� neutron star. The sensitivity of the size parameters
to L has a clear physical underpinning. In the particular
case of a nucleus, surface tension favors the formation of
a spherical drop of uniform equilibrium density. However,
if the nucleus has a significant neutron excess, it may be
energetically advantageous to move some of these neutrons
from the center of the nucleus to the dilute surface where
the symmetry energy is reduced. In particular, if the slope
L is large, then this reduction is significant so it becomes
favorable to move most of the excess neutrons to the surface,
thereby creating a thick neutron skin [87]. Given that the same
pressure that pushes against surface tension in a nucleus pushes
against gravity in a neutron star, the larger is the value of L,
the larger is the stellar radius [40,47]. However, whereas the
neutron skin is sensitive to the pressure around the saturation
density, the neutron-star radius also depends on the pressure
at higher densities. This weakens slightly the correlation
between the stellar radius and the neutron radius of the nucleus.
Nevertheless, that a correlation between systems that differ by
18 orders of magnitude in size exits is remarkable indeed.
Moreover, the correlation between the neutron-skin thickness
of 208Pb and the radius of low-mass neutron stars is even
stronger [23,48]. This suggests how a laboratory measurement
may place a significant constraint on an astronomical object,
and vice versa. This example clearly illustrates the power of
the covariance analysis.

We now proceed to display in Fig. 6 correlation co-
efficients between the Lagrangian model parameters. The
prevalence of “dark patches” suggests a strong correlation
among several model parameters. A large correlation coeffi-
cient of |ρ(A,B)| � 1 between two observables may indicate

FIG. 6. Correlation coefficients (absolute values) between
Lagrangian model parameters depicted in graphical form.

“redundancy,” in the sense that there may be little to gain by
including both observables in the calibration procedure. This
could alleviate the need for performing a complex experiment.
Alternatively, a strong correlation may suggest an experiment
that could constrain the value of an inaccessible quantity.
However, in the case of the model parameters, a strong corre-
lation does not imply redundancy, but quite the opposite. For
example, a strong correlation between two well-determined
model parameters, such as g2

s = 108.0943 ± 1.8376 and g2
v =

183.7893 ± 4.9623 implies a strong interdependence. That is,
if g2

s is fixed at a certain value, then g2
v must attain the precise

value suggested by their correlation; otherwise the quality of
the fit will deteriorate significantly.

We conclude by displaying in Fig. 7 correlation coefficients
between the Lagrangian model parameters and a representative
set of physical observables. Contrary to expectations, the
strong correlation between ζ and the maximum neutron-star
mass is missing. As already explained, a large maximum
neutron-star mass may be generated by having either a stiff
EOS for SNM or a stiff symmetry energy. If the symmetry
energy is soft, as in the case of FSUGold, then one must
stiffen the EOS of SNM, which may be efficiently done by
tuning ζ . However, given that the symmetry energy predicted
by FSUGold2 is stiff (see Fig. 4) the correlation between ζ and
Mmax weakens. Indeed, Mmax displays the strongest correlation
with the two isovector parameters g2

ρ and �v, although the cor-
relation appears fairly weak. This suggests that the maximum
mass constraint results from a competition between ζ and
the slope of symmetry energy L. For instance, if ζ increases,
thereby softening the EOS of SNM, then Mmax is reduced.
Thus, to maintain Mmax at its specified value, the symmetry
energy must stiffen accordingly. This implies a strong and
positive correlation between ζ and L, as precisely indicated in
Fig. 7. An important lesson learned from the present discussion

FIG. 7. Correlation coefficients (absolute values) between La-
grangian model parameters and a representative set of physical
observables. The set of observables are the same as those considered
in Fig. 5.
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is that one must exercise caution in examining correlations
among parameters and observables. For example, it appears
that certain bulk parameters of SNM, such as the binding
energy per nucleon ε0, the effective nucleon mass M∗, and the
incompressibility coefficient K are uncorrelated to the four
isoscalar parameters g2

s , g2
v, κ , and λ. Such lack of correlation

may come as a surprise considering that ε0, M∗, K , and the
saturation density ρ0 uniquely determine the value of the four
isoscalar parameters (see the Appendix). The solution to this
apparent contradiction lies in the fact that in generating the
distribution of Lagrangian model parameters all four isoscalar
parameters become inextricably linked. To isolate the proper
correlation between a given observables (say ε0) and a given
model parameter (say g2

s ), one should monitor the response of
the observable to changes to only that one parameter. That is, if
one could provide suitable selection cuts to maintain the other
parameters (say g2

v, κ , and λ) fixed, then the strong correlation
between ε0 and g2

s will become manifest [27].

IV. SUMMARY AND OUTLOOK

Finite nuclei, infinite nuclear matter, and neutron stars are
strongly interacting, nuclear many-body systems that span
an enormous range of densities and isospin asymmetries.
Lacking the tools to solve QCD in these regimes, DFT-based
approaches, such as Skyrme and RMF models, provide the
most powerful alternative for investigating such complex
systems within a single unified framework. For the systematic
study of such diverse nuclear systems, we have developed a
new RMF model, FSUGold2, to describe the physics of both
finite nuclei and neutron stars, objects that differ in size by 18
orders of magnitude.

The philosophy behind our calibration procedure adheres
to two important principles. First, the calibration relies
exclusively on genuine physical observables that can be either
measured in the laboratory or extracted from observation.
Second, the optimization of the functional was implemented in
the space of “pseudodata,” consisting mostly of bulk properties
of infinite nuclear matter. This has the enormous advantage
that, unlike the Lagrangian model parameters, the pseudodata
have both a clear physical interpretation and acceptable values
that range over a fairly small interval. To our knowledge, this
is the first time that such a transformation between model
parameters and pseudodata is implemented in the relativistic
domain. We should note that, in an effort to limit the input
to only accurately measured physical observables, neither
neutron skins of neutron-rich nuclei nor radii of neutron stars
were included in the optimization. Hence, values for these
observables become bona fide model predictions.

In addition to neutron skins and stellar radii, we provide
predictions for a variety of bulk properties of both symmetric
nuclear matter and the symmetry energy. Isoscalar proper-
ties, such as the density, binding energy per nucleon, and
incompressibility coefficient of SNM at saturation are all de-
termined with small theoretical errors and in close agreement
with their conventionally accepted values. In particular, the
incompressibility coefficient was determined with a theoretical
uncertainty of only 1%. Such a small theoretical error was
obtained because of the inclusion of GMR energies into the

calibration of FSUGold2. This too, we believe, has been done
here for the first time. The theoretical errors attached to the
predictions of ρ0 and ε0 are even smaller, indicating that the
isoscalar sector is well constrained by the binding energies,
charge radii, and GMR energies of finite nuclei.

The lack of well-measured isovector observables in the
calibration of the functional has radically different conse-
quences on the determination of the bulk parameters of the
symmetry energy, especially in the case of its slope L. First,
without stringent isovector constraints, RMF models of the
type used here tend to favor a stiff symmetry energy. We
obtained a value for the slope of the symmetry energy of L =
(112.8 ± 16.1) MeV. In turn, this large slope yields values
of R208

skin = (0.287 ± 0.020) fm and R1.4 = (14.42 ± 0.26) km
for the neutron-skin thickness of 208Pb and the radius of a
1.4M� neutron star, respectively. Although both large, we
underscore that at present there is no conclusive experimental
result nor astrophysical observation that can rule out large neu-
tron skins [89] or large stellar radii. Thus, there is urgent need
for the accurate measurement of strong isovector indicators.

Following the optimization of the density functional one
proceeds to explore the richness of the covariance analysis.
This we did in two stages. First, we provided predictions
for a variety of observables with properly estimated the-
oretical errors. This is particularly critical when models
are extrapolated to unknown regions. Second, we explored
correlations between both observables and model parameters.
A correlation analysis can reveal interdependencies that may
be of great value. For example, a strong correlation between
two observables may eliminate the need to measure both.
Further, if from these two observables, e.g., L and R208

skin, one of
these is of critical importance but inaccessible in the laboratory
(e.g., L) one could measure the latter to determine the former.
Although there are ambitious plans to experimentally constrain
the isovector sector by improving and expanding on previous
measurements of both neutron skins and electric dipole
polarizabilities, we will use some of the insights developed
here to anticipate several different outcomes. We are planning
to exploit the power and flexibility of the covariance analysis
to constrain the poorly determined isovector parameters g2

ρ

and �v by assuming a variety of scenarios involving neutron
skins of neutron-rich nuclei. For example, how precisely does
one have to measure the neutron radius of 208Pb to constrain
L to a given acceptable range? Is this precision attainable with
PREX-II? If not, what other neutron-rich nuclei should be
used? Or is it better to measure the weak form factor of 208Pb at
another momentum transfer? In this manner the development
of an efficient modeling scheme is invaluable for the simulation
of various scenarios. Research along these lines is in progress
and its results will be presented in a forthcoming publication.
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APPENDIX

In this appendix we describe the connection between
the coupling constants appearing in the Lagrangian density
depicted in Eq. (1) and various bulk parameters of infinite
nuclear matter. This connection has proved to be extremely
useful. Indeed, expressing the objective function in terms of
physically intuitive parameters provides important insights on
the quest for the optimal parametrization. For example, based
on the large experimental database of accurately measured
nuclear masses, both the saturation density and the energy per
nucleon at saturation are fairly well known. In turn, limiting
the searches to a fairly well-known region of parameter
space increases significantly the efficiency of the Levenberg-
Marquardt algorithm. We start by connecting the isoscalar
sector of the Lagrangian density with a few bulk parameters of
symmetric nuclear matter [54]. We then proceed to determine
the two isovector parameters of the Lagrangian density
(g2

ρ and �v) from the value of the symmetry energy J and
its slope L at saturation density. To our knowledge, we are the
first ones to establish such a connection in the isovector sector.

1. Isoscalar sector

Given the Lagrangian density of Eq. (1), the energy density
(E = E/V ) of infinite nuclear matter may be computed
directly from the corresponding energy-momentum tensor
in the mean field approximation. Note that only the zero-
temperature limit will be addressed. Restricting ourselves to
the isoscalar sector, the energy density of symmetric nuclear
matter is given by the following expression [6]:

E (ρ) = γ
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where γ = 4 is the spin-isospin degeneracy, ρv ≡ ρ = (2k3
F)/

(3π2) is the conserved baryon density, �0 = gsφ0, W0 = gvV0,
M∗ = M − �0 is the effective nucleon mass, and E

(+)

k =
E∗

k + W0 = √
k2 + M∗2 + W0 is the single-nucleon energy.

Note that the classical equations of motion for the meson
fields may be obtained directly from the Lagrangian density
or, equivalently, by demanding that the derivatives of E (ρ)
with respect to �0 and W0 both vanish. That is,

∂E

∂�0
= m2

s
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2
�2
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6
�3

0 − ρs = 0, (A2a)

∂E

∂W0
= m2

v

g2
v
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6
W 3

0 − ρv = 0. (A2b)

Here ρs is the scalar density that is defined as follows:

ρs(M
∗) = γ
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Note that the scalar density is not conserved and must be
self-consistently determined from the equations of motion.

At zero temperature the pressure of the system may be
calculated from its thermodynamic definition, i.e.,

P = −
(

∂E

∂V

)
N

= ρ
∂E

∂ρ
− E = ρ

(
E

(+)

F − E

A

)
, (A4)

where the last line follows from using ∂E /∂ρ = E
(+)

F , an
identity that should hold in any thermodynamically consistent
many-body theory. Moreover, note that at saturation density,
the pressure vanishes and one obtains—in accordance with the
Hugenholtz–van Hove theorem—that the energy per nucleon
becomes equal to the Fermi energy. That is,

E
(+)

F =
√

k2
F + M∗2 + W0 = E

A
. (A5)

To make further progress, we now obtain an analytic
expression for the incompressibility coefficient of symmetric
nuclear matter K . As defined in Eq. (4a), it is given by
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. (A6)

Given that the Fermi energy depends in a complicated way on
the density, i.e., both explicitly and implicitly through M∗ and
W0, there are three terms that need to be evaluated. That is,
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We now proceed to evaluate each of the three terms. The first
one is the simplest and yields(
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∂ρ

)
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∗
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)
0

. (A8)

We continue with the second term and make use of the equation
of motion for W0 [Eq. (A2b)] to write(

∂W0

∂ρ

)
0

=
(

g2
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m∗2
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)
0

, with m∗2
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2
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Using the previous two results we can rewrite Eq. (A7) as
follows:(

∂M∗
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)
0

=
[
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M∗
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2kFE
∗
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v

m∗2
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0

. (A10)

The left-hand side of the equation may be computed by
invoking the scalar equation of motion [Eq. (A2a)] and depends
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on the three isoscalar coupling constants. We obtain(
∂M∗
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)
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= −
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with
m∗2
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2
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0.

Note that we have defined the derivative of the scalar density
[Eq. (A3)] with respect to M∗ as follows:
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This is all the formalism that is needed to establish the
connection between the isoscalar parameters appearing in the
Lagrangian and a few bulk parameters of infinite nuclear
matter. In the isoscalar sector the four bulk parameters of
infinite nuclear matter that we consider here are as follows (all
of them evaluated at saturation density): (i) the density ρ, (ii)
the binding energy per nucleon E/A, (iii) the incompressibility
coefficient K , and (iv) the effective nucleon mass M∗.
Specification of these four bulk parameters enables one to
determine four of the five isoscalar coupling constants, namely,
g2

v/m2
v, g2

s /m2
s , κ , and λ. The sole remaining coupling constant

ζ is left intact as it is fairly insensitive to the properties
of symmetric nuclear matter. Indeed, ζ is sensitive to the
high-density component of the EOS and can be easily tuned
by specifying the maximum neutron-star mass. Note that in
the mean field approximation the Yukawa meson couplings
always appear in combination with the corresponding meson
mass.

The vector coupling may be readily determined from the
vanishing of the pressure at saturation density. Indeed, from
Eq. (A5) one obtains the value of the vector field W0 at
saturation density. In turn, substituting this value in Eq. (A2b)
determines (for a given ζ ) g2

v/m2
v. Given that the vector mass

has been fixed at its experimental value of mv = 782.5 MeV,
this provides a determination of g2

v.
The specification of the three isoscalar parameters is signif-

icantly more involved and depends critically on knowledge of
the effective nucleon mass M∗ at saturation density. Further,
it requires three independent pieces of information for their
determination. Perhaps surprisingly, such information is pro-
vided in the form of three simultaneous linear equations. That
is, the solution is unique. The first equation to be used involves
the energy density of symmetric nuclear matter depicted in
Eq. (A1). Given that at saturation density E (ρ0) = ρ0(E/A)0,
every term in such expression is known, with the exception of
m2

s/g
2
s , κ , and λ. The classical equation of motion for the scalar

field Eq. (A2a) provides the second linear equation in these
three parameters, because the scalar density is fully specified
in terms of the density and effective nucleon mass at saturation.
Finally, knowledge of the incompressibility coefficient K at
saturation density supplies the third and last linear equation.
Indeed, a comparison between Eqs. (A10) and (A11) indicates
that the only unknown is the quantity m∗2

s /g2
s , which again

contains the three scalar parameters of interest. Given that

these equations provide a system of three simultaneous linear
equations, the solution may be obtained by elementary means.

2. Isovector sector

In the previous section we concentrated on connecting
the isoscalar parameters of the Lagrangian density to a few
bulk parameters of symmetric nuclear matter. We now shift
our focus to the isovector sector and show that the two
isovector parameters g2

ρ/m2
ρ and �v may be determined from

knowledge of two quantities of central importance, namely,
the symmetry energy J and its slope at saturation density L.
To our knowledge, this connection is established here for the
first time.

For the Lagrangian density given in Eq. (1), an analytic
expression for the density dependence of the symmetry energy
was derived in Ref. [47]. One obtains

S(ρ) = k2
F

6E�
F

+ g2
ρρ

8m∗2
ρ

, with
m∗2

ρ

g2
ρ

≡ m2
ρ

g2
ρ

+ 2�vW
2
0 . (A13)

We note that the density dependence of the symmetry energy
given above consists of a purely “isoscalar” term and a largely
“isovector” term. That is, we define

S0(ρ) = k2
F

6E�
F

and S1(ρ) = g2
ρρ

8m∗2
ρ

. (A14)

In particular, given that the isoscalar sector has already been
fixed, S0(ρ) along with all its derivatives are known. In
contrast, S1(ρ) depends on both g2

ρ/m2
ρ and �v which are

unknown. As already mentioned, critical to the determination
of these two isovector parameters are the symmetry energy
and its slope at saturation density, which according to Eq. (4b)
are given as follows:

J = S(ρ0) and L = 3ρ0

(
dS

dρ

)
0

. (A15)

The determination of the quantity m∗2
ρ /g2

ρ , which still
depends on both isovector parameters, is fairly simple:
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g2
ρρ

8m∗2
ρ

)
0

= (J − J0) = J −
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k2
F

6E�
F

)
0

. (A16)

In contrast, the determination of each individual isovector
parameters is considerably more difficult and involves several
of the same manipulations carried out in the isoscalar sector.
In analogy with the above equation we write

L1 = 3ρ0

(
dS1

dρ

)
0

= (L− L0) = L− 3ρ0

(
dS0

dρ

)
0

. (A17)

We start by computing the contribution to the slope from the
isoscalar term. That is,

L0 = 3ρ0

(
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(
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)]}
0

. (A18)

Note that this expression is given exclusively in terms of
isoscalar parameters, so it is completely known. Also note
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that the answer has been left in terms of (∂M∗/∂ρ)0 , which
has already been calculated in the previous section. We now
proceed to compute the isovector contribution to the slope of
the symmetry energy. Following similar steps as before, we
obtain

L1 = 3ρ0

(
dS1

dρ

)
0

= 3ρ0

[(
∂S1

∂ρ

)
+

(
∂S1

∂W0
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W0�vJ1

]
0

= (L − L0). (A19)

This is all that is needed to achieve the desired goal of
expressing g2

ρ/m2
ρ and �v in terms of J and L. Indeed, given

that L is provided and J1 and L0 have been determined from
Eqs. (A16) and (A18), respectively, the only unknown in the
previous equation is �v. Finally, using the definition of the
effective ρ-meson mass given in Eq. (A13), we can solve for
g2

ρ/m2
ρ . That is,

m2
ρ

g2
ρ

= m∗2
ρ

g2
ρ

− 2�vW
2
0 = ρ0

8J1
− 2�vW

2
0 . (A20)
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