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Background: In recent years properties of light rare isotopes have been measured with high accuracy. At the
same time, the theoretical description of light nuclei has made enormous progress, and properties of, e.g., the
helium isotopes can now be calculated ab initio. These advances make those rare isotopes an ideal testing ground
for effective field theories (EFTs) built on cluster degrees of freedom.
Purpose: Systems with widely separated intrinsic scales are well suited to an EFT treatment. The Borromean
halo nucleus 6He exhibits such a separation of scales. In this work an EFT in which the degrees of freedom are
the valence neutrons (n) and an inert 4He-core (α) is employed. The properties of 6He can then be calculated
using the momentum-space Faddeev equations for the αnn bound state to obtain information on 6He at leading
order (LO) within the EFT.
Results: The nn virtual state and the 2P3/2 resonance in 5He give the two-body amplitudes which are input to
our LO three-body Halo EFT calculation. We find that without a genuine three-body interaction the two-neutron
separation energy S2n of 6He is strongly cutoff dependent. We introduce a nnα “three-body” operator which
renormalizes the system, adjusting its coefficient to reproduce the S2n of 6He. The Faddeev components are then
cutoff independent for cutoffs of the order of, and above, the breakdown scale of the Halo EFT.
Conclusions: As in the case of a three-body system where only resonant s-wave interactions are present, one
three-body input is required for the renormalization of the EFT equations that describe 6He at LO. However,
in contrast to the s-wave-only case, the running of the LO nnα counterterm does not exhibit discrete scale
invariance, due to the presence of the p-wave nα interaction.
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I. INTRODUCTION

The 6He nucleus is a prominent example of a “halo nucleus”
[1–3]. Its two-neutron separation energy, S2n = 0.975 MeV, is
much less than the excitation energy of 4He, E∗

α ≈ 20 MeV.
The last two neutrons in 6He thus exist in states whose prob-
ability distribution extends well beyond that of the 4He core.
This encourages a treatment of 6He as an effective three-body
problem, with 4He and the two valence neutrons as degrees of
freedom. In these terms 6He is a Borromean system, since none
of its two-body subsystems are bound, and the existence of the
6He bound state is a genuine three-body phenomenon. Other
neutron-rich nuclei, including 11Li, 22C [4], and, perhaps, 62Ca
[5], can also be viewed as Borromean systems.

However, 6He is special, since it is today accessible to ab
initio methods which compute its structure directly from a
Hamiltonian which contains state-of-the-art two-nucleon and
three-nucleon interactions [6–8]. These calculations confront
experimental data on S2n [9] and the charge [10] and matter
radii [11–13] of 6He. Thus 6He provides an ideal testbed to
study the extent to which an effective cluster description of the
halo dynamics captures essential properties of this nucleus,
and when ab initio methods are absolutely necessary.

Descriptions of 6He in a three-body ansatz have tradi-
tionally been implemented in models, with the nα and nn
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potentials determined by fitting the observed properties of the
two-body subsystems. In particular, the low-energy 1S0 nn
phase shift and the 2S1/2, 2P1/2, and 2P3/2 nα phase shifts were
taken into consideration. In the early 1970s, much work was
devoted to this topic, with Ghovanlou and Lehman studying
in detail which features of these phase shifts have an impact
on the 6He binding energy [14,15]. They found that a model
which only includes the nn resonance in the 1S0 channel and the
“5He” resonance in the 2P3/2 nα channel leads to overbinding
of 6He. The binding energy could be reduced by including
other channels. Three-body cluster models of 6He as a nnα
system which included more sophisticated input for the nα and
nn potentials were constructed in Refs. [16,17]; two-neutron
separation energies ranging from 0.68 to 0.99 MeV were
found.

Cluster descriptions of halo systems are now enjoying a
renaissance, thanks to the application of effective field theory
(EFT) methods to these systems. EFT provides a systematic
expansion in a ratio of low- to high-momentum scales. Halo
nuclei enjoy a separation of these scales, since there is a
low-momentum scale, Mlo, associated with the binding of the
valence neutrons, while the high-momentum scale, Mhi, is set
by the excitation energy of the nuclear core.

Consequently, in the case of systems where all three
participating particles interact in s waves, two-neutron halo
nuclei share universal features with the three-nucleon system
[18], the 4He trimer [19], and cold atomic systems where
three atoms interact near a Feshbach resonance. For a review
of this connection see Ref. [20]. Particularly exciting is the
possibility that the Efimov physics [21], having been seen
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experimentally in recombination rates in cold atomic gases
[22–25], could also exhibit its existence in halo nuclei [26].
A variety of s-wave 2n halos (e.g., 12Be and 20C) were
investigated at leading [27] and next-to-leading [28] order in
the Mlo/Mhi expansion by Canham and Hammer. Recently,
Hagen et al. proposed that 62Ca could also be an s-wave
halo that displayed Efimovian features [5]. The existence and
universal features of s-wave 2n halos have also been studied by
Yamashita et al. in a renormalized zero-range model [29,30].
Electromagnetic properties of neutron halos were analyzed in
the EFT framework in Refs. [31–37].

In contrast to three-body systems including only s-wave
interactions, two of the three pairwise interactions in 6He are
dominated by p-wave interactions. The nα interaction has a
low-energy resonance in the 2P3/2 partial wave, as well as
an enhanced phase shift in the 2P1/2 where the resonance
is much broader. The first EFT treatment of nα scattering
was carried out by Bertulani et al. [38], who treated both
the p-wave scattering volume, a1, and the p-wave effective
“range,” r1, as unnaturally enhanced—i.e., they assumed two
fine-tunings (a1 ∼ 1/M3

lo, r1 ∼ Mlo). In contrast, Bedaque
et al. [39] showed that the 2P3/2 nα resonance could be well
described by the power counting of Ref. [40], where the
resonance’s width is only resummed in its immediate vicinity.
Therefore they assigned only the scaling necessary to have
a low-energy resonance: a1 ∼ 1/(M2

loMhi), r1 ∼ Mhi, thereby
requiring only one fine-tuning. It is this counting we will use
in our present study. We observe that the nα 2P3/2 scattering
parameters a1 = −62.951 fm3 and r1 = −0.8819 fm−1 [41]
are consistent with the low- and high-momentum scales
Mlo = √

mNS2n ≈ 30 MeV and Mhi ≈ √
mNE∗

α = 140 MeV
in 6He (mN denotes the nucleon mass).1

In contrast, the recent paper of Rotureau and van Kolck
[43] adopted the power counting of Ref. [38] and then applied
the Gamow shell model to solve 6He as a three-body problem.
In our conclusion we will compare our results with those of
Ref. [43].

Another recent study of the three-body problem with reso-
nant pairwise p-wave interactions, which employed the power
counting of Ref. [38], was carried out by Braaten et al. [44].
These authors attempted to find a scale-free situation in the
two-body problem and examine the corresponding behavior in
the three-body problem. In order to do so they took a p-wave
“unitary limit” |a1| → ∞ and r1 → 0. However, as pointed
out by Nishida [45] (see also Ref. [46]) this p-wave unitary
limit is not physical: It yields a two-body spectrum in which
one low-energy state has negative norm. Thus the discrete scale
invariance discovered by Braaten et al. in the corresponding
three-body problem cannot be realized in nature. This provides
strong motivation for us to employ the “narrow resonance”
power counting a1 ∼ 1/(M2

loMhi), r1 ∼ Mhi in our work.

1A more recent analysis of n − α data gives a1 = −65.7 fm3,
r1 = −0.84 fm−1 [42]. We have checked that using these values
instead of those of Ref. [41] produces only very small differences
in our results. Any such differences are certainly smaller than the
intrinsic uncertainty in our leading-order calculation.

In Sec. II, we discuss the properties of the nn and nα
interactions employed in our work together with their low-
energy expansions based on this power counting. We explain
the EFT renormalization procedures which allow us to start
from a two-body interaction and obtain the pertinent t matrices.
These t matrices are then inserted into three-body Faddeev
equations, for which we solve the homogeneous version in
order to determine the 6He ground-state energy. In Sec. III
we discuss the spin and angular-momentum coupling of the
three particles which leads to a 0+ state of 6He. In Sec. IV we
present the calculation of 6He as a three-body system, building
the general Faddeev equations for one spinless particle and two
identical fermions and then projecting them onto the angular-
momentum channels which are relevant for the ground state of
6He. We find that the ground-state energy is not determined by
two-body input alone. Instead, it depends strongly on the cutoff
in the three-body equations. Thus a nnα contact interaction is
mandatory at LO in this EFT. Finally, in Sec. V, we summarize
and discuss our results.

II. HALO EFT IN THE TWO-BODY SECTOR

In this section, we discuss the EFT expansion that we use
for the nn and nα interactions. We develop the LO two-body t
matrices, which encodes the two-body input for our three-body
calculation. We discuss the regularization and renormalization
procedures in both cases.

A. Halo EFT and effective-range expansions
of nn and nα t matrices

Here we write the Lagrangian pertaining to 6He in terms
of our effective nnα degrees of freedom. The nn part of the
theory was developed as the pionless EFT in Refs. [47–49].
Successes of the pionless EFT in the nucleon-nucleon sector
are summarized in the reviews [50,51]. The nα part of the
theory was first written down in Ref. [38] (cf. Ref. [33]). The
formulation used here follows that of Ref. [37].

We write the Lagrangian L as a sum of one-body, two-
body, and three-body terms,

L = L1 + L2 + L3. (1)

The one-body Lagrangian L1 is

L1 = n†
(

i∂0 + ∇2

2mn

)
n + α†

(
i∂0 + ∇2

2mα

)
α, (2)

where α is the spinless field of 4He with mass mα and n† is the
two-component spinor field of the valence neutron n† = (n↑

n↓)
with mass mn. The two-body Lagrangian L2 includes the nn
s-wave and nα p-wave interactions,

L2 = η0 s†
(

i∂0 + ∇2

4mn

− �0

)
s

+ η1 π †
(

i∂0 + ∇2

2(mn + mα)
− �1

)
π

+ g0
[
s†T σδ

0 nσnδ + H.c.
]

+ g1
[
π †aT σi

a (nσ

↔
∂ iα) + H.c.

]
, (3)
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where η0 = η1 = ±1, with the sign determined respectively
by the s- and p-wave effective ranges. s is the spin-singlet
auxiliary field of the nn pair, and πa is the four-component field

for the 2P3/2 resonance in the nα system.
↔
∂ i ≡ [(

→
m

←
∇ − ←

m
→
∇)/

(
←
m + →

m)]i indicates the Galilean invariant derivative, where
←
m

(or
→
m) is the mass of the field operated by

←
∇ (or

→
∇). Following

the convention of Ref. [37], we define the spin projections
of the fields and operators by their indices with σ,δ, . . . =
±1/2, a,b, . . . = ±1/2,±3/2, and i,j, . . . = 0,±1. T ···

··· is the
shorthand notation for the Clebsch-Gordan coefficient, e.g.,
T σi

a = T a
σi ≡ C(1/2,1,3/2 | σ i a).

The three-body Lagrangian L3 describes the nnα contact
interaction, whose existence and specific form are derived as
a consequence of three-body renormalization (see Sec. IV),

L3 = −h
(
T ab

0 T iσ
a πb

↔
∂inσ

)†(
T cd

0 T jδ
c πd

↔
∂jnδ

)
. (4)

The nn interaction is dominated by an s-wave virtual
state, where the scattering length, a0 = −18.7 fm [52],
is approximately one order of magnitude larger than the
corresponding effective range, r0 = 2.75 fm [53]. According
to the effective-range expansion at low energies, the nn t matrix
for elastic scattering can be written up to second order in the
expansion in powers of Mlo/Mhi as

〈k|tnn|k′〉 = − 1

4π2μnn

1

k cot δ0 − ik

= 1

4π2μnn

1

1/a0 − r0k2/2 + ik
, (5)

where μnn is the reduced mass in the nn center-of-mass (c.m.)
frame, k ≡ |k| = |k′| = √

2μnnE indicates the on-shell rela-
tive momentum in the nn subsystem, and E is the two-body en-
ergy. Terms with higher powers of k, such as shape-dependent
terms in the effective-range expansion, are suppressed at low
momentum. The free state | p〉 is normalized as

〈 p| p′〉 = δ(3)( p − p′). (6)

The result (5) is an exact result for the nn t matrix, given
the Lagrangians (2) and (3). For the relationship between
the Lagrangian parameters and the effective-range parameters,
see, e.g., Ref. [37].

Similarly to the power counting employed in short-range
EFT (SREFT) for boson-boson s-wave scattering, a0, is
associated with the low-momentum scale, a0 ∼ 1/Mlo, while
r0 is related to the high-momentum scale of short-distance
physics, r0 ∼ 1/Mhi. At leading order (LO) in an expansion
in powers of Mlo/Mhi, the position of the nn s-wave virtual
state (since a0 < 0) is given by γ0 = 1/a0. Hereafter the LO t
matrix for nn scattering is written as

〈k|tnn|k′〉 = 1

4π2μnn(γ0 + ik)
, (7)

where the r0-dependent term in Eq. (5) is dropped at LO.
The nα interaction is dominated by a p-wave resonance.

Based on the p-wave effective-range expansion at low ener-

gies, the dominant part of the nα t matrix can be expressed
as

〈k|tnα|k′〉 = − 3

4π2μnα

k · k′

k3 cot δ0 − ik3

= 3

4π2μnα

k · k′

1/a1 − r1k2/2 + ik3
, (8)

where k = √
2μnαE, and μnα is the reduced mass in the nα

center-of-mass frame. Equation (8) is the full result for the nα
t matrix, given the Lagrangians (2) and (3). The relationship
between p-wave effective-range and Lagrangian parameters
can be deduced from the results of Ref. [33].

Here we adopt the power counting of Bedaque et al. [39],
who assumed 1/a1 ∼ M2

loMhi and r1 ∼ Mhi. Based on this
power counting, the nα interaction has a narrow resonance at
a low energy of order Mlo, with the coexistence of a deep bound
state ∼Mhi. We see this by decomposing the denominator of
Eq. (8) based on its pole expansion as follows:

1

a1
− 1

2
r1k

2 + ik3 = (γ1 + ik)

(
k2 + i

k2
R

γ1
k − k2

R

)
= 0, (9)

where γ1 indicates the position of the bound-state pole and
kR is the resonant momentum. The position of the resonance,
together with its width, is determined from Eq. (9) as

k± = ±kR

√
1 − k2

R

4γ 2
1

− i
k2
R

2γ1
. (10)

From Eq. (9), we can relate γ1 and kR to a1 and r1 by

1

a1
= − γ1k

2
R, (11a)

r1

2
= k2

R

γ1
− γ1. (11b)

Based on the power counting introduced above, we obtain
that γ1 ∼ Mhi and kR ∼ Mlo.

The deep bound state γ ∼ Mhi does not affect low-energy
physics. Meanwhile, the resonance poles can be rewritten in
the Mlo/Mhi expansion as

k± = ±kR − ik2
R

/
(2γ1) + O(M3

lo

/
M2

hi

)
. (12)

The resonance width (imaginary part) is thus one order higher
than the resonance position (real part).

Unless we happen to be in the vicinity of the resonance, we
then obtain, at LO,

γ1 = − r1

2
, (13)

kR =
√

2

a1r1
. (14)

Therefore, the LO part of the nα-scattering t matrix is
expressed as

〈k|tnα|k′〉 = 3k · k′

4π2μnαγ1
(
k2 − k2

R

) , (15)
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where the unitary term ik3 in Eq. (8) is treated as a perturbation
and is dropped at LO. Note that the deep bound state does
not appear in this LO amplitude: This t matrix only has two
poles, at k = ±kR on the real k axis, which correspond to the
resonance. Since here we are only interested in the bound-state
6He, the energy of the nα subsystem must be negative (k2 <
0). Therefore the singularity in Eq. (15) does not cause any
numerical issues in our calculations.

B. Partial-wave decomposition of the two-body t matrix

In this subsection we explicitly give the partial-wave
decomposition of the two-body t matrix in order to establish
our conventions. The momentum space Lippmann-Schwinger
equation is given by

〈 p|t(E)| p′〉 = 〈 p|V | p′〉 +
∫

d3q 〈 p|V |q〉

× G0(q; E)〈q|t(E)| p′〉, (16)

where p and p′ denote the two-body relative momenta, G0

is the free Green’s function in the two-body system. Defining
partial-wave components of the potential, vl(p,p′), via

vl(p,p′) ≡ 1

2

∫ 1

−1
〈 p|V | p′〉Pl( p̂ · p̂′) d( p̂ · p̂′), (17)

where Pl is the lth Legendre polynomial, and, analogously for
tl(p,p′; E), we obtain

tl(p,p′; E) = vl(p,p′) + 4π

∫ ∞

0
dq q2vl(p,q)

×G0(q; E) tl(q,p′; E). (18)

In our case all two-body interactions have a resonance in
one particular partial wave, which dominates the behavior
of the t matrix. Considering only the dominant part, we
have

〈 p|t(E)| p′〉 = (2l + 1) tl(p,p′; E) Pl( p̂ · p̂′), (19)

with l = 0 and 1 indicating the s- and p-wave two-body inter-
actions. To simplify the calculation, we will study tl(p,p′; E)
using the formalism of separable potentials. Here we define
the lth partial wave of the Hermitian two-body potential in a
separable form as

vl(p,p′) = λl gl(p) gl(p
′), (20)

where gl(q) is the form factor, which only depends on the
magnitude of q. By substituting Eq. (20) into Eq. (19),
tl(p,p′; E) is then also separable,

tl(p,p′; E) = gl(p) τl(E) gl(p
′), (21)

where the function τl is given as

τ−1
l (E) = 1

λl

− 4π

∫ ∞

0
dq

q2

E − q2/(2μ) + iε
g2

l (q) (22)

and only depends on the energy E of the two-body system.
To reproduce the physical two-body scattering ampli-

tude, the integral in Eq. (22) needs to be regularized and
renormalized. For a particular partial wave, the low-energy
behavior of the two-body t matrix is determined by the

effective-range expansion. By choosing a particular form
factor gl we can regulate the integral in Eq. (22) and then
tune the two-body coupling constant λl to absorb the resulting
regularized divergence, thereby reproducing the parameters in
the effective-range expansion. By doing so, the t matrix is
renormalized, and the dependence of the low-energy physics
on the choice of gl(q) disappears.

C. Two-body renormalization with a separable potential

One regularization method is to introduce Yamaguchi form
factor to describe the two-body interaction, i.e., writing the
form factor as

gl(q) = β
2(l+1)
l(

q2 + β2
l

)l+1 ql. (23)

Here βl indicates the high-momentum scale that regularizes
the integrals in Eq. (22). The renormalization of the two-body
t matrix using such a potential is discussed in Appendix A. As
early as the 1970s, Ghovanlou and Lehman in Ref. [14] used
these form factors to represent the two-body short-distance
physics, hoping to determine three-body observables in 6He
without the input of three-body parameters. However, their
value of the 6He ground-state binding energy underpredicts
the experimental value. The introduction of a three-body force
may be a more effective way to obtain an accurate description
of the 6He nucleus using simple two-body potentials. After all,
low-energy three-body physics is insensitive to short-distance
details of the input two- and three-body interactions.

In this section we introduce a hard cutoff, �, to regularize
the ultraviolet divergence in Eq. (22),

gl(p) = plθ (� − p), (24)

where θ (x) denotes the Heaviside step function, θ (x) = 0 for
x < 0 and 1 for x > 0.

For the s-wave nn interaction (l = 0) we obtain

〈k|tnn|k′〉 = τnn(E)

=
[

1

λ0
+ 8πμnn

∫ �

0
dq

q2

(q2 − k2 − iε)

]−1

= 1

4π2μnn

[
1

4π2μnnλ0
+ 2�

π
− 2

π�
k2

+ ik + O
(

k3

�2

)]−1

. (25)

We can relate a0 and r0 to λ0 and � by

1

a0
= 1

4π2μnnλ0
+ 2�

π
, (26a)

r0

2
= 2

π�
. (26b)

By tuning λ0 in Eq. (26a) to cancel the divergent piece
∼�, we can obtain a0 of order 1/Mlo. Equation (26b) shows
that the condition r0 ∼ 1/Mhi is naturally maintained if we
keep � ∼ Mhi. But physics is independent of � if additional
higher-order terms are included in L . Therefore, we obtain
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the renormalized τnn in the limit � → ∞ as

τnn(E) = 1

4π2μnn(γ0 + ik)
, (27)

where k = √
2μE. This corresponds to the leading-order t

matrix of Eq. (7).
In the case of p-wave (l = 1) nα scattering Eq. (24) leads

to a regularized t matrix for nα scattering,

〈k|tnα|k′〉 = 3k · k′ τnα(E)

= 3k · k′

4π2μnα

(
1

4π2μnαλ1
+ 2�3

3π

+2�

π
k2 + ik3 + · · ·

)−1

. (28)

In order to renormalize tnα with one fine-tuning, a1 and r1

must satisfy

1

a1
= 1

4π2μnαλ1
+ 2�3

3π
, (29a)

r1

2
= −2�

π
. (29b)

Equation (29b) indicates that r1 ∼ Mhi, which agrees with
the power-counting analysis in Ref. [39]. After tuning λ1 to
cancel the ∼�3 divergence, we reproduce a1 to its physical
value. Since a1 ∼ 1/(M2

loMhi), it has the same order as the
r1k

2/2 term in the effective-range expansion. Therefore, the p-
wave effective-range parameter r1 must be included at leading
order, which agrees with our previous analysis in Sec. II A.

Thus, after renormalization, we find for τnα

τnα = 1

4π2μnαγ1
(
k2 − k2

R

) . (30)

In contradistinction, the power counting of Ref. [38] with
a1 ∼ M−3

lo and r1 ∼ Mlo requires two fine-tunings in Eq. (28)
to renormalize tnα and yields a different LO expression for τnα .

III. SPIN AND ANGULAR MOMENTA
IN THE 6HE GROUND STATE

The ground state of 6He has total angular momentum
and parity J = 0+. Its two-neutron separation energy is
0.975 MeV. In this paper we will use Jacobi momenta K , qi ,
and pi to represent the internal kinematics of the three-body
system. Here K is the total momentum, which is zero in the
center-of-mass frame, and qi and pi are the relative momenta.
The index i on the relative momenta indicates that they are

defined in the two-body fragmentation channel (i,jk), in which
particle i is the spectator and (jk) the interacting pair. Based
on this definition, pi indicates the relative momentum in the
(jk) pair, while qi denotes the relative momentum between the
spectator i and the (jk) pair. Plane-wave states are normalized
according to∫

d pidqid K | piqi K 〉〈 piqi K | = 1. (31)

We define the relative orbital angular momentum and the
spin in the pair (jk) as li and si , and the relative total
angular momentum for this pair in spin–and–orbital-angular-
momentum coupling as ji . In this representation, we also
define the relative orbital angular momentum and spin between
the spectator i and the pair (jk) as λi and σi and the
corresponding total angular momentum as Ii . Furthermore,
the overall orbital angular momentum, spin, and total angular
momentum of the three-body system are defined as Li , Si , and
J . Due to spin and angular-momentum conservation, these
quantum numbers must obey

Li = l i + λi , (32a)

Si = si + σ i , (32b)

J = Li + Si = j i + I i . (32c)

With the α core as the spectator, we obtain lα = sα = jα = 0,
since the nn interaction is dominated by the 1S0 virtual
state. Furthermore, at LO λα = σα = Iα = 0 and it is then
straightforward to determine that Sα = Lα = 0 in the (α,nn)
partition. Alternatively, if we choose a neutron as the spectator,
the nα interaction is dominated by the 2P3/2 resonance, which
means ln = 1, sn = 1/2, and jn = 3/2. Therefore, in the 6He
ground state, the spectator neutron must also interact with the
nα pair in a p wave, because of the positive parity of the 6He
ground state. This results in λn = 1, σn = 1/2. Since jn +
In = J = 0, we must have In = 3/2. In the (n,nα) partition,
the spin-spin and orbit-orbit couplings have two possibilities:
the overall orbital angular momentum and overall spin can
either be both zero (Ln = Sn = 0) or both 1 (Ln = Sn = 1).
These two cases can contribute to the 6He J = 0+ state. We
summarize the possible spin and orbital-angular-momentum
properties of the 6He ground state in Table I with respect to
different spectator partitions.

Knowing the spin and orbital-angular-momentum quantum
numbers, we can construct an eigenstate of 6He with respect
to the spin and orbital-angular-momentum operators. Consid-
ering all conserved quantities in the three-body system, we
decompose the Jacobi momenta with respect to these spin and
orbital- and total-angular-momentum quantum numbers by

|p,q; �i〉i =
∑
LiSi

√
ĵi Îi L̂i Ŝi

⎧⎨⎩ li si ji

λi σi Ii

Li Si J

⎫⎬⎭|p,q; (li ,λi)Li ; [(νjνk)si,σi]Si ; J = MJ = 0〉i , (33)

where ĵi denotes 2ji + 1 (the same holds for Îi , L̂i , and Ŝi), p ≡ | p|, and q ≡ |q|. Meanwhile, �i represents all conserved
spin, orbital-, and total-angular-momentum quantum numbers in the partition (i,jk). Those quantum numbers are included in
the Wigner 9-j symbol in Eq. (33). In addition, the labels νj and νk in the bracket denote the individual spins of particle j and k.
They are coupled to produce the spin si of the pair (jk).
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TABLE I. Spin and orbital-angular-momentum coupling in 6He to obtain its ground state J = 0+.

(Spectator,pair) Pair Spectator Total L, S Total JP

(α, nn) �α = 0, sα = 0 λα = 0, σα = 0 Lα = 0, Sα = 0
J = 0+

Ln = 0, Sn = 0
(n, nα) �n = 1, sn = 1

2 λn = 1, σn = 1
2 Ln = 1, Sn = 1

Applying Eq. (33) in the partition (α,nn) the eigenstate of the 6He ground state can be written as

|p,q; �α〉α = ∣∣p,q; (0,0)Lα = 0;
[(

1
2

1
2

)
0,0

]
Sα = 0; J = MJ = 0

〉
α
. (34)

Similarly, in the partition (n,nα), the 6He ground-state eigenstate can be expressed as

|p,q; �n〉n =
1∑

Ln=0

√
2

3

(−1√
2

)Ln
∣∣∣∣p,q; (1,1)Ln;

[(
1

2
0

)
1

2
,
1

2

]
Sn = Ln; J = MJ = 0

〉
n

. (35)

We can further decouple the orbital angular momentum and the spin by using the Clebsch-Gordan coefficient
C(LSJ |MLMSMJ ). In the (α,nn) basis we obtain

|p,q; �α〉α = |p,q; 0,0; Lα = 0,MLα = 0〉α
∣∣( 1

2
1
2

)
0,0; Sα = 0,MSα = 0

〉
α
, (36)

while in the (n,nα) basis, we find

|p,q; �n〉n =
1∑

Ln=0

Ln∑
MLn=−Ln

(−1)MLn

√
21−Ln

6L + 3
|p,q; 1,1; Ln,MLn〉n

∣∣∣∣(1

2
0

)
1

2
,
1

2
; Sn = Ln,MSn = −MLn

〉
n

. (37)

IV. HALO EFT IN THE THREE-BODY SECTOR

In this section, we study the behavior of 6He as a three-body
problem in Halo EFT. We focus on the three-body bound-
state problem and set up the Faddeev equations, based on
Refs. [54,55], for solving for the three-body binding energy
of 6He. We then employ the formalism to investigate the
ground state of 6He projected on to the particular partial waves
discussed in Sec. III. Without a nnα three-body counterterm,
the results will be cutoff dependent. Therefore, we need to
discuss the regularization and renormalization procedures in
our analysis. By adding a nnα counterterm, we reproduce the
experimental value of the 6He two-neutron separation energy,
S2n = 0.975 MeV, and predict the Faddeev components.

A. Faddeev decomposition of the three-body wave function

Considering only two-body potentials, the general
Schrödinger equation in a system with three distinguishable
particles reads (

H0 +
3∑

i=1

Vi

)
|�〉 = E |�〉, (38)

where Vi indicates the potential between particles j and k in
the partition (i,jk). Following Faddeev [56], the wave function
is decomposed into three components, one with respect to each
of the three different spectators,

|�〉 =
3∑

i=1

|ψi〉, (39)

with |ψi〉 being the Faddeev component in the (i,jk) partition.
Inserting Eq. (39) into Eq. (38) and employing the Lippmann-
Schwinger equation we obtain [54]

|ψi〉 = G0ti
∑
j �=i

|ψj 〉. (40)

Here ti represents the two-body t matrix for the pair (jk), ti ≡
tjk . All components are obtained by a cyclic permutation of
(i,jk). Note that Eq. (40) is a homogeneous integral equation,
since only the bound state is considered.

To simplify our future calculations, we define new compo-
nents |Fi〉, which are related to |ψi〉 by

|ψi〉 = G0ti |Fi〉. (41)

By substituting Eq. (41) into Eq. (40), we obtain the Faddeev
equation for |Fi〉,

|Fi〉 =
∑
j �=i

G0tj |Fj 〉. (42)

If the two-body t matrix, ti , is separable, then its matrix
presentation in the basis of eigenstates {|p,q,; �i〉i} leads to a
relatively simple expression in which the momenta p, p′, and
q are decoupled,

i〈p,q; �i |ti |p′,q ′; �′
i〉i

= 4π gli (p) τi(q; E) gli (p
′) δ�i�

′
i

1

q2
δ(q − q ′), (43)

provided that the two-body t matrix is diagonal in the quantum
numbers �i . In our case ti operates only in a specific partial
wave: 1S0 for nn and 2P3/2 for nα. Equation (43) only gives the
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two-body t matrix’s matrix elements in three-body Hilbert
space when �i corresponds to those particular two-body
channels. The matrix elements in all other channels are zero
in our LO calculation. The quantity τi in Eq. (43) is related to
τjk of Eqs. (27) and (30) by

τi(q; E) ≡ τjk

(
E − q2

2μi(jk)

)
. (44)

Here E denotes the total energy of the three-body system
relative to the αnn threshold, and μi(jk) is the reduced mass
with respect to the spectator i and the pair (jk). We are
interested in E = −B3, with B3 > 0 the binding energy of
the three-body system, which, for two-neutron halos, is the
two-neutron separation energy of the nucleus, i.e., B3 = S2n.

Projecting Eq. (42) on to the state |p,q; �i〉i leads to

i〈p,q; �i |Fi〉 = 4π
∑
j �=i

∫∫
p′2dp′ q ′2dq ′ G(i)

0 (p,q; E)

× i〈p,q; �i |p′,q ′; �j 〉j glj (p′) τj (q ′; E)

×
∫

p′′2dp′′ glj (p′′) j 〈p′′,q ′; �j |Fj 〉, (45)

where G
(i)
0 is the momentum representation of the three-body

Green’s function with respect to the spectator i,

G
(i)
0 (p,q; E) =

(
E − p2

2μjk

− q2

2μi (jk)

)−1

. (46)

Absorbing the dependence on the interpair momentum, p,
in the Faddeev equation (45), we can construct a simplified
integral equation in which quantities depend only on the
relative momentum between the spectator and the pair, q. To
achieve this, we define a new function Fi(q),

Fi(q) =
∫

p2dp gli (p) i〈p,q; �i |Fi〉. (47)

By substituting Eq. (47) into Eq. (45), we find that

Fi(q) =
∑
j �=i

4π

∫
q ′2dq ′ Xij (q,q ′; E) τj (q ′; E) Fj (q ′). (48)

The kernel function Xij is defined by

Xij (q,q ′; E) =
∫∫

p2dp p′2dp′ gli (p)G(i)
0 (p,q; E)

× glj (p′) i〈p,q; �i |p′,q ′; �j 〉j , (49)

which includes the three-body Green’s function G
(i)
0

and the two-body form factors gli and glj . The factor
i〈p,q; �i |p′,q ′; �j 〉j is the projection of the eigenstate of the
free Hamiltonian in the partition of spectator i onto the free
eigenstate in the partition of spectator j [54].

To solve this integral equation (48), we look for an energy
E = −B3 where the eigenvalue of the kernel is 1.

B. Faddeev equations for the 6He system

Here we apply the Faddeev formalism established in the
previous subsection to the 6He ground state. For this purpose

Eq. (39) can be re-expressed as

|�〉 = |ψα〉 + |ψn〉 + |ψn′ 〉 = |ψα〉 + (1 − Pnn)|ψn〉, (50)

where the three terms are the Faddeev components for (α,nn),
and the two (n,nα) partitions, with those last two related by
fermionic symmetry. Because the two neutrons are fermions
the 6He wave function must be antisymmetric under their
permutation Pnn, and Eq. (50) indeed fulfils

Pnn|�〉 = −|�〉, (51)

since

Pnn|ψα〉 = −|ψα〉. (52)

The Green’s function, G0, and the two-body t matrices tα
and tn are unchanged under the action of Pnn, because they
were defined above as projections of only the neutron-spin-
independent part of the eigenstate.

By projecting the Faddeev components |Fα〉 and |Fn〉 onto
the partial-wave-decomposed states in respective partitions we
obtain two coupled-channels integral equations for the 6He
ground state,

Fα(q) = 8π

∫ �

0
q ′2dq ′ Xαn(q,q ′; −B3) τn(q ′; −B3) Fn(q ′),

(53a)

Fn(q) = 4π

∫ �

0
q ′2dq ′ Xnα(q,q ′; −B3) τα(q ′; −B3) Fα(q ′)

+ 4π

∫ �

0
q ′2dq ′ Xnn(q,q ′; −B3) τn(q ′; −B3) Fn(q ′),

(53b)

where the ultraviolet cutoff, �, is introduced for regularization.
The Faddeev equations (53a) and (53b) are diagrammatically
expressed in Fig. 1. Similar coupled-channel integral equations
for two-neutron s-wave halo nuclei were derived by Canham
and Hammer in Ref. [27], where the two sets of equations
differ only in their expressions for the kernel functions Xij .

The quantities τα and τn appearing in Eqs. (53a) and (53b)
are functions of the 6He two-neutron separation energy B3 and
the Jacobi momentum q,

τα(q; −B3) = 1

2π2mn

1

γ0 − Kα(q; −B3)
, (54)

where the two-body binding momentum Kα is related to q and
B3 by

Kα(q; −B3) =
√

mnB3 + A + 2

4A
q2. (55)

Here A indicates the mass ratio between the α core and a
neutron A = mα/mn.

Similarly, we can write τn as a function of B3 and the Jacobi
momentum q,

τn(q; −B3) = − 1

4π2mnγ1

(
A + 1

A

)
1

K2
n(q; −B3) + k2

R

,

(56)
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nn

= 2×
α

Fα Fn

nα

= +Fn

n

FnFα

FIG. 1. (Color online) The Faddeev equations for the 6He bound-state problem. The single dashed (or solid) line denotes the α (or n)
one-body propagator. The thick black and shaded lines represents the nα and nn two-body propagators. The ellipses labeled “Fα” and “Fn” are
the corresponding Faddeev components.

where Kn is given as

Kn(q; −B3) =
√

2A

A + 1

(
mnB3 + A + 2

2(A + 1)
q2

)
. (57)

Meanwhile, the kernel functions Xnα , Xαn, and Xnn are
calculated according to Eq. (49), where the subscripts indicate
the two spectator partitions involved in the transition. The
details of these calculations are presented in Appendix B and
result in the following final expressions:

Xnα(q,q ′; −B3) = −
√

2 mn

[
A

A+ 1

1

q ′ Q0(znα) + 1

q
Q1(znα)

]
,

(58a)

Xαn(q,q ′; −B3) = −
√

2mn

[
A

A+ 1

1

q
Q0(zαn) + 1

q ′ Q1(zαn)

]
,

(58b)

Xnn(q,q ′; −B3) = Amn

[
A2 + 2A + 3

(A + 1)2
Q0(znn)

+ 2

A+ 1

q2 + q ′2

qq ′ Q1(znn) + Q2(znn)

]
,

(58c)

where Ql are the Legendre functions of the second kind, which
are related the ordinary Legendre polynomials Pl by

Ql(z) = 1

2

∫ 1

−1
dx

Pl(x)

z − x
(59)

for |z| > 1. The arguments znα , zαn, and znn in Eq. (58) are
defined as

znα = − 1

qq ′

(
mnB3 + q2 + A + 1

2A
q ′2
)

, (60a)

zαn = − 1

qq ′

(
mnB3 + A + 1

2A
q2 + q ′2

)
, (60b)

znn = − A

qq ′

(
mnB3 + A + 1

2A
(q2 + q ′2)

)
. (60c)

In our bound-state situation, B3 > 0, these three arguments
all satisfy the condition z < −1.

By inserting Eq. (53a) into (53b), we obtain a single-
channel integral equation that includes only the Faddeev
component Fn,

Fn(q) = 4π

∫ �

0
q ′2dq ′ Xnn(q,q ′; −B3) τn(q ′; −B3) Fn(q ′)

+ 8π

∫ �

0
q ′2dq ′

[
4π

∫ �

0
q ′′2dq ′′ Xnα(q,q ′′; −B3)

× τα(q ′′; −B3)Xαn(q ′′,q ′; −B3)

]
τn(q ′; −B3) Fn(q ′).

(61)

Equation (61) can be diagrammatically expressed in Fig. 2.
The last term in Fig. 2 contains two loops, which corresponds
to the double integral in Eq. (61). For future reference we
define the integral inside the square brackets in Eq. (61) as the

=Fn

n

nα

+ 2× FnFn

FIG. 2. (Color online) The single-channel Faddeev equation for the 6He bound state. The Faddeev component Fn is solved as integral
equation containing a two-loop diagram.
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FIG. 3. (Color online) The 6He two-neutron separation energy
B3 as a function of the cutoff �. The calculation is based on only
two-body interactions. The inner panel compares the numerical result
(blue solid line) with a polynomial approximation (red dotted line):
B3/GeV = −0.00765 + 0.366(�/GeV)3.

function

Inαn(q,q ′; B3) = 4π

∫ �

0
q ′′2dq ′′ Xnα(q,q ′′; −B3)

×τα(q ′′; −B3)Xαn(q ′′,q ′; −B3). (62)

Equation (61) foregrounds a possible inconsistency in our
approach. In the Halo EFT power counting both Xnn and Inαn

are of order Q0. Meanwhile, in the power counting of Ref. [39]
the propagator τn scales as M−1

hi Q−2 [see Eq. (56)]. It follows
that each iterate of the integral equation (term in the Neumann
series [57]) is suppressed by one power of Q/Mhi compared to
the previous one. If the theory is properly renormalized in the
three-body sector, i.e., only momenta of order Mlo contribute
to the loop integrations, our power counting then leads to
the conclusion that there are no 6He bound states. An
alternative way to state this is that the power counting of
Ref. [39] predicts that the eigenvalues of the integral-equation
kernel are of order Mlo/Mhi, and so there are no solutions to
Eq. (61), provided it is properly renormalized.

Clearly, this conclusion is not correct, since 6He exists.
The power counting of Ref. [38], which is less “natural” in
the nα sector (see Sec. V), does not produce this dilemma in

the three-body sector. In that power counting τn ∼ M−1
lo Q−2,

and all terms in the Neumann series are of the same size
for Q∼ Mlo. But, in the power counting of Ref. [38],
Eq. (56) must also be modified, since the unitarity piece of
the nα amplitude is present already at leading order. The
corresponding calculation for 6He was carried out in Ref. [43].

C. Renormalization of the 6He ground state

The conclusion of perturbativity also rests on the assump-
tion that Eq. (61) is already renormalized. We now show that
this is not the case.

By using a hard cutoff � to regularize the integrals of
Eqs. (53a) and (53b), we obtain B3 as a function of �. This
cutoff dependence is illustrated in Fig. 3, which shows that
B3 behaves approximately as �3 at values of � that are large
compared to kR , γ0, and

√
2mnB3.

To understand this phenomenon we examine the properties
of the kernel of Eq. (61). Since the analytic form of each
term in Eq. (62) is already derived, we can calculate the
cutoff dependence of Inαn analytically. In fact, the dominant
�-dependent part of Inαn is proportional to mnqq ′/�2 and
vanishes in the limit � → ∞. Since Xnn is not cutoff
dependent, the kernel of the single-channel integral equation,
Eq. (61), is independent of � for � � √

2mnB3,γ0,kR . Thus,
the cutoff dependence that appears in Fig. 3 must arise from
the solution of the integral equation.

In order to cancel this cutoff dependence, a three-body nnα
counterterm is added to the integral equation. A natural choice
of this counterterm is one that has the same behavior as the
cutoff-dependent piece of Inαn, i.e., proportional to mnqq ′/�2.
The dependence on both q and q ′ indicates the existence of
p-wave channels on both sides of the counterterm. Therefore,
we introduce a nnα counterterm with a neutron as the spectator
on both sides of the counterterm. Choosing a nnα counterterm
of this p-wave type is also consistent with the Pauli exclusion
principle. The resulting integral equation with the addition of
a nnα counterterm is diagrammatically illustrated in Fig. 4.

In order to include this nnα counterterm, Eq. (61) needs
to be modified by adding the following term to the kernel
function Xnn,

Xnn(q,q ′; −B3) → Xnn(q,q ′; −B3) − mn

qq ′

�2
H0(�), (63)

where the minus sign in Eq. (63) is introduced due to the
presence of the permutation operator −Pnn in the kernel

=Fn

n

nα

+ 2× FnFn

+ Fn

FIG. 4. (Color online) The single-channel Faddeev equation for the 6He bound state with the addition of a nnα counterterm. Both sides of
the counterterm are in the spectator-n partition.
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FIG. 5. (Color online) The nnα-counterterm parameter H0 as a
function of the cutoff �. H0 is tuned to reproduce B3 = 0.975 MeV
at different values of �.

function Xnn. Since H0(�) is itself unchanged under the
permutation, applying −Pnn to the three-body force will lead
to a factor of −1.

By tuning the counterterm parameter H0(�), we can cancel
the cutoff dependence in the integral equation, Eq. (61), and
reproduce the 6He ground-state two-neutron separation energy
B3 = 0.975 MeV for all values of �. In Fig. 5 we plot the
H0(�) that is necessary to do this as a function of �. It has
an oscillatory behavior in log �—similar to the three-body
force’s behavior in the leading-order three-boson problem
[19]. However, in contrast to the three-boson case, the period
of H0(�) in log � decreases as � increases. This difference
in the behavior of H0 may well arise from the nα p-wave
interaction in the 6He system: The symmetry of discrete
scale invariance, present in three-body systems with resonant
s-wave interactions, is broken by this p-wave interaction (cf.
Ref. [44], which considers a three-body system with all p-wave
interactions, and in a zero-range limit that differs from that
discussed here).

After the renormalization, we calculated the Faddeev
component Fn(q) from Eq. (61). By inserting the renormalized
Fn(q) into the integrals in Eq. (53a), we can calculate Fα(q)
without adding an additional counterterm. Figure 6 shows the
Faddeev components Fα and Fn as functions of the momentum
q for different values of �. The cutoff dependence of the low-q
part of both Fα(q) and Fn(q) is weak for � > 200 MeV.

The integral equation (61), modified according to Eq. (63),
is now renormalized. Moreover, it generates a shallow bound
state, with characteristic momenta ∼Mlo. This seems to
contradict the power-counting arguments at the end of the
previous subsection. It could be, though, that the binding
arises mainly because of short-distance (∼1/Mhi) physics in
this EFT, i.e., the “long-range” (∼1/Mlo) effects of Xnn and
Inαn are perturbative corrections to a fine-tuned 5He-n bound
state. Whether that is the case warrants further investigation.
The calculation we have performed here, which only looks
at one observable, B3, cannot definitively decide the issue.
We are presently examining the correlations among different

0
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FIG. 6. (Color online) The Faddeev components Fα and Fn as
functions of q, calculated with cutoff parameters � at 200 MeV
(black dotted line), 400 MeV (orange dot-dot-dashed line), 800 MeV
(green dot-dashed line), 1.6 GeV (blue dashed line), and 3.2 GeV
(red solid line). The Faddeev components are normalized to provide
Fα(0) = 1.

observables, such as the charge and matter radii of 6He,
calculated with the Faddeev components shown in Fig. 6 [58].
The extent to which Xnn and Inαn drive those correlations will
help establish whether the power counting of Ref. [39] applies
in this system.

Here we have shown the cutoff independence of Faddeev
components after renormalization (see Fig. 6). This indicates
that one three-body parameter (e.g., B3) is needed for renor-
malization of the LO equations that describe 6He in this EFT.
In fact, alternative renormalization approaches, e.g., by adding
a different three-body counterterm, may be possible. However,
any alternative renormalization method must be equivalent to
the method used above up to higher-order corrections. The
number of three-body renormalization parameters needed for
renormalization at LO should not change.

V. SUMMARY AND OUTLOOK

We describe the 6He ground state as a nnα three-body
system in the framework of Halo EFT. The two-body,
i.e., nn and nα, interactions are expanded under an EFT
power counting that produces—at LO—the narrow p-wave
resonance in the nα 2P3/2 channel and the virtual state in the
1S0 channel of nn scattering. These nn and nα t matrices
are implemented in our LO analysis of the 6He ground state,
which employs a Faddeev formulation to calculate the 6He
two-neutron separation energy, B3, as well as the Faddeev
components, Fα and Fn, via two coupled integral equations.
The result for the 6He two-neutron separation energy is
strongly cutoff dependent. To remedy this we introduce a
p-wave nnα counterterm and perform a renormalization in the
three-body 0+ sector of the theory. By tuning the parameter
H0 of the three-body counterterm, we can reproduce the
experimental value of B3 = 0.975 MeV. The bound-state
Faddeev components Fα and Fn are then predicted, and they
are both cutoff independent.
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The parameter H0 is studied as a function of the cutoff.
It exhibits a log-periodic behavior with decreasing periods
at large cutoffs. A similar log-periodicity of the three-body-
counterterm parameter, however, with a constant period, has
been observed in the leading-order calculation of three-body
systems with s-wave interactions. The different large-� behav-
ior could be caused by properties of the p-wave nα interactions
in the 6He system, which breaks the scale-invariance symmetry
that is present at LO in the three-body system with only s-wave
interactions.

The Halo EFT for 6He presented here bears a significant
similarity to cluster models. For example, in Refs. [14,15]
Ghovanlou and Lehman used separable Yamaguchi potentials
for the nn and nα interactions. They fitted the parameters to
known phase shifts in these systems and then predicted the
binding energy of 6He, ultimately obtaining a value smaller
than that seen in experiment. In fact, two-body phase shifts are
insufficient to determine the three-body binding energy in these
systems. This fact is reflected in the EFT calculation by the sen-
sitivity to the cutoff parameter. The EFT then mandates the in-
troduction of a three-body parameter at LO, and ultimately
this may be a more effective path to a cluster description of
the 6He nucleus than one based on two-body potentials alone.

Of course, there are higher-order corrections in the EFT,
which will perturb the result obtained here. These include the
effective-range terms in the nn-1S0 channel and higher-order
effects in the nα-2P3/2 channel, the role of the nα-2S1/2 and
2P1/2 channels, and so on. These will be investigated in future
work. These higher-order terms can be studied perturbatively
using methods similar to those of Refs. [59–62]. The power
counting of Ref. [39] indicates that the expansion parameter
of the EFT is Mlo/Mhi ∼ 1/4, which is similar to the one
for the “pionless” EFT that has been applied with much
success to few-nucleon systems. However, success there was
achieved only after higher-order corrections were included in
the analysis, To compare with experimental measurements in
these systems at a high accuracy, higher-order effects must be
included in the EFT calculation.

In the renormalization of the nα interaction, we adopt the
power counting by Bedaque et al. [39], i.e., a1 ∼ M−2

lo M−1
hi and

r1 ∼ Mhi, to extract the corresponding p-wave resonance. An
alternative power counting is introduced by Bertulani et al. [38]
for studying the nα p-wave interaction. In that work a1 ∼ M−3

lo
and r1 ∼ Mlo. Therefore, both γ1 and k± are of order Mlo,
which means both a shallow bound state and a low-energy res-
onance are present. This result to some extent contradicts the
experimentally known absence of the 5He bound state. Mean-
while, in contrast to the power counting in Ref. [39], which
requires one fine-tuning in the renormalization, the power
counting in Ref. [38] requires two fine-tunings, which is less
“natural.” It was this power counting that was used by Rotureau
and van Kolck in their calculations of 6He ground state [43].

In that study the authors solved for the helium-6 bound
state using the Gamow shell-model basis. As we did, they
introduced a p-wave nnα counterterm in order to render
their results independent of the ultraviolet cutoff on the
shell-model basis. However, the corresponding three-body
parameter vanishes in the limit � → ∞ and does not appear
to oscillate as a function of �. It thus behaves differently from

our three-body parameter. Presumably this is a result of the
different power counting used for the nα interaction, which
leads to different ultraviolet behavior of the integral-equation
kernel. This deserves further investigation.

Our work and Ref. [43] both reproduce the experimental
value of 6He two-neutron separation energy. A comparison
of the different power counting schemes for 6He can be
achieved if other physical observables in the 6He system can be
predicted. In our approach, the Faddeev components, Fα and
Fn, are calculated after the renormalization and are therefore
a prediction. Using Fα and Fn, we will be able to construct the
6He wave function and from it the matter-density form factors.
These form factors can be used to obtain predictions for the
mean-square radii (cf. Ref. [10]) and other observables. The
calculation of these quantities is in progress [58]. The accuracy
of the LO Halo EFT description can also be assessed by
examining properties of the nnα system in the continuum. The
low-energy nnα continuum was investigated in, e.g., Ref. [63]
within a cluster description, as well as in Refs. [64,65] via
ab initio calculations. The Faddeev formalism developed here
can be readily extended to continuum states and used to
compute, e.g., LO Halo EFT predictions for the resonance-pole
positions of excited states in the 6He system.

In our calculations, the neutron-core mass ratio is kept
as a variable (A). This opens up a possible extensions of
the current 6He analysis to other p-wave halo nuclei with
a different neutron-core mass ratio. One important example
is the 11Li nucleus, which is another Borromean system
but with a 3

2
−

ground state. A recent measurement of the
two-neutron transfer reaction, 1H(11Li, 9Li)3H, at the ISAC-II
facility at TRIUMF, implies that both the s- and p-wave
components of n-9Li interactions contribute significantly to the
ground-state 11Li [66]. This suggests that a LO EFT analysis
of the 11Li nucleus should include both the s- and p-wave
n-9Li interactions nonperturbatively (cf. Ref. [27]), yielding a
Faddeev equation that includes more channels than does that
for 6He at LO. But, similarly to 6He, we can also calculate
the binding energy and matter radius in 11Li. In the case of
11Li it will be important to understand whether the presence of
additional channels in the LO calculation means that more than
one three-body parameter is needed for renormalization at LO.
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APPENDIX A: RENORMALIZATION
WITH YAMAGUCHI FORM FACTORS

Choosing the form factor gl(q) present in Eq. (20) of
Yamaguchi form (23), and assuming βl ∼ Mhi, we can

044004-11



C. JI, CH. ELSTER, AND D. R. PHILLIPS PHYSICAL REVIEW C 90, 044004 (2014)

regularize Eq. (22) to express τl’s dependence on Mhi. The two-body coupling constant λl is then tuned correspondingly to cancel
this divergence. By doing so, we can reproduce the low-energy behavior of the two-body t matrices of Eqs. (5) and (8).

For s-wave scattering, l = 0, we have

τ−1
0 (E) = 1

λ0
+ 8πμ

∫ ∞

0
dq

q2β4
0

(q2 − k2 − iε)
(
q2 + β2

0

)2

= 1

λ0
+ 2π2μ

β3
0

(β0 − ik)2
. (A1)

We substitute τ0(E) of Eq. (A1) and g0(k) of Eq. (23) into Eq. (21) and expand the resulting nn-scattering t matrix in powers of
k/β0 and obtain

〈k|tnn|k′〉 = g2
0(k) τ0(E)

=
(

1 + k2

β2
0

)−2
[

1

λ0
+ 2π2μnnβ0

(
1 + i

k

β0
− k2

β2
0

+ · · ·
)2
]−1

= 1

4π2μnn

{(
β0

2
+ 1

4π2μnnλ0

)
−
[

3

2β0
− 2

β2
0

(
β0

2
+ 1

4π2μnnλ0

)]
k2 + ik

}−1

. (A2)

By tuning both β0 and λ0, a0 and r0 are reproduced in the renormalization as

1

a0
= β0

2
+ 1

4π2μnnλ0
, (A3a)

r0

2
= 3

2β0
− 2

β2
0

1

a0
. (A3b)

Note that since β0 ∼ Mhi, if λ0 is fine-tuned in renormalization so 1/a0 ∼ Mlo, then r0 ∼ 1/Mhi will be naturally obtained.
For the p-wave interaction l = 1 we calculate τ1 from Eq. (22) as

τ−1
1 (E) = 1

λ1
+ 8πμ

∫ ∞

0
dq

q4β8
1

(q2 − k2 − iε)
(
q2 + β2

1

)4

= 1

λ1
+ π2μ

4
β5

1
β2

1 − 4iβ1k − k2

(β1 − ik)4
. (A4)

We expand g1(k) and τ1(E) in powers of k, substitute them into Eq. (21), and then obtain the nα-scattering t matrix as

〈k|tnα|k′〉 = 3k̂ · k̂
′
g2

1(k) τ1(E)

= 3k · k′
(

1 + k2

β2
1

)−4
[

1

λ1
+ π2μnα

4
β3

1

(
1 − i

4k

β1
− k2

β2
1

)(
1 + ik

β1
− k2

β2
1

+ · · ·
)4
]−1

= 3k · k′

4π2μnα

{(
β3

1

16
+ 1

4π2μnαλ1

)
+
[

5β1

16
+ 4

β2
1

(
β3

1

16
+ 1

4π2μnαλ1

)]
k2 + ik3

}−1

. (A5)

In the p-wave renormalization, a1 and r1 can be reproduced from the relation

1

a1
= β3

1

16
+ 1

4π2μnαλ1
, (A6a)

r1

2
= − 5β1

16
− 4

β2
1

1

a1
. (A6b)

Note that since β1 ∼ Mhi, if λ1 is tuned so 1/a1 ∼ M2
loMhi, then we can naturally have r1 ∼ Mhi.
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APPENDIX B: THE KERNEL FUNCTIONS Xnα , Xαn, AND Xnn

1. The spin–and–orbital-angular-momentum decomposition

The spin matrix elements between different spectator representations can be calculated using Wigner’s 6-j symbol as follows:

〈s1,(s2s3)s23; S| (s1s2)s12,s3; S〉 = (−1)s1+s2+s3+S
√

(2s12 + 1)(2s23 + 1)

{
s1 s2 s12

s3 S s23

}
. (B1)

Therefore, in 6He’s ground state, the spin matrix elements between states represented in either n- or α-spectator representations
are calculated as

α

〈(
1
2

1
2

)
0,0; Sα = 0,MSα = 0

∣∣ ( 1
2 0
)

1
2 , 1

2 ; Sn = Ln,MSn = −MLn

〉
n

= −δ0,Ln
δ0,MLn

, (B2a)

n

〈(
1
2 0
)

1
2 , 1

2 ; Sn = Ln,MSn = −MLn

∣∣ ( 1
2

1
2

)
0,0; Sα = 0,MSα = 0

〉
α

= −δ0,Ln
δ0,MLn

, (B2b)

n

〈(
1
2 0
)

1
2 , 1

2 ; Sn = Ln,MSn = −MLn

∣∣Pnn

∣∣( 1
2 0
)

1
2 , 1

2 ; Sn = L′
n,MSn = −MLn′

〉
n

= (−1)1−LnδLn,L′
n
δMLn,MLn′ . (B2c)

By substituting Eqs. (B2) into Eqs. (36) and (37), we can decompose the spin and orbital-angular-momentum parts of the
matrix elements i〈p,q; �i |p′,q ′; �j 〉j in the 6He system as

α〈p,q; �α|p′,q ′; �n〉n = −
√

2

3
α〈p,q; 0,0; Lα = MLα = 0|p′,q ′; 1,1; Ln = MLn = 0〉n, (B3a)

n〈p,q; �n|p′,q ′; �α〉α = −
√

2

3
n〈p,q; 0,0; Ln = MLn = 0|p′,q ′; 1,1; Lα = MLα = 0〉α, (B3b)

n〈p,q; �n| − Pnn|p′,q ′; �n〉n =
1∑

Ln=0

Ln∑
MLn=−Ln

(−2)1−Ln

6Ln + 3
n〈p,q; 0,0; Ln,MLn| − Pnn|p′,q ′; 1,1; Ln,MLn〉n. (B3c)

Inserting Eqs. (B3) into Eq. (49), we can decouple the kernel functions, Xij , in the 6He problem into a summation of functions
Z (L)

ij at different overall orbital angular momentum L,

Xαn(q,q ′; E) = −
√

2

3
Z (0)

αn (q,q ′; E), (B4a)

Xnα(q,q ′; E) = −
√

2

3
Z (0)

nα (q,q ′; E), (B4b)

Xnn(q,q ′; E) = −2

3
Z (0)

nn (q,q ′; E) + 1

3
Z (1)

nn (q,q ′; E). (B4c)

In the spectator-α representation L = 0, while in the spectator-n representation L can be zero or 1. Those functions Z (L)
ij are

then

Z (0)
αn (q,q ′; E) =

∫∫
p2dp p′2dp′ g0(p)G(α)

0 (p,q; E) g1(p′) α〈p,q; (00)00 | p′,q ′; (11)00〉n, (B5a)

Z (0)
nα (q,q ′; E) =

∫∫
p2dp p′2dp′ g1(p)G(n)

0 (p,q; E) g0(p′) n〈p,q; (11)00 | p′,q ′; (00)00〉α, (B5b)

Z (L)
nn (q,q ′; E) =

∫∫
p2dp p′2dp′ g1(p)G(n)

0 (p,q; E) g1(p′) n〈p,q; (11)LM | − Pnn| p′,q ′; (11)LM〉n. (B5c)

Z (L)
nn is independent of the quantum number M for both the L = 0 and L = 1 cases, which will be proved later.

2. The functions Z (0)
αn , Z (0)

nα , and Z (L)
nn

Here we calculate the orbital-angular-momentum–dependent kernel functions Z (0)
αn , Z (0)

nα , and Z (L)
nn .

a. The function Z (0)
αn

After inserting two complete sets of Jacobi-momentum states, we can write Z (0)
αn as

Z (0)
αn (q,q ′; E) =

∫∫
p2dp p′2dp′ g0(p)G(α)

0 (p,q; E) g1(p′)
∫∫

d3p1d
3q1

∫∫
d3p2d

3q2

× α〈p,q; (00)00 | p1q1〉α α〈 p1q1| p2q2〉n n〈 p2q2| p′,q ′; (11)00〉n, (B6)
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where the matrix elements containing the orbital-angular-momentum quantum numbers can be expressed as

α〈 p1q1|p,q; (00)00〉α = 1

p2
1

δ(p1 − p)
1

q2
1

δ(q1 − q)Y00
00 ( p̂1q̂1), (B7a)

n〈 p2q2|p′,q ′; (11)00〉n = 1

p2
2

δ(p2 − p′)
1

q2
2

δ(q2 − q ′)Y00
11 ( p̂2q̂2). (B7b)

The function YLM
l1l2

indicates the orbital-angular-momentum coupling of two spherical harmonics to produce an overall orbital
angular momentum L and z-component M ,

YLM
l1l2

(q̂1q̂2) =
∑
m1m2

C(l1l2L|m1m2M) Yl1m1 (q̂1) Yl2m2 (q̂2). (B8)

Also, the transition between the free momentum states | p1q1〉α and | p2q2〉n yields the product of two δ functions,

α〈 p1q1| p2q2〉n = δ(3)( p1 − Pαn)δ(3)( p2 + P ′
αn), (B9)

with

Pαn = μnn

mn

q1 + q2 = 1

2
q1 + q2, (B10a)

P ′
αn = q1 + μnα

mn

q2 = q1 + A

A + 1
q2, (B10b)

where q1 = q and q2 = q ′ are determined from Eqs. (B7).
By applying Eqs. (B7)–(B10) into Eq. (B6), we obtain

Z (0)
αn (q,q ′; E) =

∫
d q̂1

∫
d q̂2 g0(Pαn)G(α)

0 (Pαn,q; E) g1(P ′
αn)Y00 ∗

00 ( P̂αnq̂1)Y00
11 (− P̂

′
αn q̂2)

= 1

4π

∫
d q̂1

∫
d q̂2 g0(Pαn)G(α)

0 (Pαn,q; E) g1(P ′
αn)

1∑
m=−1

C(110|m − m 0)Y1m(− P̂
′
αn) Y1−m(q̂2), (B11)

where we used the fact that Y00
00 ( P̂αnq̂1) = 1/(4π ).

Using the relation [54]

Ylm(r̂1 + r2) =
∑

l1+l2=l

√
4π (2l + 1)!

(2l1 + 1)! (2l2 + 1)!

r
l1
1 r

l2
2

|r1 + r2|l
∑
m1m2

C(l1l2l|m1m2m) Yl1m1 (r̂1) Yl2m2 (r̂2), (B12)

we rewrite Eq. (B11) as

Z (0)
αn (q,q ′; E) = 1

4π

∫
d q̂1

∫
d q̂2 g0(Pαn)G(α)

0 (Pαn,q; E) g1(P ′
αn) P ′−1

αn

1∑
m=−1

C(110|m − m 0)
∑

l1+l2=1

√
4π 3!

(2l1 + 1)! (2l2 + 1)!
ql1

×
(

A

A + 1
q ′
)l2 ∑

m1m2

C(l1l21|m1m2m)Yl1m1 (−q̂1) Yl2m2 (−q̂2)Y1−m(q̂2). (B13)

We can perform a Legendre expansion of the product of terms in front of the first summation in Eq. (B13). Since the Halo
EFT calculation takes g0(Pαn) = 1 and g1(P ′

αn) = P ′
αn, we have

g0(Pαn)G(α)
0 (Pαn,q; E) g1(P ′

αn) P ′−1
αn = G

(α)
0 (Pαn,q; E) = 4π

∑
tν

G t
αn(q,q ′; E) Y ∗

tν(q̂1)Ytν(q̂2), (B14)

where G t
αn is determined by

G t
αn(q,q ′; E) = 1

2

∫ 1

−1
dx Pt (x) G

(α)
0 (Pαn,q; E)

= 1

2

∫ 1

−1
dx Pt (x)

[
E − 1

mn

(
1

4
q2 + q ′2 + qq ′x

)
− A + 2

4Amn

q2

]−1

= mn

2qq ′

∫ 1

−1
dx Pt (x)

[
1

qq ′

(
mnE − A + 1

2A
q2 − q ′2

)
− x

]−1

. (B15)
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If we define

zαn = 1

qq ′

(
mnE − A + 1

2A
q2 − q ′2

)
, (B16)

we can relate G t
αn(q,q ′; E) to the Legendre functions of the second kind Qt [see Eq. (59)] as

G t
αn(q,q ′; E) = mn

qq ′ Qt (zαn). (B17)

Here we take the opportunity to write explicitly the three Ql’s used in our calculation as

Q0(z) = 1

2
ln

(
z + 1

z − 1

)
, (B18a)

Q1(z) = 1

2
z ln

(
z + 1

z − 1

)
− 1, (B18b)

Q2(z) = 1

2

(
−1

2
+ 3

2
z2

)
ln

(
z + 1

z − 1

)
− 3

2
z. (B18c)

Now the dependencies on q̂1 and q̂2 are separated and can be integrated individually as

Z (0)
αn (q,q ′; E) =

∑
t

G t
αn(q,q ′; E)

1∑
m=−1

C(110|m − m 0)
∑

l1+l2=1

√
4π 3!

(2l1 + 1)! (2l2 + 1)!
ql1

(
A

A + 1
q ′
)l2 ∑

m1m2

C(l1l21|m1m2m)

×
t∑

ν=−t

∫
d q̂1 Y ∗

tν(q̂1)Yl1m1 (−q̂1)
∫

d q̂2 Ytν(q̂2)Yl2m2 (−q̂2)Y1−m(q̂2). (B19)

After integrating the product of spherical harmonics, we sum up all the orbital-angular-momentum quantum numbers using
properties of Clebsch-Gordan coefficients (see, e.g., in Ref. [67]) and express Z (0)

αn as a summation of G t
αn’s,

Z (0)
αn (q,q ′; E) =

√
3

(
A

A + 1
q ′ G 0

αn(q,q ′; E) + q G 1
αn(q,q ′; E)

)
. (B20)

b. The function Z (0)
nα

Similarly, Z (0)
nα is calculated as

Z (0)
nα (q,q ′; E) =

∫∫
p2dp p′2dp′ g1(p)G(n)

0 (p,q; E) g0(p′)
∫∫

d3p1d
3q1

∫∫
d3p2d

3q2

× n〈p,q; (11)00 | p1q1〉n n〈 p1q1| p2q2〉α α〈 p2q2| p′,q ′; (00)00〉α. (B21)

We express the orbital-angular-momentum-dependent matrix elements as

n〈 p1q1|p,q; (11)00〉n = 1

p2
1

δ(p1 − p)
1

q2
1

δ(q1 − q)Y00
11 ( p̂1q̂1), (B22a)

α〈 p2q2|p′,q ′; (00)00〉α = 1

p2
2

δ(p2 − p′)
1

q2
2

δ(q2 − q ′)Y00
00 ( p̂2q̂2). (B22b)

Also the transition between momentum states | p1q1〉n and | p2q2〉α yields

n〈 p1q1| p2q2〉α = δ(3)( p1 + Pnα)δ(3)( p2 − P ′
nα), (B23)

where

Pnα = μnα

mn

q1 + q2 = A

A + 1
q1 + q2, (B24a)

P ′
nα = q1 + μnn

mn

q2 = q1 + 1

2
q2, (B24b)

with q1 = q and q2 = q ′ determined from Eqs. (B22).
Therefore, we can rewrite Eq. (B21) as

Z (0)
nα (q,q ′; E) =

∫
d q̂1

∫
d q̂2 g1(Pnα)G(n)

0 (Pnα,q; E) g0(P ′
nα)Y00 ∗

11 (− P̂nα q̂1)Y00
00 ( P̂

′
nα q̂2), (B25)

where Y00
00 ( P̂

′
nα q̂2) = 1/(4π ).
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Similarly to Eqs. (B15)–(B17), we define a function G t
nα which satisfies

G t
nα = 1

2

∫ 1

−1
dx Pt (x) P −1

nα g1(Pnα)G(n)
0 (Pnα,q; E) g0(P ′

αn)

= 1

2

∫ 1

−1
dx Pt (x) G

(n)
0 (Pnα,q; E)

= 1

2

∫ 1

−1
dx Pt (x)

[
E − A + 1

2Amn

(
A2

(A + 1)2
q2 + q ′2 + 2A

A + 1
qq ′x

)
− A + 2

2(A + 1)mn

q2

]−1

= mn

qq ′ Qt (znα) (B26)

with

znα = 1

qq ′

(
mnE − q2 − A + 1

2A
q ′2
)

. (B27)

After similar procedures to those used in calculating Z (0)
αn , we can express Z (0)

nα as a summation of G t
nα’s by

Z (0)
nα (q,q ′; E) =

√
3

(
A

A + 1
q G 0

nα(q,q ′; E) + q ′ G 1
nα(q,q ′; E)

)
. (B28)

c. The function Z (L)
nn with L = 0,1

Also similarly, Z (L)
nn is calculated as

Z (L)
nn (q,q ′; E) =

∫∫
p2dp p′2dp′ g1(p)G(n)

0 (p,q; E) g1(p′)
∫∫

d3p1d
3q1

∫∫
d3p2d

3q2

× n〈p,q; (11)LM | p1q1〉n n〈 p1q1| − Pnn| p2q2〉n n〈 p2q2| p′,q ′; (11)LM〉n. (B29)

The orbital-angular-momentum-dependent matrix elements are written as

n〈 p1q1|p,q; (11)LM〉n = 1

p2
1

δ(p1 − p)
1

q2
1

δ(q1 − q)YLM
11 ( p̂1q̂1). (B30)

The transition of momentum states in this case leads to

n〈 p1q1| − Pnn| p2q2〉n = −δ(3)( p1 − Pnn)δ(3)( p2 − P ′
nn), (B31)

where

Pnn = μnα

mα

q1 + q2 = 1

A + 1
q1 + q2, (B32a)

P ′
nn = q1 + μnα

mα

q2 = q1 + 1

A + 1
q2, (B32b)

with q1 = q and q2 = q ′ determined from Eq. (B30).
We then rewrite Eq. (B29) as

Z (L)
nn (q,q ′; E) = −

∫
d q̂1

∫
d q̂2 g1(Pnn)G(n)

0 (Pnn,q; E) g1(P ′
nn)YLM ∗

11 ( P̂nnq̂1)YLM
11 ( P̂

′
nn q̂2). (B33)

As in Eq. (B15)–(B17), we define the function G t
nn that satisfies

G t
nn = 1

2

∫ 1

−1
dx Pt (x) P −1

nn g1(Pnn)G(n)
0 (Pnn,q; E) g1(P ′

αn)P ′−1
nn

= 1

2

∫ 1

−1
dx Pt (x) G

(n)
0 (Pnn,q; E)

= 1

2

∫ 1

−1
dx Pt (x)

[
E − A + 1

2Amn

(
q2

(A + 1)2
+ q ′2 + 2qq ′x

A + 1

)
− A + 2

2(A + 1)mn

q2

]−1

= mn

qq ′ Qt (znn), (B34)
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with

znn = A

qq ′

[
mnE − A + 1

2A
(q2 + q ′2)

]
. (B35)

Applying similar procedures again we express Z (L)
nn as a summation of G t

nn’s. For L = 0 and L = 1, we obtain

Z (0)
nn (q,q ′; E) = −3

[
A2 + 2A + 4

3(A + 1)2
qq ′ G0

nn(q,q ′; E) + 1

A + 1
(q2 + q ′2)G1

nn(q,q ′; E) + 2

3
qq ′ G2

nn(q,q ′; E)

]
, (B36a)

Z (1)
nn (q,q ′; E) = qq ′ G0

nn(q,q ′; E) − qq ′ G2
nn(q,q ′; E). (B36b)

By substituting Eqs. (B20), (B28), and (B36) into Eq. (B4), we obtain the expressions for the kernel functions Xαn, Xnα , and
Xnn given in Eqs. (58).
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(2010).
[64] S. C. Pieper, R. B. Wiringa, and J. Carlson, Phys. Rev. C 70,

054325 (2004).
[65] C. Romero-Redondo, P. Navrátil, S. Quaglioni, and G. Hupin,
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