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Nuclear pairing from microscopic forces: Singlet channels and higher-partial waves
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Background: An accurate description of nuclear pairing gaps is extremely important for understanding static
and dynamic properties of the inner crusts of neutron stars and to explain their cooling process.
Purpose: We plan to study the behavior of the pairing gaps �F as a function of the Fermi momentum kF for
neutron and nuclear matter in all relevant angular momentum channels where superfluidity is believed to naturally
emerge. The calculations will employ realistic chiral nucleon-nucleon potentials with the inclusion of three-body
forces and self-energy effects.
Methods: The superfluid states of neutron and nuclear matter are studied by solving the BCS gap equation for
chiral nuclear potentials using the method suggested by Khodel et al., where the original gap equation is replaced
by a coupled set of equations for the dimensionless gap function χ (k) defined by �(k) = �F χ (k) and a nonlinear
algebraic equation for the gap magnitude �F = �(kF ) at the Fermi surface. This method is numerically stable
even for small pairing gaps, such as that encountered in the coupled 3PF2 partial wave.
Results: We have successfully applied Khodel’s method to singlet (S) and coupled channel (SD and PF ) cases in
neutron and nuclear matter. Our calculations agree with other ab initio approaches, where available, and provide
crucial inputs for future applications in superfluid systems.
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I. INTRODUCTION

Superfluidity in neutron matter is connected to different
aspects of neutron star physics. Within the inner crust of the
star [1,2], where a neutron gas moves in a lattice structure
of neutron-rich nuclei and a sea of relativistic electrons, a
1S0 neutron pairing gap naturally emerges, while at larger
densities a (possibly anisotropic) 3PF2 gap plays a more
important role (in particular for neutron star cooling [3,4]).
At the same time, the nuclear matter case could be interesting
for finite nuclear systems where neutron-proton pairing is rele-
vant [5], even if the appearance of pairing in ordinary uniform
matter is probably questionable because of known instabili-
ties [6], which could hide superfluidity in a broad range of
densities.

The goal of this article is to solve the BCS equations
starting from modern nucleon-nucleon (NN) forces based
on chiral effective field theory [7–9]. In this approach one
identifies the appropriate low-energy degrees of freedom and
derives the most general Lagrangian compatible with the
symmetries and symmetry-breaking pattern of the underlying
fundamental theory (i.e., QCD). The first steps towards a
realistic NN potential from first principles started almost 20
years ago within the framework of chiral perturbation theory
(ChPT) [10,11]. In ChPT the nuclear potential emerges natu-
rally as a hierarchy of terms controlled by a power expansion
in Q/�χ , where Q is a soft scale (pion mass, nucleon mo-
mentum) and �χ is a hard scale (the nucleon mass MN or the
chiral symmetry-breaking scale 4πfπ ). Two-nucleon forces
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appear at leading order (Q/�χ )0, while three-nucleon forces
appear first at order (Q/�χ )3, or next-to-next-to-leading order
(N2LO).

We employ primarily the high-precision NN potential
developed by the authors of Ref. [7] at next-to-next-to-next-to-
leading order (N3LO) in the chiral expansion, but to asses the
theoretical uncertainties associated with the choice of cutoff
scale and regulating functions we employ, in addition, the
chiral nuclear potentials developed by the authors of Ref. [8] in
selected cases. To implement the leading three-nucleon force,
we include a two-body density-dependent potential [12,13]
(see also Refs. [14–17] for other approaches and relevant
details). To improve convergence in many-body perturbation
theory, it is desirable to employ nuclear interactions with a
cutoff scale below � ∼ 500 MeV. One approach is to employ
renormalization group (RG) methods that decouple the low-
and high-momentum components of the potential. Two differ-
ent methods for evolving nuclear potentials to block- and band-
diagonal form in a momentum-space representation, Vlowk and
Vsrg, respectively, have been developed (see Refs. [18–20] for
detailed reviews) and used in the present study. An alternative
approach would be to construct from the beginning chiral
nuclear potentials at lower cutoff scales [21–23].

The paper is organized as follows. Section II introduces the
BCS theory that is the standard framework for a microscopic
description of nucleonic pairing. In particular, the numerical
implementation first introduced by Khodel et al. [24] will be
reviewed. Sections III A and III B describe, respectively, our
predictions for pairing gaps in the singlet and in the coupled
channel cases. The role of the two-body NN interaction
will be discussed along with the influence of three-body
forces and self-energy effects. Finally, Sec. IV presents our
conclusions.
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II. BCS EQUATION

In this section we explain the method employed to
solve the BCS equations [25] by partial-wave decomposi-
tion [5,24,26,27]. For simplicity we largely neglect spin and
isospin degrees of freedom in the derivation. The BCS equation
reads in terms of the NN potential V (k,k′) = 〈k|V |k′〉 as
follows:

�(k) = −
∑

k′
〈k|V |k′〉 �(k′)

2E(k′)
, (1)

with E(k)2 = ξ (k)2 + |�(k)|2 and where ξ (k) = ε(k) − μ,
ε(k) denotes the single-particle energy and μ is the chemical
potential. As in Ref. [5], we decompose the interaction

〈k|V |k′〉 = 4π
∑

l

(2l + 1)Pl(k̂ · k̂′)Vl(k,k′) (2)

and the gap function

�(k) =
∑
lm

√
4π

2l + 1
Ylm(k̂)�lm(k) , (3)

where Ylm(k̂) denotes the spherical harmonics, l is the orbital
angular momentum, m is its projection along the z axis, and
Pl(k̂ · k̂′) refers to the Legendre polynomials. After performing
an angle-average approximation (we do not retain the m
dependence, anisotropic pairing gaps [27] will be discussed
in a forthcoming paper) we have the following equation for
any value of l:

�
j
l (k) =

∑
l′

(−1)�

π

∫
dk′V j

ll′ (k,k′)
�

j
l′(k

′)
E(k′)

k′2 , (4)

where � = 1 + (l − l′)/2, j refers to the total angular mo-
mentum ( �J = �l + �S) quantum number including spin �S and
now E(k)2 = ξ (k)2 + ∑

j l �
j
l (k)2. Gaps with different l and

j are coupled due to the energy denominator, but, for the
sake of simplicity, we assume that different components of the
interaction mainly act on nonoverlapping intervals in density.
This assumption will turn out to be correct in the neutron
matter case while only partially justified when treating gaps
for symmetric nuclear matter. To solve Eq. (4), we follow the
approach suggested by Khodel et al. [24] that has been proven
to be stable even for small values of the gap and to require only
the initial assumption of a scale factor δ (the results, of course,
will be δ independent). We define an auxiliary potential W
according to

Wll′(k,k′) = Vll′(k,k′) − vll′φll′(k)φll′(k
′) , (5)

where φll′ (k) = Vll′ (k,kF )/Vll′ (kF ,kF ) and vll′ = Vll′ (kF ,kF )
so that Wll′ (k,k′) vanishes on the Fermi surface. The coupled
gap equations can be rewritten as

�l(k) −
∑

l′
(−1)�

∫
dτ ′Wll′ (k,k′)

�l′(k′)
E(k′)

=
∑

l′
Dll′φll′(k) ,

(6)

where dτ = k2dk/π and the coefficients Dll′ satisfy

Dll′ = (−1)�vll′

∫
dτφll′ (k)

�l′(k)

E(k)
. (7)

The gap is defined as follows:

�l(k) =
∑
l1l2

Dl1l2χ
l1l2
l (k) , (8)

where

χ
l1l2
l (k) −

∑
l′

(−1)�
∫

dτ ′Wll′ (k,k′)
χ

l1l2
l′ (k′)
E(k′)

= δll1φl1l2 (k) ,

(9)

and δll′ is the scale factor. The property that Wll′(k,k′) vanishes
on the Fermi surface ensures a very weak dependence of
χ

l1l2
l (k) on the exact value of the gap so that, in first approxi-

mation, it is possible to rewrite the previous equation (9) as

χ
l1l2
l (k) −

∑
l′

(−1)�
∫

dτ ′Wll′(k,k′)
χ

l1l2
l′ (k′)√

ξ 2(k′) + δ2

= δll1φl1l2 (k) . (10)

We use this equation to evaluate χ
l1l2
l (k) initially by matrix

inversion, then we use this function to self-consistently
evaluate Dll′ . Finally, we solve the system given by Eqs. (7)
to (9) in a self-consistent procedure. We always assume
μ = εF and adopt the relativistic version of the single-particle
energy ε(k) =

√
k2 + M2

N , where MN is the nucleon mass.
In principle, the effective force to be included in Eq. (1)
should be generated by the sum of all particle-particle
irreducible Feynman diagrams [28], but in most applications
to nuclear systems only the bare nucleon-nucleon interaction
is kept [5]. Corrections to the bare force, caused by medium
polarization effects (see Refs. [29–33] and references therein)
will be neglected in the present analysis and postponed to a
forthcoming paper. As a consequence, for the pairing potential
V (p,k) we introduce the following ansatz:

V (p,k) = V2B(p,k) + V3B(p,k,m)

� V2B(p,k) + V eff
2B (kF ,p,k) , (11)

where V2B is the Idaho [7] NN potential at N3LO in the chiral
expansion1 or the Juelich version [8], and the three-body
potential is approximated by an effective two-body density-
dependent potential V eff

2B derived by Holt et al. in Refs. [12,13].
We employ in our calculations the evolved two-body potentials
Vlowk (with a smooth cutoff in momentum space [35]) and
Vsrg [19] using two different evolution operators (see Sec. III B
for more details). When considering self-energy effects, we
simply perform the transformation MN → M∗

N using the
effective mass obtained by Holt et al. in Ref. [36] using a
density matrix expansion technique. In Ref. [36] the two-body

1Among the different versions, we employ the chiral potential in
which the regulator function f (p′,p) = exp[−(p′/�)2n − (p/�)2n]
has the cutoff � = 500 MeV, and n = 2 for the 2π exchange
contributions [34].
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FIG. 1. (Color online) The effective mass in the case of nuclear
(red line) and neutron (blue dashed line) matter as a function,
respectively, of the total nucleon density ρ or the neutron density
ρn (see Ref. [36]).

interaction was comprised of long-range one- and two-pion
exchange contributions and a set of contact terms contributing
up to fourth power in momenta as well as the leading-order
chiral three-nucleon interaction. The explicit formula is given
by

M∗(ρ) = M

(
1 + 2MFτ (ρ) − k2

F

2M2

)−1

, (12)

where the strength function Fτ (ρ) is defined as follows:

Fτ (ρ) = 1

2kF

(
∂U (p,kF )

∂p

)
p=kF

(13)

with U (p,kF ) the single-particle potential and − k2
F

2M2 a rela-
tivistic correction. In Fig. 1 we plot the effective masses for
nuclear and neutron matter as functions of density. From the
effective mass behavior we can expect that the self-energy
effects will play a central role in the high-density components
of the gap, while at low densities the effects will be rather
negligible. Second-order perturbative contributions to the
single-particle energies are expected to increase the effective
mass [37].

III. PAIRING GAPS

A. Singlet channel (1 S0)

In the singlet channel, the only difference between the nn
and np potential is the charge independence breaking and the
charge symmetry-breaking terms, which are treated as small
perturbations in ChPT. In Fig. 2 we test our solution to the
gap equation, in the nuclear matter case, against previously
published results [38] with the low-momentum interaction
Vlowk. In addition, we compute the 1S0 gap from the bare chiral
NN interaction and find a qualitatively very similar behavior.
The gap �F reaches a maximum value of approximately
3.5 MeV at kF � 0.85 fm−1 when the bare interaction is used
in the two-body sector, while a somewhat reduced gap (by
almost 0.5 MeV) if we consider Vlowk.

FIG. 2. (Color online) The 1S0 gap for nuclear matter computed
with the realistic chiral potential of Refs. [7,34] at N3LO (red line) and
the corresponding Vlowk potential (blue dashed line). With the green
dashed-dotted line we include, as a benchmark, a similar calculation
was performed by Hebeler et al. [38].

In the neutron matter case, at the two-body level, there
is good agreement with the gap computed from well known
realistic potentials like the CD-Bonn or Nijmegen interac-
tions [5,39,40], but at larger densities the N3LO gap exhibits a
higher value. This can be explained by observing that the phase
shifts from the chiral N3LO potential exhibit more attraction
than the CD-Bonn potential for high momenta, as already
observed by Hebeler et al. [38]. In Fig. 3 we compare our
full calculation for the gap, i.e., with the complete potential in
Eq. (11) and the density-dependent effective mass in Eq. (12),
with the recent results by Hebeler et al. [38], where the
authors started from a chiral N3LO interaction and evolved

38
41

44
46

FIG. 3. (Color online) The 1S0 gap for neutron matter computed
with the realistic chiral potential of [7,34] at N3LO plus the three-
body contribution of Eq. (11) and the inclusion of the effective mass
in Eq. (12). As a comparison, we include a similar calculation by
Hebeler [38] with a green dashed line and a set of ab initio simulations
with different many-body techniques: AFDMC (blue circles) [41],
QMC Green’s functions (green squares) [44], and CBF (yellow
diamonds) [46]. See the text for additional details.
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FIG. 4. (Color online) The 1S0 gap for neutron matter. In this
figure we show all the contributions to the pairing gap �F starting
from the inclusion of the bare two-body potential (red dotted line) or
Vlowk (blue dotted line) and then including effective three-body forces
(dashed lines) and a density-dependent effective mass (solid lines).

to a sharp low-momentum interaction.2 Also presented for
comparison are ab initio results obtained in the last several
years: auxiliary field diffusion Monte Carlo (AFDMC) [41]
with a simplified Argonne (AV8′ [42]) two-body potential plus
Urbana IX (UIX [43]) three-body force, quantum Monte Carlo
(QMC) [44], where the authors have retained the S-wave part
of the AV18 [45] interaction, and correlated basis functions
(CBF) [46] still with AV8′ plus UIX. We observe that at low
densities the gap behaviors are very similar for all but the QMC
calculations in Ref. [44], while for Fermi momenta beyond
kF ≈ 0.6 fm−1 the gaps computed with the Argonne potentials
decrease rapidly in contrast to those from chiral interactions.
At the present time, it is hard to assess if the disagreement is
due to different choices in the nuclear Hamiltonian or different
many-body methods.

It is useful to consider separately the different physical
effects governing the 1S0 pairing gap. In Fig. 4 we plot the gaps
obtained with two-body interactions alone (the dotted lines
represent the bare and the renormalized N3LO potentials),
with the inclusion of effective three-body forces (dashed
lines) and considering also self-energy effects (solid lines). By
construction, we expect that at low densities the three-body
effects are rather small, while only at higher densities do they
become appreciable. The main role of both three-body forces
and the effective mass is to substantially reduce the attractive
strength in the S channel (for higher partial waves the situation
is more involved, see Sec. III B).

2We used a rather different approach to construct our Vlowk.
The RG procedure has been performed with different cutoffs and
regulating functions, in particular a Fermi-Dirac function f�(k) =
1/(1 + e(k2−�2)/ε2

) and an exponential cutoff f�(k) = e−(k2/�2)n [35].
The results show a very weak cutoff-dependence.

47
26

FIG. 5. (Color online) The gap in the 3SD1 channel. We plot our
calculations with the N3LO interaction (red line) in comparison to
results obtained employing BONN-A potential [47] (blue curve) and
OPEG [26] (yellow line). All results suggest a very large pairing
gap (around 10 MeV), but complete calculations including three-
body forces and effective masses [see Eqs. (11) and (12)], shown in
the dashed red curve indicate a substantial reduction and a sizable
modification of the gap’s shape.

B. Higher partial waves (3 SD1 and 3 P F2)

In addition to the 1S0 channel, in the nuclear matter case a
nonvanishing gap appears in the 3SD1 channel. The presence
of a bound state in this channel and the very high phase shifts in
the 3S1 channel indicate that the interaction is more attractive
than in the other channels. As a consequence, the gap has a
magnitude of about 10 MeV, as can be seen in Fig. 5, with
conventional realistic potentials. There is no agreement on the
details of the gap in this channel, but both Elgarøy et al. [47]
and Takatsuka et al. [26] suggested the possibility of a gap
of such magnitude (see curves labeled in Fig. 5, respectively,
by BONN-A [48] and OPEG [26] where BONN-A [48] is a
complete one-boson exchange potential, OPEG [26] contains
only the one-pion exchange tail and a Gaussian repulsive core).
The combined effect of three-body forces and self-energy
effects leads not only to a sizable reduction of the gap itself,
but also to a shift of the gap’s maximum at kF ≈ 1 fm−1 and a
rapid decrease at higher Fermi momenta.

Due to the large densities over which the pairing gap
remains finite, it is questionable whether low-momentum
interactions Vlowk with a block-diagonal momentum-space
cutoff on the order of � ∼ 2.0 fm−1 are appropriate. A better
approach is provided by the similarity renormalization group
(SRG), where off-diagonal momentum-space matrix elements
are suppressed. In this case, we study nuclear Hamiltonians
H = Trel + V evolved through the SRG procedure [19], where
we define a class of Hamiltonians

Hs = UsHU †
s ≡ Trel + Vs, (14)

with a generator

ηs = dUs

ds
U †

s = −η†
s . (15)
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If we choose ηs = [Gs,Hs] the flow equation takes the form

dHs

ds
= [[Gs,Hs],Hs] . (16)

As shown in Ref. [19], the results obtained from SRG-evolved
interactions are very similar to those obtained from Vlowk if
an appropriate Gs is chosen. Moreover, the SRG interaction
has many salient features of low-momentum interactions,
such as independence of the physical observables from the
operator Gs , perturbativeness, and universality. In the literature
it is common to encounter also the dimensional parameter
λ = s−1/4 fm−1. A very interesting feature of the SRG
procedure is that the tensor interaction strength is reduced as s
increases, and this modification to the interaction can strongly
modify the 3SD1 gap. Since all physical observables should
remain unchanged under an SRG transformation, this variation
represents an uncertainty estimate in the pairing strength. A
common choice for Gs is Trel, and in this case as s increases, Vs

approaches the diagonal form. We tested one more generator

Gs = P�HsP� + Q�HsQ� , (17)

where P� and Q� are, respectively, the projector and the
exclusion operators in the subspace {k < �} (see Sec. 3.4
in Ref. [19]). From Eq. (16) it is easy to see that, if H
is a two-body Hamiltonian expressed in the second quanti-
zation formalism (dHs/ds)s=0 will also include three-body
interactions. In this way, the evolution over the flow will
naturally induce many-body interactions. The errors arising
from omitting the induced many-body forces can be estimated
by analyzing the dependence of the physical observables on
the flow parameter λ. Our results are shown in Fig. 6 where we
tested the two evolution operators. For Gs = Trel (red color)
we found that the gap becomes quite stable for λ < 2.2 fm−1,
where the maximum is reduced to approximately 5 MeV (a
factor of 2 smaller compared to the bare potential). In the
range 1.3 fm−1 � λ � 2.2 fm−1 the variation in the size of
the gap is on the order of 0.5 MeV or less. When using Gs

FIG. 6. (Color online) The evolution of the pairing gap in the
3SD1 channel with SRG-evolved interactions. We employed two
different evolution operators Gs : Trel (red band) and PHP + QHQ
(blue band). The arrows denote the flow variable λ (related to s

through λ ≡ s−1/4), which is varied from 4.7 down to 1.1 fm−1.

FIG. 7. (Color online) The gap in the 3PF2 channel obtained
from the N3LO [34] (red line) interaction in comparison to several
realistic NN potentials taken from Ref. [5]. Chiral potentials, by
definition, can be trusted only up to momenta close to the cutoff
(beyond the cutoff, the pairing gap is symbolized with a dashed
line).

given by Eq. (17) we obtained very similar results, confirming
the approximate independence of the physical results on the
choice of Gs , but with a reduced cutoff dependence.

In the neutron matter case, while at low density the
dominant channel is the 1S0 partial wave, at higher densities the
high-momentum components (which are repulsive) become
more important, suppressing the gap, and this happens at
kF ≈ 1.5 fm−1. At these densities, the only channel that
substantially contributes to the neutron matter gap is the
coupled 3PF2, where the coupling is due to the tensor
interaction. As can be seen in Fig. 7, there is a significant
dependence of the gap on the potential model, though the peak
in the gap consistently occurs between 2.2 � kF � 2.6 fm−1.
At the high densities and associated momentum scales relevant
for pairing in this channel, realistic NN interactions are not
as well constrained by fits to phase shifts, which partially
explains the differences in the observed gaps. As explained by
the authors of Ref. [7], in this channel one expects a crucial
contribution from the three-pion-exchange topology at N4LO
and from the contact term at N5LO, which should reduce the
attraction in this channel. All reasonable interactions give a gap
of magnitude ≈1 MeV, and we expect a small but not negligible
reduction of the gap from the higher orders in Q/�χ . In Fig. 8
we plot predictions for the 3PF2 gap including three-body
forces (dashed red line) and self-energy effects (solid red
line) in comparison to a very recent Brueckner-Hartree-Fock
calculation by Dong et al. [49], where the authors employed
the BONN-B potential [50] and a microscopic three-body
force constructed by Li et al. [51]. Our complete calculation
nicely agrees with those found in Ref. [49], in particular for
small momenta, and suggests a sizable reduction of the gap if
effective mass corrections are taken into account.

In Fig. 9 we show also the 3PF2 gap we have computed from
the Juelich ChPT potentials [8]. Because the 3PF2 gap extends
towards very large densities (even beyond the reasonable limits
of applicability of a ChPT approach) is very interesting to
test the robustness of previous calculations (see Figs. 7 and 8)
against a different theoretical approach. In fact, in the last years
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49

FIG. 8. (Color online) The gap in the 3PF2 channel with only
N3LO potential (dotted red line), with three-body forces (dashed
red line) and including also self-energy effects (solid red line). In
comparison we plot the results of recent BHF calculations [49] (blue
curve).

Epelbaum et al. developed a new scheme in the construction
of a realistic chiral potential where, instead of a dimensional
regularization scheme for chiral-loop integrals, a finite cutoff
� is kept in the range of 500–800 MeV, which appears to be
physically reasonable and matches well with the cutoff used in
the Lippmann-Schwinger (LS) equation. As a consequence, in
our calculations we employed two different cutoffs: �LS for the
LS equation (with nonrelativistic kinematics) and �2π for the
spectral-function regulator (SFR) of the two-pion exchange
potential (varied between 500 and 700 MeV). For Fermi
momenta up to nearly kF = 1.4 fm−1, the predictions from the
different potentials are nearly universal and agree reasonably
well with the predictions from the Entem and Machleidt
chiral N3LO potential. However, beyond this density there
is a significant scale dependence in the theoretical predictions,
in particular to �2π . This uncertainty has to be taken into
account if microscopic 3PF2 gaps are used to describe the
cooling process of neutron stars [52].

IV. CONCLUSION

We present calculations of the pairing gaps in infinite
nuclear and neutron matter employing realistic two- and

FIG. 9. (Color online) The gap in the 3PF2 channel as a function
of the resolution scale in the Juelich nucleon-nucleon interactions [8].
The scales refer, respectively, to the cutoffs (units of MeV) in
the Lippmann-Schwinger equation (�LS) and the spectral function
regulator in multipion exchange loop diagrams (�2π ). It appears that
the magnitude of the gap’s maximum is very sensitive to �2π and, to
a lesser content, to �LS.

three-body nuclear forces derived within the framework of
chiral effective field theory. The BCS gap equation is solved
employing Khodel’s method, which is found to be stable even
for small values of the pairing gap. Three-nucleon forces
help reduce the strength of pairing in the 1S0 and coupled
3SD1 channels, while for the coupled 3PF2 channel the
three-nucleon forces enhances the gap. In all cases considered
in the present work, consistent nucleon effective masses
reduce pairing correlations. Of particular interest is the scale
dependence of the 3PF2 pairing gap, which exhibits a nearly
universal behavior at low densities in all chiral potentials
considered. This works sets the stage for future applications
to pairing gaps in finite-temperature neutron matter [52].
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