
PHYSICAL REVIEW C 90, 044002 (2014)
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Background: Microscopic calculations of four-body collisions become very challenging in the energy regime
above the threshold for four free particles. The neutron-3He scattering is an example of such processes with
elastic, rearrangement, and breakup channels.
Purpose: We aim to calculate observables for elastic and inelastic neutron-3He reactions up to 30 MeV neutron
energy using realistic nuclear force models.
Methods: We solve the Alt, Grassberger, and Sandhas (AGS) equations for the four-nucleon transition operators
in the momentum-space framework. The complex-energy method with special integration weights is applied to
deal with the complicated singularities in the kernel of AGS equations.
Results: We obtain fully converged results for the differential cross section and neutron analyzing power in the
neutron-3He elastic scattering as well as the total cross sections for inelastic reactions. Several realistic potentials
are used, including one with an explicit � isobar excitation.
Conclusions: There is reasonable agreement between the theoretical predictions and experimental data for the
neutron-3He scattering in the considered energy regime. The most remarkable disagreements are seen around the
minimum of the differential cross section and the extrema of the neutron analyzing power. The breakup cross
section increases with energy exceeding rearrangement channels above 23 MeV.
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I. INTRODUCTION

Experimentally, four-nucleon (4N ) physics is studied
most extensively through proton-3He (p-3He) and deuteron-
deuteron (d-d) reactions [1], i.e., charged particle beams
and nonradioactive targets. The p + 3He system is simpler
since it involves three protons and one neutron and, further-
more, only elastic and breakup channels exist. Theoretically,
below breakup threshold p + 3He scattering constitutes a
single-channel problem, making it also simpler to calculate.
Indeed, accurate numerical calculations for low-energy p-3He
elastic scattering have been performed using several rigorous
approaches, i.e., the hyperspherical harmonics (HH) expansion
method [2,3], the Faddeev-Yakubovsky (FY) equations [4] for
the wave function components [5], and the Alt, Grassberger
and Sandhas (AGS) equations [6] for transition operators [7,8].
The latter method uses the momentum-space framework,
while the former two are implemented in the coordinate
space framework. All these methods were benchmarked in
Ref. [9] below breakup threshold for observables in neutron-3H
(n-3H) and p-3He elastic scattering; good agreement between
calculations was found, confirming their reliability.

However, the physics of reactions in coupled proton-3H
(p-3H), neutron-3He (n-3He) and d-d systems is more rich.
The scattering process in these systems resembles a typical nu-
clear reaction where, depending on the available energy, elas-
tic, charge exchange, transfer, and breakup reactions may take
place simultaneously. At the same time such reactions are more
difficult to calculate. Indeed, the coordinate space methods are
limited so far to processes up to n-3He threshold [10,11]. In
contrast, the momentum-space calculations are available for

all elastic and rearrangement p-3H, n-3He, and d-d reactions
below three-cluster breakup threshold [12,13]. However, the
extension to higher energies constitutes a major difficulty,
since the asymptotic boundary conditions in coordinate space
become highly nontrivial due to open two-, three-, and four-
cluster channels. In the momentum-space framework this is
reflected in a very complicated structure of singularities in the
kernel of the integral equations. Formally, these difficulties can
be avoided by rotation to complex coordinates [14,15] or con-
tinuation to complex energy [16,17] that lead to bound-state-
like boundary conditions and nonsingular kernels. However,
further technical complications arise in practical calculations,
especially when using realistic nuclear force models. Although
the solution of FY equations for n-3H scattering with modern
potentials using complex scaling is under way [18], at present
the only realistic calculations of 4N scattering above 4N
threshold are performed using the momentum-space AGS
equations [19,20], but limited to n-3H and p-3He elastic
scattering. The complex energy method [17,21] was used to
deal with the complicated singularities in the four-particle
scattering equations; its accuracy and practical applicability
were greatly improved by a special integration method [19].

In the present work, following the ideas of Refs. [19,20],
we calculate n + 3He elastic and inelastic scattering over a
wide range of neutron beam energies up to En = 30 MeV.
The pp Coulomb interaction is included using the method
of screening and renormalization [22,23]; see Refs. [8,24]
for more details on the practical implementation. Within this
method the standard AGS scattering equations for short-
range potentials are applicable. Compared to our previous
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p-3He scattering calculations above breakup threshold [20], an
additional complication for n + 3He reactions is the presence
of the rearrangement channels and the mixing of total isospin
T = 0 and 1 states. On the other hand, n + 3He calculations
are somehow simpler than those for p + 3H or d + d, since
there is no long-range Coulomb interaction in the asymptotic
n + 3He state, making the convergence of the partial-wave
expansion slightly faster.

In Sec. II we describe the theoretical formalism and in
Sec. III we present the numerical results. The summary is
given in Sec. IV.

II. 4N SCATTERING EQUATIONS

We treat protons and neutron as identical particles in the
isospin formalism and therefore use the symmetrized version
of the AGS equations [7] that are integral equations for the
four-particle transition operators Uβα , i.e.,

U11 = −(G0 t G0)−1P34 − P34U1G0 t G0 U11

+U2G0 t G0 U21, (1a)

U21 = (G0 t G0)−1(1 − P34) + (1 − P34)U1G0 t G0 U11.

(1b)

For n + 3He scattering the initial two-cluster partition that is of
3 + 1 type is labeled as α = 1, whereas β = 2 corresponds to
the 2 + 2 partition. They are chosen as (12,3)4 and (12)(34),
respectively; in the system of four identical particles there
are no other distinct two-cluster partitions. The transition
operators Uα for these 3 + 1 and 2 + 2 subsystems are obtained
from the respective integral equations

Uα = PαG−1
0 + Pαt G0 Uα. (2)

The pair (12) transition matrix t = v + vG0t is derived from
the corresponding two-nucleon potential v that, besides the
nuclear part, includes also the screened Coulomb potential
wR for the pp pair. The screening function is taken over
from Refs. [8,12] but the dependence on the screening
radius R is suppressed in our notation. The permutation
operators Pab of particles a and b and their combinations P1 =
P12 P23 + P13 P23 and P2 = P13 P24 together with a special
choice of the basis states ensure the full antisymmetry of the
four-nucleon system. The basis states must be antisymmetric
under exchange of two particles in the subsystem (12) for the
3 + 1 partition and in (12) and (34) for the 2 + 2 partition. All
transition operators acquire their dependence on the available
energy E through the free resolvent

G0 = (E + iε − H0)−1, (3)

with the complex energy E + iε and the free
Hamiltonian H0.

Although the physical scattering process corresponds to the
ε → +0 limit, the AGS equations are solved numerically at
a complex energy E + iε with finite positive ε. This way we
avoid the very complicated singularity structure of the kernel
and are faced with quasisingularities, that can be accurately
integrated over using a special integration method developed
in Ref. [19]. The singularities (quasisingularities for finite ε) of

the AGS equations correspond to open channels. In addition to
elastic and three- and four-cluster breakup channels, present in
the n-3H and p-3He scattering [19,20], in the n + 3He reaction
there are the rearrangement channels p + 3H and d + d. They
are treated in the same way as the elastic n + 3He channel.
The limit ε → +0 needed for the calculation of scattering
amplitudes and observables is obtained by the extrapolation
of finite ε results. Previous calculations [19,21] employed
the point method [25]. In the present work, as an additional
accuracy check, we use also the cubic spline extrapolation with
a nonstandard choice of boundary conditions, namely, the one
ensuring continuity of the third derivative [26]. These two
different methods lead to indistinguishable results confirming
the reliability of the extrapolation procedure. We use ε ranging
from 1 to 2 MeV at the lowest considered energies and
from 2 to 4 MeV at the highest energies. About 30 grid
points for the discretization of each momentum variable are
used.

As mentioned, the potential v for the pp pair must include
both the nuclear and the screened Coulomb potential wR; see
Refs. [8,12] for more details. The limit ε → +0 is calculated
separately for each value of the Coulomb screening radius
R and the renormalization procedure [8,12] is performed
subsequently. Thus, the scattering amplitude connecting the
initial n + 3He state with any two-cluster state is given by

〈pf |Tf i |pi〉 = Sβf αi
lim

R→∞
[(

Z
f
R

)− 1
2 lim

ε→+0
〈φf |Uβf αi

|φi〉
]
.

(4)

Here, |φj 〉 = G0 tPαj
|φj 〉 are the Faddeev amplitudes of the

initial (i) or final (f ) channel states |�j 〉 = (1 + Pαj
)|φj 〉,

whereas S11 = 3 and S21 = √
3 are the weight factors resulting

from the symmetrization. Note that the d + d channel state
requires explicit symmetrization under the exchange of two
deuterons, since the employed basis states do not obey this
symmetry. The initial and final bound state energies εj ,
relative two-cluster momenta pj and reduced masses μj obey
the on-shell relation E = εj + p2

j /2μj . The renormalization

factor Z
f
R is defined as in Refs. [8,12]; it is simply 1 for

the n + 3He state which is not distorted by the long-range
Coulomb interaction. In the present calculations we use R =
16 fm which is fully sufficient for convergence.

The spin-averaged differential cross section for the transi-
tion to the n + 3He, p + 3H or d + d final state is

dσ

d

= (2π )4 μiμf

pf

pi

1

Nsf

∑
msi

,msf

|〈pf |Tf i |pi〉|2, (5)

where the summation runs over the initial and final spin
projections msi

and msf
, and Nsf

= 4 is the number of initial
spin states for two spin 1

2 particles. The total cross section for a
given reaction is obtained by integrating Eq. (5) over the solid
angle 4π for n + 3He and p + 3H final states and 2π for d + d
final state.

The breakup amplitudes can be obtained from the half-shell
matrix elements ofUβα as described in Refs. [27,28]. However,
in the present work we only calculate the total three- and
four-cluster breakup cross section as the difference between
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the total and all two-cluster cross sections. The total n + 3He
cross section is obtained using the optical theorem as

σt = −16π3 μi

pi

1

Nsf

∑
msi

Im〈pi |Tii |pi〉. (6)

The AGS equations are solved by us in the
momentum-space partial-wave framework. We define the
states of the total angular momentum J with pro-
jection M as |kx ky kz[lz({ly[(lxSx)jx sy]Sy}Jysz)Sz]JM〉
for the 3 + 1 configuration and |kx ky kz(lz{(lxSx)jx

[ly(sysz)Sy]jy}Sz)JM〉 for the 2 + 2. In the literature they
are called sometimes K-type and H-type basis states, re-
spectively. Here kx, ky , and kz are the four-particle Jacobi
momenta in the convention of Ref. [27], lx , ly , and lz
are the associated orbital angular momenta, jx and jy are
the total angular momenta of pairs (12) and (34), Jy is
the total angular momentum of the (123) subsystem, sy

and sz are the spins of nucleons 3 and 4, and Sx , Sy ,
and Sz are channel spins of two-, three-, and four-particle
systems.

With respect to isospin, there are important differences as
compared to previous n-3H and p-3He calculations. Two types
of isospin states are used in the present calculations for the 3 +
1 configuration: |(Txty)TyMy tzmz〉 and |[(Txty)Tytz]T MT 〉.
They are related by a simple unitary transformation with
Clebsch-Gordan coefficients 〈TyMy tzmz|T MT 〉. Here Tx is
the isospin of the pair (12), ty = tz = 1

2 are the isospins of
nucleons 3 and 4, Ty is the isospin of the (123) subsystem,
and T is the total isospin of the 4N system, with mz, My ,
and MT = 0 being the respective projections. For the 2 + 2
configuration the isospin states are |[Tx(ty tz)Tz]T MT 〉, with
Tz being the isospin of the pair (34).

The eigenstates of the total isospin are more convenient
to calculate the action of the permutation operator P34 and
transformations between the K- and H-type states, since these
operations conserve T . In contrast, the 3 + 1 channel states
mix the total isospin but have fixed values of My and mz, i.e.,
My = −mz = 1

2 for n + 3He and My = −mz = − 1
2 for p +

3H. Furthermore, εj , pj , and |φj 〉 depend on My , implying that
also the location of quasi-singularities of U1 and the special
integration weights [19] depend on My . Thus, the calculation
of |φj 〉 and U1G0t is done using the |(Txty)TyMytzmz〉 isospin
basis. The two-nucleon transition matrix t is different for
pp, np, and nn pairs. It preserves Tx but depends on its
projection Mx , i.e., 〈T ′

xM
′
x |t |TXMx〉 = δT ′

xTx
δM ′

xMx
tTxMx

. This
gives rise to the coupling between Ty = 1

2 and 3
2 states, i.e.,

the nonvanishing components are

〈(Txty)T ′
yMy tzmz|t |(Txty)TyMy tzmz〉

=
∑
Mx

〈TxMx ty(My − Mx)|T ′
yMy〉

× 〈TxMx ty(My − Mx)|TyMy〉 tTxMx
. (7)

Abbreviating 〈(Txty)T ′
yMy tzmz|t |(Txty)TyMy tzmz〉 by

〈T ′
y |t(Tx,My)|Ty〉, in terms of pp, np, and nn transition

operators tNN we obtain

〈T ′
y |t(0,My)|Ty〉 = δT ′

yTy
δ
Ty

1
2

tnp, (8a)

〈
1

2

∣∣∣∣t
(

1,
1

2

)∣∣∣∣1

2

〉
= 2

3
tpp + 1

3
tnp, (8b)

〈
3

2

∣∣∣∣t
(

1,
1

2

)∣∣∣∣1

2

〉
=

√
2

9
(tpp − tnp), (8c)

〈
3

2
|t
(

1,
1

2

)∣∣∣∣3

2

〉
= 1

3
tpp + 2

3
tnp, (8d)

〈
1

2

∣∣∣∣t
(

1, − 1

2

)∣∣∣∣1

2

〉
= 2

3
tnn + 1

3
tnp, (8e)

〈
3

2

∣∣∣∣t
(

1, − 1

2

)∣∣∣∣1

2

〉
=

√
2

9
(tnp − tnn), (8f)

〈
3

2

∣∣∣∣t
(

1, − 1

2

)∣∣∣∣3

2

〉
= 1

3
tnn + 2

3
tnp. (8g)

In the 2 + 2 configuration the two-nucleon transition matrix
couples the states with different T but preserves the other
isospin quantum numbers, i.e., the nonvanishing components
are

〈[Tx(ty tz)Tz]T ′MT |t |[Tx(ty tz)Tz]T MT 〉
=

∑
Mx

〈TxMx Tz(MT − Mx)|T ′MT 〉

× 〈TxMx Tz(MT − Mx)|T MT 〉 tTxMx
. (9)

The above operator, abbreviated by 〈T ′|t(Tx,Tz,MT )|T 〉, can
be expressed through tNN as

〈T ′|t(0,Tz,0)|T 〉 = δT ′Tz
δT Tz

tnp, (10a)

〈1|t(1,0,0)|1〉 = tnp, (10b)

〈0|t(1,1,0)|0〉 = 1

3
(tpp + tnp + tnn), (10c)

〈1|t(1,1,0)|0〉 = 1√
6

(tpp − tnn), (10d)

〈1|t(1,1,0)|1〉 = 1

2
(tpp + tnn), (10e)

〈2|t(1,1,0)|0〉 = 1√
18

(tpp + tnn − 2tnp), (10f)

〈2|t(1,1,0)|1〉 = 1√
12

(tpp − tnn), (10g)

〈2|t(1,1,0)|2〉 = 1√
18

(tpp + 4tnp + tnn). (10h)

The nondiagonal isospin coupling in Eqs. (8) and (10) is due
to the charge dependence of the underlying interaction, with
the pp Coulomb repulsion yielding the dominant contribution.
However, the Ty = 3

2 and thereby also T = 2 components
resulting from this charge dependence in the n + 3He and
p + 3H channel states are very small, of the order of 0.01%.
The d + d channel state is pure T = 0 state. The d + n + p
breakup channel state is limited to T = 0 and 1, and solely
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FIG. 1. (Color online) Differential cross section of elastic n-3He scattering at neutron energy between 6 and 30 MeV. Results obtained
with potentials INOY04 (solid curves), CD Bonn (dotted curves), and CD Bonn + � (dashed-dotted curves) are compared with data from
Refs. [33–36].

the n + n + p + p channel state may have moderate T = 2
component. In fact, the leading contribution of T = 2 states
is of first order in the charge dependence for the four-cluster
breakup amplitude but of second order, i.e., much smaller,
for all other amplitudes. Thus, T = 2 states can be safely
neglected in the solution of the AGS equations if the four-
cluster breakup amplitude is not explicitly calculated. This is
in close analogy with p + d scattering where the total isospin
3
2 states can be safely neglected when calculating elastic
scattering and total breakup cross section, but are important
in particular kinematic configurations of breakup [29]. We
therefore include only T = 0 and 1 states in the present
calculations of n + 3He scattering.

The results are well converged in terms of angular momen-
tum states. At the highest considered neutron beam energy
En = 30 MeV we include four-nucleon partial waves with
lx,ly � 5, lz,jx,jy � 6, Jy � 11

2 , and J = 7. The most de-
manding observables are the d + d transfer and breakup cross
sections. The convergence for elastic and charge exchange
reactions is faster. The number of partial waves can be reduced
at lower energies and in lower J states.

III. RESULTS

We study the n + 3He scattering using several models of
realistic high-precision NN potentials: the inside-nonlocal
outside-Yukawa (INOY04) potential by Doleschall [5,30], the
charge-dependent Bonn potential (CD Bonn) [31], and its
coupled-channel extension CD Bonn + � [32]. The latter
allows for an excitation of a nucleon to a � isobar and thereby
yields mutually consistent effective three- and four-nucleon

forces (3NF and 4NF). The 3He (3H) binding energy calculated
with INOY04, CD Bonn, and CD Bonn + � potentials is 7.73,
7.26, and 7.53 MeV (8.49, 8.00, and 8.28 MeV), respectively;
the experimental value is 7.72 MeV (8.48 MeV). We therefore
use INOY04 for predictions at all considered energies since
this potential yields nearly the experimental value for the 3N
binding energy. Other potentials are used at fewer selected
energies to investigate the dependence of predictions on the
force model. The calculations with the CD Bonn (CD Bonn
+ �) potential are performed only at neutron energies of 6, 8,
12, and 22 MeV (12 and 22 MeV).

In Fig. 1 we show the differential cross section dσ/d
 for
elastic n + 3He scattering as a function of the center of mass
(c.m.) scattering angle 
c.m.. The neutron energy En ranges
from 6 to 30 MeV, the highest energy at which, to the best of our
knowledge, exclusive data for elastic n + 3He scattering exist.
The differential cross section decreases with the increasing
energy and also changes the shape; the calculations describe
the energy and angular dependence of the experimental data
fairly well. There are disagreements between different data
sets, in particular, between [33] and [34] at En = 6 MeV,
between [35] and [36] at En = 14.4 MeV, and between [33]
and [35] at En = 23.7 MeV. Only at En = 14.4 MeV it is
quite obvious that the data [36] is inconsistent with other
measurements and calculations.

It is interesting to compare the present n + 3He results
with the ones for p + 3He elastic scattering [20], as there
are several differences. First, the energy dependence is slower
for n + 3He. Second, below 10 MeV the n + 3He data are
well described at 
c.m. < 100◦ but slightly underpredicted
at larger angles, while the p + 3He data are described well
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FIG. 2. (Color online) Neutron analyzing power of elastic n-3He scattering at neutron energy between 8 and 22 MeV. Curves as in Fig. 1.
Data are from Refs. [40–43].

at 
c.m. > 60◦ with slight underprediction at smaller angles.
On the other hand, both n + 3He and p + 3He data are well
reproduced by the theory between 12 and 22 MeV in the
whole angular regime, but the minimum of dσ/d
 around

c.m. = 120◦ gets underpredicted above 23 MeV. This may
indicate a need to include an additional 3NF, as in the case
of the nucleon-deuteron scattering [37,38]. The sensitivity to
the potential model is similar in both n + 3He and p + 3He
cases. It is insignificant beyond the minimum of dσ/d
 that
roughly scales with the 3He binding energy; a weaker binding
corresponds to a deeper minimum. At En = 12 MeV the CD
Bonn and CD Bonn + � results are lower than those of
INOY04 by 14% and 8%, respectively. At En = 22 MeV this
correlation is violated, amounting to 18% reduction for both
CD Bonn and CD Bonn + � potentials. This may be due to
an almost complete cancellation of two competing �-isobar
contributions: the effective 3NF and the NN dispersion. While
the former increases dσ/d
 at the minimum by 15%, the
latter decreases it by roughly the same amount. A partial
cancellation between two-baryon dispersive and 3NF effects
is a characteristic feature of the CD Bonn + � model, seen
also in previous studies [20,39].

In Fig. 2 we show the neutron analyzing power Ay for the
elastic n + 3He scattering at neutron energies ranging from 8
to 22 MeV. The qualitative reproduction of the experimental
data by our calculations is reasonable, except for the data
sets [42,43] that are incompatible also with other data [40,41].
Some discrepancies, decreasing as the energy increases, exist
around the minimum and the maximum. The sensitivity to
the nuclear force model and the energy dependence are quite
weak. In all these respects, the behavior of the Ay in the elastic
n + 3He scattering is qualitatively the same as observed for the
proton analyzing power in the p + 3He elastic scattering [20].

To the best of our knowledge, there are no experimental data
for other spin observables in the n + 3He elastic scattering.
Nevertheless, we calculated various spin correlation and spin
transfer coefficients. In all studied cases we found only small

sensitivity of the predictions to the NN force model. As a
characteristic example in Fig. 3 we present results for 3He
target analyzing power A0y , n-3He spin correlation coefficient
Ayy , and neutron spin transfer coefficient K

y
y at En = 12 and

22 MeV. Comparing with the corresponding observables in
the p + 3He elastic scattering [20] we observe that some of
them, such as Ayy and K

y
y , exhibit a very different angular

dependence. This is not surprising given the fact that n +

0.0

0.5

A
0y

En = 12 MeV En = 22 MeV
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FIG. 3. (Color online) 3He target analyzing power A0y , n-3He
spin correlation coefficient Ayy , and neutron spin transfer coefficient
Ky

y for elastic n + 3He scattering at 12 and 22 MeV neutron energy.
Curves as in Fig. 1.
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FIG. 4. (Color online) Differential cross section of the
3He(n,p)3H reaction at 14.4 MeV neutron energy. Predictions using
INOY04 potential are compared with the data from Refs. [36,44].

3He scattering involves both total isospin T = 0 and 1 states
while p + 3He is restricted to T = 1. On the other hand, this
indicates that accurate measurements of n-3He spin correlation
and/or spin transfer coefficients that differ significantly from
previously studied observables may test the nuclear interaction
in a novel way.

Next we consider rearrangement reactions initiated by
n + 3He collisions. We present here only two examples for
3He(n,p)3H and 3He(n,d)2H processes measured at En =
14.4 MeV in Ref. [36], since most experiments are performed
for the time reversed reactions 3H(p,n)3He and 2H(d,n)3He
that will be studied elsewhere. In Fig. 4 we show the differ-
ential cross section dσ/d
 for the charge exchange reaction
3He(n,p)3H at En = 14.4 MeV. The theoretical predictions
agree with the data [36] only at forward and backward
angles. On the other hand, the data [44] transformed from
the time reversed reaction 3H(p,n)3He at En = 14.0 MeV is
in a considerably better agreement with our predictions. In
particular, the shape of the observable with two local minima
is well described by the theory, as found in our preliminary
calculations for the 3H(p,n)3He reaction [45]. Thus, very
likely the data points from Ref. [36] at intermediate angles
are inaccurate.

In Fig. 5 we show the differential cross section dσ/d

for the transfer reaction 3He(n,d)2H at En = 14.4 MeV. The
observable is symmetric with respect to 
c.m. = 90◦ and peaks
at forward and backward directions. The overall agreement
between theoretical calculations and the data [36] is fair,
given the large error bars and, possibly, further inaccuracies
in the data [36], especially at intermediate angles where
dσ/d
 is small and has several local extrema. To draw a
more definite conclusion on transfer reactions, calculations
and analysis of 2H(d,n)3He and 2H(d,p)3H reactions need to
be accomplished.

Finally, in Fig. 6 we show the energy dependence of
the n + 3He total and partial cross sections σx for all open
channels, i.e., elastic, charge exchange, transfer, and breakup.
This extends our previous results [45] up to En = 30 MeV.
The theoretical predictions are below the data in the regime
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Antolkovic

FIG. 5. (Color online) Differential cross section of the
3He(n,d)2H reaction at En = 14.4 MeV. Predictions using INOY04
potential are compared with the data from Ref. [36].

En < 5 MeV where several resonant 4N states exist and whose
location is not well predicted by the underlying force models
as discussed in Refs. [12,49]. On the contrary, the agreement
is nearly perfect at higher energies up to 22 MeV, but moderate
discrepancies arise in 3He(n,p)3H and 3He(n,d)2H cross
sections above En = 25 MeV. The total breakup cross section,
including both three- and four-cluster channels, increases
rapidly with energy, and above En = 23 MeV exceeds σx

for all other inelastic channels. The experimental data for
the total breakup cross section [35] are in agreement with
theoretical predictions, although the data point at En =
7.9 MeV is inconclusive owing to very large error bars.

IV. SUMMARY

We considered neutron-3He scattering at neutron energies
ranging from 6 to 30 MeV. We solved the Alt, Grassberger, and
Sandhas equations for the symmetrized four-nucleon transition
operators in the momentum-space framework. We included the

100
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breakup

FIG. 6. (Color online) n-3He total and partial cross sections as
functions of the neutron beam energy calculated using the INOY04
potential. The data are from Refs. [33,46] (�), [34] (×), [35] (•), [47]
(�), and [48] (+).
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pp Coulomb force and used several realistic NN potentials.
The complicated singularities in the kernel of AGS equations
above breakup threshold were treated by the complex energy
method with special integration weights. Fully converged
results were obtained not only for elastic n + 3He scattering,
but also for inelastic reactions. Furthermore, total cross
sections for all reaction channels were calculated, showing
the importance of breakup at higher energies.

The overall agreement between the theoretical predictions
and the experimental data is good. Few moderate discrepancies
exist in the extrema of elastic analyzing power and differential
cross section, similar to the case of elastic proton-3He
scattering. The charge exchange and transfer reactions will
be analyzed in more detail through time-reverse processes
3H(p,n)3He and 2H(d,n)3He; the respective calculations are
in progress.
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F. Käppeler, Phys. Rev. C 28, 995 (1983).

[47] M. E. Battat et al., Nucl. Phys. 12, 291 (1959).
[48] J. H. Gibbons and R. L. Macklin, Phys. Rev. 114, 571 (1959).
[49] A. C. Fonseca, G. Hale, and J. Haidenbauer, Few-Body Syst.

31, 139 (2002).

044002-7

http://dx.doi.org/10.1016/0375-9474(92)90635-W
http://dx.doi.org/10.1016/0375-9474(92)90635-W
http://dx.doi.org/10.1016/0375-9474(92)90635-W
http://dx.doi.org/10.1016/0375-9474(92)90635-W
http://dx.doi.org/10.1103/PhysRevLett.86.3739
http://dx.doi.org/10.1103/PhysRevLett.86.3739
http://dx.doi.org/10.1103/PhysRevLett.86.3739
http://dx.doi.org/10.1103/PhysRevLett.86.3739
http://dx.doi.org/10.1088/0954-3899/35/6/063101
http://dx.doi.org/10.1088/0954-3899/35/6/063101
http://dx.doi.org/10.1088/0954-3899/35/6/063101
http://dx.doi.org/10.1088/0954-3899/35/6/063101
http://dx.doi.org/10.1103/PhysRevC.70.044002
http://dx.doi.org/10.1103/PhysRevC.70.044002
http://dx.doi.org/10.1103/PhysRevC.70.044002
http://dx.doi.org/10.1103/PhysRevC.70.044002
http://dx.doi.org/10.1016/0550-3213(67)90017-X
http://dx.doi.org/10.1016/0550-3213(67)90017-X
http://dx.doi.org/10.1016/0550-3213(67)90017-X
http://dx.doi.org/10.1016/0550-3213(67)90017-X
http://dx.doi.org/10.1103/PhysRevC.75.014005
http://dx.doi.org/10.1103/PhysRevC.75.014005
http://dx.doi.org/10.1103/PhysRevC.75.014005
http://dx.doi.org/10.1103/PhysRevC.75.014005
http://dx.doi.org/10.1103/PhysRevLett.98.162502
http://dx.doi.org/10.1103/PhysRevLett.98.162502
http://dx.doi.org/10.1103/PhysRevLett.98.162502
http://dx.doi.org/10.1103/PhysRevLett.98.162502
http://dx.doi.org/10.1103/PhysRevC.84.054010
http://dx.doi.org/10.1103/PhysRevC.84.054010
http://dx.doi.org/10.1103/PhysRevC.84.054010
http://dx.doi.org/10.1103/PhysRevC.84.054010
http://dx.doi.org/10.1103/PhysRevC.79.054007
http://dx.doi.org/10.1103/PhysRevC.79.054007
http://dx.doi.org/10.1103/PhysRevC.79.054007
http://dx.doi.org/10.1103/PhysRevC.79.054007
http://dx.doi.org/10.1103/PhysRevC.82.044001
http://dx.doi.org/10.1103/PhysRevC.82.044001
http://dx.doi.org/10.1103/PhysRevC.82.044001
http://dx.doi.org/10.1103/PhysRevC.82.044001
http://dx.doi.org/10.1103/PhysRevC.76.021001
http://dx.doi.org/10.1103/PhysRevC.76.021001
http://dx.doi.org/10.1103/PhysRevC.76.021001
http://dx.doi.org/10.1103/PhysRevC.76.021001
http://dx.doi.org/10.1103/PhysRevC.81.054002
http://dx.doi.org/10.1103/PhysRevC.81.054002
http://dx.doi.org/10.1103/PhysRevC.81.054002
http://dx.doi.org/10.1103/PhysRevC.81.054002
http://dx.doi.org/10.1103/PhysRevC.84.034002
http://dx.doi.org/10.1103/PhysRevC.84.034002
http://dx.doi.org/10.1103/PhysRevC.84.034002
http://dx.doi.org/10.1103/PhysRevC.84.034002
http://dx.doi.org/10.1103/PhysRevC.86.044002
http://dx.doi.org/10.1103/PhysRevC.86.044002
http://dx.doi.org/10.1103/PhysRevC.86.044002
http://dx.doi.org/10.1103/PhysRevC.86.044002
http://dx.doi.org/10.1016/0370-2693(94)91355-2
http://dx.doi.org/10.1016/0370-2693(94)91355-2
http://dx.doi.org/10.1016/0370-2693(94)91355-2
http://dx.doi.org/10.1016/0370-2693(94)91355-2
http://dx.doi.org/10.1143/PTP.109.869
http://dx.doi.org/10.1143/PTP.109.869
http://dx.doi.org/10.1143/PTP.109.869
http://dx.doi.org/10.1143/PTP.109.869
http://dx.doi.org/10.1103/PhysRevC.86.011001
http://dx.doi.org/10.1103/PhysRevC.86.011001
http://dx.doi.org/10.1103/PhysRevC.86.011001
http://dx.doi.org/10.1103/PhysRevC.86.011001
http://dx.doi.org/10.1103/PhysRevC.87.054002
http://dx.doi.org/10.1103/PhysRevC.87.054002
http://dx.doi.org/10.1103/PhysRevC.87.054002
http://dx.doi.org/10.1103/PhysRevC.87.054002
http://dx.doi.org/10.1103/PhysRevC.68.061001
http://dx.doi.org/10.1103/PhysRevC.68.061001
http://dx.doi.org/10.1103/PhysRevC.68.061001
http://dx.doi.org/10.1103/PhysRevC.68.061001
http://dx.doi.org/10.1007/BF02723639
http://dx.doi.org/10.1007/BF02723639
http://dx.doi.org/10.1007/BF02723639
http://dx.doi.org/10.1007/BF02723639
http://dx.doi.org/10.1007/BF02849598
http://dx.doi.org/10.1007/BF02849598
http://dx.doi.org/10.1007/BF02849598
http://dx.doi.org/10.1007/BF02849598
http://dx.doi.org/10.1103/PhysRevC.21.1733
http://dx.doi.org/10.1103/PhysRevC.21.1733
http://dx.doi.org/10.1103/PhysRevC.21.1733
http://dx.doi.org/10.1103/PhysRevC.21.1733
http://dx.doi.org/10.1103/PhysRevC.71.054005
http://dx.doi.org/10.1103/PhysRevC.71.054005
http://dx.doi.org/10.1103/PhysRevC.71.054005
http://dx.doi.org/10.1103/PhysRevC.71.054005
http://dx.doi.org/10.1103/PhysRev.167.1411
http://dx.doi.org/10.1103/PhysRev.167.1411
http://dx.doi.org/10.1103/PhysRev.167.1411
http://dx.doi.org/10.1103/PhysRev.167.1411
http://dx.doi.org/10.1103/PhysRevC.67.014002
http://dx.doi.org/10.1103/PhysRevC.67.014002
http://dx.doi.org/10.1103/PhysRevC.67.014002
http://dx.doi.org/10.1103/PhysRevC.67.014002
http://dx.doi.org/10.1103/PhysRevA.85.012708
http://dx.doi.org/10.1103/PhysRevA.85.012708
http://dx.doi.org/10.1103/PhysRevA.85.012708
http://dx.doi.org/10.1103/PhysRevA.85.012708
http://dx.doi.org/10.1103/PhysRevC.87.014002
http://dx.doi.org/10.1103/PhysRevC.87.014002
http://dx.doi.org/10.1103/PhysRevC.87.014002
http://dx.doi.org/10.1103/PhysRevC.87.014002
http://dx.doi.org/10.1103/PhysRevC.72.054004
http://dx.doi.org/10.1103/PhysRevC.72.054004
http://dx.doi.org/10.1103/PhysRevC.72.054004
http://dx.doi.org/10.1103/PhysRevC.72.054004
http://dx.doi.org/10.1103/PhysRevC.69.054001
http://dx.doi.org/10.1103/PhysRevC.69.054001
http://dx.doi.org/10.1103/PhysRevC.69.054001
http://dx.doi.org/10.1103/PhysRevC.69.054001
http://dx.doi.org/10.1103/PhysRevC.63.024001
http://dx.doi.org/10.1103/PhysRevC.63.024001
http://dx.doi.org/10.1103/PhysRevC.63.024001
http://dx.doi.org/10.1103/PhysRevC.63.024001
http://dx.doi.org/10.1103/PhysRevC.68.024005
http://dx.doi.org/10.1103/PhysRevC.68.024005
http://dx.doi.org/10.1103/PhysRevC.68.024005
http://dx.doi.org/10.1103/PhysRevC.68.024005
http://dx.doi.org/10.1103/PhysRev.119.1981
http://dx.doi.org/10.1103/PhysRev.119.1981
http://dx.doi.org/10.1103/PhysRev.119.1981
http://dx.doi.org/10.1103/PhysRev.119.1981
http://dx.doi.org/10.1103/PhysRevC.9.179
http://dx.doi.org/10.1103/PhysRevC.9.179
http://dx.doi.org/10.1103/PhysRevC.9.179
http://dx.doi.org/10.1103/PhysRevC.9.179
http://dx.doi.org/10.1103/PhysRev.159.777
http://dx.doi.org/10.1103/PhysRev.159.777
http://dx.doi.org/10.1103/PhysRev.159.777
http://dx.doi.org/10.1103/PhysRev.159.777
http://dx.doi.org/10.1103/PhysRevLett.81.1183
http://dx.doi.org/10.1103/PhysRevLett.81.1183
http://dx.doi.org/10.1103/PhysRevLett.81.1183
http://dx.doi.org/10.1103/PhysRevLett.81.1183
http://dx.doi.org/10.1103/PhysRevC.58.2599
http://dx.doi.org/10.1103/PhysRevC.58.2599
http://dx.doi.org/10.1103/PhysRevC.58.2599
http://dx.doi.org/10.1103/PhysRevC.58.2599
http://dx.doi.org/10.1016/j.physletb.2007.12.058
http://dx.doi.org/10.1016/j.physletb.2007.12.058
http://dx.doi.org/10.1016/j.physletb.2007.12.058
http://dx.doi.org/10.1016/j.physletb.2007.12.058
http://dx.doi.org/10.1016/0375-9474(76)90495-4
http://dx.doi.org/10.1016/0375-9474(76)90495-4
http://dx.doi.org/10.1016/0375-9474(76)90495-4
http://dx.doi.org/10.1016/0375-9474(76)90495-4
http://dx.doi.org/10.1016/0375-9474(85)90262-3
http://dx.doi.org/10.1016/0375-9474(85)90262-3
http://dx.doi.org/10.1016/0375-9474(85)90262-3
http://dx.doi.org/10.1016/0375-9474(85)90262-3
http://dx.doi.org/10.1016/0375-9474(69)90708-8
http://dx.doi.org/10.1016/0375-9474(69)90708-8
http://dx.doi.org/10.1016/0375-9474(69)90708-8
http://dx.doi.org/10.1016/0375-9474(69)90708-8
http://dx.doi.org/10.1016/0375-9474(72)90072-3
http://dx.doi.org/10.1016/0375-9474(72)90072-3
http://dx.doi.org/10.1016/0375-9474(72)90072-3
http://dx.doi.org/10.1016/0375-9474(72)90072-3
http://dx.doi.org/10.1103/PhysRevLett.113.102502
http://dx.doi.org/10.1103/PhysRevLett.113.102502
http://dx.doi.org/10.1103/PhysRevLett.113.102502
http://dx.doi.org/10.1103/PhysRevLett.113.102502
http://dx.doi.org/10.1103/PhysRevC.28.995
http://dx.doi.org/10.1103/PhysRevC.28.995
http://dx.doi.org/10.1103/PhysRevC.28.995
http://dx.doi.org/10.1103/PhysRevC.28.995
http://dx.doi.org/10.1016/0029-5582(59)90175-0
http://dx.doi.org/10.1016/0029-5582(59)90175-0
http://dx.doi.org/10.1016/0029-5582(59)90175-0
http://dx.doi.org/10.1016/0029-5582(59)90175-0
http://dx.doi.org/10.1103/PhysRev.114.571
http://dx.doi.org/10.1103/PhysRev.114.571
http://dx.doi.org/10.1103/PhysRev.114.571
http://dx.doi.org/10.1103/PhysRev.114.571
http://dx.doi.org/10.1007/s006010200012
http://dx.doi.org/10.1007/s006010200012
http://dx.doi.org/10.1007/s006010200012
http://dx.doi.org/10.1007/s006010200012



