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We use the newly developed multireference in-medium similarity renormalization group to study all even
isotopes of the calcium and nickel isotopic chains, based on two- plus three-nucleon interactions derived from
chiral effective field theory. We present results for ground-state and two-neutron separation energies and quantify
their theoretical uncertainties. At shell closures, we find excellent agreement with coupled-cluster results obtained
with the same Hamiltonians. Our results confirm the importance of chiral 3N interactions to obtain a correct
reproduction of experimental energy trends, and their subtle impact in neutron-rich Ca and Ni isotopes. At the
same time, we uncover and discuss deficiencies of the input Hamiltonians which need to be addressed by the
next generation of chiral interactions.

DOI: 10.1103/PhysRevC.90.041302 PACS number(s): 21.30.−x, 13.75.Cs, 21.45.Ff, 21.60.De

Introduction. As experimental capabilities for the produc-
tion of rare isotopes grow, so does the need for a reliable
description and prediction of their properties from nuclear
many-body theory, including quantified uncertainties. Sys-
tematically improvable ab initio methods like coupled-cluster
(CC) [1–3], self-consistent Green’s functions [4–8], and
the in-medium similarity renormalization group (IM-SRG)
[9–11] routinely access medium-mass closed-shell nuclei and
even heavy systems beyond A = 100 due to their modest
computational scaling. At the same time, great effort has been
invested in quantifying the theoretical uncertainties of these
methods [2,10,12,13].

Nuclear interactions from chiral effective field theory are
the input of choice for ab initio many-body theory, because
they provide formally consistent two-, three-, and up to
A-nucleon forces and operators (see, e.g., [14,15]). Current
chiral Hamiltonians have been employed with great success,
but there are open issues regarding the power counting,
the determination of the low-energy constants (LECs), etc.,
motivating a concerted effort to construct next-generation
chiral interactions for the nuclear structure and reactions
community [16].

Ab initio studies of medium-mass and heavy nuclei,
particularly away from closed shells, allow us to confront
chiral Hamiltonians with a wealth of experimental data from
existing and forthcoming rare-isotope facilities. Such nuclei
are sensitive to features of the Hamiltonian which are not
probed in few-body systems, and exotic nuclei, in particular,
are an excellent laboratory to study the interplay of the
two-nucleon (NN ) and three-nucleon (3N) interactions, as
well as continuum effects. For instance, chiral 3N forces have
been crucial for a proper description of the neutron drip lines
in the region around oxygen [5,8,11,17–22].
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In this work, we study the even calcium and nickel isotopes
with the multireference IM-SRG (MR-IM-SRG) for open-
shell nuclei, using chiral NN + 3N interactions as input. Such
a study is timely, because neutron-rich calcium isotopes have
been the focus of ongoing experimental campaigns [23–28],
and investigations of proton-rich Ca isotopes are planned
for the near future. Likewise, there is continued interest in
neutron-rich Ni isotopes [29–36].

Multireference in-medium SRG. The basic formalism of the
(MR)-IM-SRG is presented in Refs. [9–11]. The Hamiltonian
is normal-ordered with respect to an arbitrary reference
state |�〉 via the generalized normal-ordering developed by
Kutzelnigg and Mukherjee [37,38], and plugged into the
operator flow equation

d

ds
H (s) = [η(s),H (s)] . (1)

With a suitable choice of generator η(s), Eq. (1) implements a
continuous unitary transformation that decouples the ground
state of the Hamiltonian H (s) from excitations as we evolve
s → ∞, solving the many-body problem [9–11]. We close the
system of flow equations by truncating η(s) and H (s) at the
two-body level for all s, obtaining the scheme we refer to as
MR-IM-SRG(2).

For an arbitrary reference state |�〉, the flow equations
do not only depend on the one-body density matrix λ1

2 ≡
〈�| a†

1a2 |�〉 [39], but also on irreducible two-, . . . ,A-body
density matrices, which encode information on the correlations
in the state [37,38,40]. They are defined recursively by sub-
tracting reducible contributions from the full n-body density
matrices, e.g.,

λ12
34 ≡ 〈�| A12

34 |�〉 − λ1
2λ

3
4 + λ1

3λ
2
4 , (2)

where A1...k
l...N ≡ a

†
1 . . . a

†
kaN . . . al is a compact notation for

strings of creation and annihilation operators.
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The MR-IM-SRG reference state is a Hartree-Fock-
Bogoliubov (HFB) quasiparticle vacuum which has been pro-
jected on the proton and neutron number of the target nucleus,
|�〉 = PNPZ |HFB〉 [11]. For such states, it is sufficient to
truncate terms in the flow equations that are non-linear in
λ12

34 or contain irreducible three-body density matrices: Energy
changes due to this truncation are negligible compared to other
sources of uncertainty discussed in the following.

In the present work, we use the notation of Ref. [11] but a
different ansatz for the generator η(s). Its matrix elements are
defined as (λi

k = niδ
i
k, n̄i = 1 − ni)

η1
2 ≡ sgn

(
�1

2

)
n̄1n2f

1
2 − [1 ↔ 2] , (3)

η12
34 ≡ sgn

(
�12

34

)
n̄1n̄2n3n4�

12
34 − [(12) ↔ (34)] , (4)

where f and � are the one- and two-body parts of the normal-
ordered Hamiltonian H . Indicating normal ordering by colons,
the expressions

�1
2 ≡ 〈�| : A2

1 : H : A1
2 : |�〉 − 〈�| H |�〉 , (5)

�12
34 ≡ 〈�| : A34

12 : H : A12
34 : |�〉 − 〈�| H |�〉 (6)

are evaluated using the generalized Wick theorem [37,38],
truncating irreducible densities as in the flow equations.
This generator suppresses the off-diagonal one- and two-
body matrix elements that couple to the reference state
|�〉 to excitations like e−|�|s as s → ∞, where � is the
corresponding energy difference (5) or (6). We refer to η as
the imaginary-time generator due to its relation to imaginary-
time projection operators as used, e.g., in Green’s function
Monte Carlo [41,42]. It is of similar efficiency as the White-
type generator used in Ref. [11] due to its low construction cost
and the moderate stiffness of the flow equations it generates,
but it does not suffer from instabilities due to small energy
denominators.

Hamiltonians and implementation. In this work, we use
the chiral N3LO NN interaction by Entem and Machleidt,
with non-local cutoff �NN = 500 MeV/c [43,44]. Where
indicated, it will be accompanied by a local N2LO 3N
interaction with initial cutoffs �3N = 350 and 400 MeV/c
[11–13,45]. The reduced values of �3N avoid strong induced
4N interactions if this Hamiltonian is softened via free-space
SRG evolution [13,45]. While �NN and �3N are nominally
inconsistent, we note that the NN and 3N interactions are
regularized in different schemes, so their values should not
necessarily be the same [46]. This issue will be revisited with a
new generation of consistently regularized chiral Hamiltonians
in the future [16].

The Hamiltonians are softened by a free-space
SRG evolution at the three-body level to λSRG =
1.88, . . . ,2.24 fm−1 [13,47,48]. Hamiltonians that only con-
tain SRG-induced 3N forces are referred to as NN + 3N -
induced; those also containing an initial 3N interaction, as
NN + 3N -full.

Working with harmonic oscillator (HO) single-particle
states, we truncate the 3N matrix elements in the total energy
quantum number according to e1 + e2 + e3 � E3max, due
to memory requirements [2,10–12,45]. Uncertainties caused
by this truncation are investigated below. As discussed in

Refs. [2,13], the free-space SRG evolution of the input
Hamiltonian must be performed in a sufficiently large model
space for pf -shell and heavier nuclei. Therefore, we rely on the
model space B from Ref. [2] for the evolution of the 3N force.
The oscillator parameter of the Jacobi HO basis is chosen to be
�ω = 36 MeV. Matrix elements for smaller �ω are obtained
by frequency conversion [13].

Our results are converged with respect to the size of the
single-particle basis: At the �ω value of the energy minimum,
the change in the ground-state energy is 0.1% when we
increase the basis from 13 to 15 major shells.

To obtain reference states for the MR-IM-SRG(2), we solve
HFB equations in 15 major HO shells, and project the resulting
state on proton and neutron numbers [10,11,49]. The intrinsic
NN + 3N Hamiltonian is normal-ordered with respect to
the reference state, and the residual 3N interaction term
is discarded. This normal-ordered two-body approximation
(NO2B) is found to overestimate binding energies by less than
1% in the calcium and nickel isotopes [2,10,12,45].

Calcium isotopes. In Fig. 1, we show MR-IM-SRG(2)
ground-state energies for 34−62Ca, along with CC results
including doubles (CCSD) [51] and triples excitations [CR-
CC(2,3)] [52,53] for closed-shell isotopes. Surveying the
results, we note that MR-IM-SRG(2) and CR-CC(2,3) results
are in very good agreement. It is a recurring theme that (MR-
)IM-SRG(2) provides results comparable to CC approaches
that include triples (3-particle, 3-hole) excitations at the
computational cost of a doubles (2p2h) method [9–11].
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FIG. 1. (Color online) Ground-state energies of the Ca isotopes
for the (a) NN + 3N -induced and (b) NN + 3N full Hamiltonians,
with λSRG = 1.88 fm−1 (open symbols) to 2.24 fm−1 (solid symbols).
The bands for the MR-IM-SRG(2) results indicate the variation of
the results with the resolution scale λSRG. Experimental data (black
bars) are taken from [26,50].
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For the NN + 3N -induced Hamiltonian shown in Fig. 1(a),
we overbind the Ca isotopes for the considered values of λSRG.
However, the ground-state energies vary significantly with the
resolution scale λSRG due to the omitted induced beyond-3N
forces. Other sources, such as the E3max truncation and
NO2B approximation, can be ruled out because they are only
weakly sensitive to λSRG variations [2,10–12]. Furthermore,
the λSRG dependence of MR-IM-SRG(2) and CR-CC(2,3) is
comparable despite their different many-body content, which
implies that missing many-body effects cannot be its primary
source, either.

In Fig. 1(b), we show that the inclusion of an initial 3N
force reduces the λSRG dependence drastically. As discussed
in Ref. [2], this is a result of cancellations between induced
forces from the initial NN and 3N interactions. With this
reduced dependence on λSRG we find an overbinding that is
robust under variations of λSRG and slowly increasing from
8% for 36Ca to 12% for 54Ca.

We now consider the two-neutron separation energies S2n

shown in Fig. 2. Such differential quantities filter out global
energy shifts due to missing induced many-body forces, as well
as many-body and basis truncations. For instance, the absolute
variation of the S2n with λSRG in the NN + 3N -induced case
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FIG. 2. (Color online) Two-neutron separation energies of the
Ca isotopes for the (a) NN + 3N -induced and (b) NN + 3N -full
Hamiltonian with �3N = 350 and 400 MeV/c, for a range λSRG =
1.88 fm−1 (open symbols) to 2.24 fm−1 (solid symbols). Panel (c)
compares MR-IM-SRG(2) and second-order GGF [6–8] results with
the same input Hamiltonian, but slightly different SRG evolution [54].
Experimental values (black bars) are taken from [26,50].

is much weaker than the variation of the ground-state energies
in Fig. 1(a).

The S2n for the NN + 3N -induced Hamiltonian in Fig. 2(a)
show a pronounced shell closure at 40Ca, with S2n dropping
by more than 20 MeV. The 48Ca shell closure is weak
in comparison, albeit close to experimental data, and there
are even weaker hints of shell closures in 52,54Ca (the
reference states exhibit pairing in both cases). The S2n

increase notably from 42Ca to 48Ca, and weakly from 50Ca
to 52Ca. This is an indication that interaction components
which are being accessed as neutrons are added to the pf
shell are too attractive, which is consistent with the observed
overbinding. However, shell structure effects clearly also play
a role, because the overbinding becomes less severe around
48Ca before increasing again with the neutron number N ,
while the S2n are always decreasing between shell closures
beyond 52Ca.

The NN + 3N -induced Hamiltonian produces a distinct
drip-line signal in Figs. 1(a) and 2(a): 62Ca is consistently
unbound by 5–6 MeV with respect to 60Ca for our range of
λSRG. The change in S2n is much larger than the uncertainties
due to many-body and basis truncations, or missing induced
forces (see below). The inclusion of continuum effects in
Ref. [19] reduced the energy of low-lying unbound states only
by about 2 MeV, which is insufficient to bind isotopes with
N > 40 with respect to 60Ca. Without the inclusion of initial
3N forces, the drip line is therefore expected at N = 40.

In Fig. 2(b), we show S2n for NN + 3N -full Hamiltonians
with �3N = 350 and 400 MeV/c. The N = 20 shell closure
is weakened by the 3N forces, although the calculated S2n are
still larger than experimental data. As before, we observe an
increase of the separation energies for 42−48Ca and 50−52Ca,
but we note that the overbinding consistently increases with
N in this case [Fig. 1(b)]. Interestingly, the S2n trends in these
nuclei are flatter for �3N = 350 MeV/c than for 400 MeV/c,
which suggests a change in the shell structure of these nuclei.
Overall, the S2n are consistent under this variation of the 3N
cutoff. In contrast to the NN + 3N -induced case, both 52Ca
and 54Ca exhibit magicity, in agreement with experimental and
shell model results [24–26,55,56].

For large neutron numbers, the trends shown in Figs. 1(b)
and 2(b) are different from the NN + 3N -induced case.
56−60Ca are unbound with respect to 54Ca by a mere 1–2 MeV
(also see [19]). Consequently, these isotopes are sensitive to
continuum effects and details of the interaction, which could
lead to phenomena like neutron halos as proposed in [57].
Figure 2(b) also shows that the flat plateau of the S2n for
56−60Ca in the vicinity of zero is remarkably robust under the
variation of the cutoff of the initial 3N interaction from 400 to
350 MeV/c.

The Ca isotopes were also studied recently with the second-
order Gor’kov Green’s function (GGF) method. The S2n

published in Ref. [8] were obtained with the same NN + 3N -
full Hamiltonian with �3N = 400 MeV/c, but a smaller 3N
Jacobi HO model space was used for the SRG evolution than in
our calculations. While the S2n systematics remain the same,
we show updated GGF results [54] in Fig. 2(c) to allow a more
quantitative comparison with our MR-IM-SRG(2) separation
energies. The two methods agree well for mid-shell Ca
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FIG. 3. (Color online) Uncertainty of Ca two-neutron separation
energies: (a) Variation as E3max = 12 → 14 for different �3N and
λSRG = 1.88 to 2.24 fm−1. (b) Variation E3max = 12 → 14 → 16 for
�3N = 400 MeV/c, λSRG = 1.88 fm−1.

isotopes, implying that the difference between second-order
GGF and MR-IM-SRG(2) ground-state energies is primarily
a global shift for these nuclei. Around shell closures, the
broken particle-number symmetry in the GGF approach causes
smoother trends due to pairing fluctuations (compare, e.g.,
HFB and number-projected HFB S2n in Ref. [58]). Overall,
our results are consistent with the findings and conclusions of
Ref. [8].

Let us now discuss the uncertainties of the calcium two-
neutron separation energies in more detail. From the CC
ground-state energies included in Fig. 1 we can determine
S2n in 54Ca. We find a difference of only 150 keV between the
CCSD and CR-CC(2,3) results, almost independent of �3N

and λSRG. Due to the rapid convergence of the many-body
expansion for soft Hamiltonians, we can interpret this as a
measure for many-body effects that are not included in the
MR-IM-SRG(2), by analogy with CC.

The uncertainties of the S2n due to the E3max truncation are
explored further in Fig. 3. The contributions of the many-body
and E3max truncations are of comparable size: Increasing
E3max from our default 14 to 16, the S2n change by less
than 100 keV for 38−50Ca, and 200–500 keV for 52−60Ca
[Fig. 3(b)]. Comparing to the increase E3max = 12 → 14,
which causes variations as large as 1–1.5 MeV in the S2n

of the mid- and upper pf -shell calcium isotopes, we see
clear signs of convergence. Given the flat ground-state energy
trend beyond 54Ca for the NN + 3N -full Hamiltonians (cf.
Figs. 1 and 2), we conclude that our uncertainties are still
too large to clearly identify the neutron drip line. A first step
toward a more accurate calculation would be the exploration
of E3max � 16 [2].

Nickel isotopes. We now focus on the nickel iso-
topes. Figure 4 shows the ground-state energies for the
NN + 3N -induced and NN + 3N -full Hamiltonians (�3N =
400 MeV/c). The basic features are very similar to the
Ca case. MR-IM-SRG(2) and CC results are in very good
agreement. The NN + 3N -induced Hamiltonian [Fig. 4(a)]
yields energies that are close to experimental binding energies
for lighter Ni isotopes, but produces overbinding with growing
neutron excess. The λSRG dependence serves as an indicator for
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FIG. 4. (Color online) Ground-state energies of the Ni isotopes
for the (a) NN + 3N -induced and (b) NN + 3N full Hamiltonians,
for resolution scales λSRG = 1.88 fm−1 (open symbols) to 2.24 fm−1

(solid symbols). Experimental data (black bars) are taken from [50].

the size of missing 4N forces. With the inclusion of the initial
3N interaction [Fig. 4(b)], the overbinding is increased, while
the λSRG dependence is reduced due to cancellations between
induced beyond-3N terms. Beyond 74Ni, the ground-state
energy curve becomes flat. In contrast to the Ca case, the
NN + 3N -induced also produces a very flat trend for these
isotopes.

An apparent deformation instability emerges for 64Ni in the
NN + 3N -induced and 64,66Ni in the NN + 3N -full cases.
Because spherical symmetry is enforced in our calculations,
we observe strong oscillations in the MR-IM-SRG(2) ground-
state energy and the norm of the generator. Usually, the latter
decreases monotonically until convergence. Experimental
spectra of these Ni isotopes show spherical and intrinsically de-
formed states in close proximity [32–35,59,60]. Traditionally,
the onset of deformation is explained by strong quadrupole
interactions between nucleons in states with single-particle
�j = 2 and small energy difference. In the reference states for
64,66Ni, the difference between the effective 0f5/2 and 1p1/2

single-particle energies [61] is merely 200 keV, and therefore
sensitive to the balance of NN and 3N tensor and spin-orbit
interactions.

The importance of the initial 3N interaction is evident
from the S2n shown in Fig. 5. Without it [Fig. 5(a)], the
N = 50 and especially the N = 28 shell closures are weak,
while the N = 40 closure is strongly enhanced compared to
experiment. Inclusion of the 3N forces [Fig. 5(b)] improves the
shell closure at 56Ni significantly, and shifts the S2n of 70−78Ni
closer to experiment. Variation of �3N moves the theoretical
neutron drip line from 86Ni to 78Ni, but the S2n are sufficiently
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FIG. 5. (Color online) Two-neutron separation energies of the
Ni isotopes for the (a) NN + 3N -induced and (b) NN + 3N -
full Hamiltonian with �3N = 350 and 400 MeV/c, for a range
λSRG = 1.88 fm−1 (open symbols) to 2.24 fm−1 (solid symbols).
Experimental values (black bars) are taken from [50].

small for the situation to change as we improve on the present
truncations and include continuum effects. Note also that the
experimentally unobserved sub-shell closure in 60Ni vanishes
for �3N = 350 MeV/c. This is a more concrete example of
how the internal structure of medium-mass nuclei is affected
by variations of �3N than the shift in S2n trends for the Ca
isotopes [cf. Fig. 2(b)].

We conclude by discussing the uncertainties of the S2n.
Using the energies for 60,62Ni, we find a difference of 300–
350 keV between the CCSD and CR-CC(2,3) results, which
serves as a measure for the uncertainty due to the many-body
truncation. The change of |�S2n| as E3max = 12 → 14 → 16
is similar to Fig. 3 for the Ca isotopes. As E3max = 12 → 14,
the change for 48−86Ni is of the order of 500 keV, beyond
that 1–1.5 MeV for the range λSRG = 1.88, . . . ,2.24 fm−1.
Increasing E3max = 14 → 16, the change in S2n drops below
250 keV for 48−86Ni, and to 400–500 keV for heavier isotopes.

Conclusions. We have studied the even Ca and Ni iso-
topes with the recently developed MR-IM-SRG, using chiral
NN + 3N interactions as input. The application of the
MR-IM-SRG to the chain of even Ni isotopes marks an
important milestone for ab initio nuclear structure theory, and

shows the viability of such calculations for medium-mass and
heavy nuclei. The modest polynomial scaling of the method
makes it feasible to reach the tin isotopic chain (and beyond),
if sophisticated techniques are implemented to handle or avoid
the expensive matrix element storage for 3N interactions [2].

The current generation of chiral NN + 3N Hamiltonians
generally overbind the Ca and Ni isotopes. The fair repro-
duction of two-neutron separation energies indicates that a
good portion of this overbinding amounts to a global shift. We
find that an initial 3N interaction is required to reproduce the
experimentally confirmed shell closures of 48,52,54Ca. In the
Ni isotopes, the creation of an artificial sub-shell closure in
60Ni and the strong enhancement of the 68Ni closure indicate
that the spin-orbit and tensor components of the chiral 3N
interaction might be too strong. Our findings are consistent
with earlier studies of medium-mass nuclei based on the
same chiral NN + 3N Hamiltonians [2,8,10,12,45], and by
extending the range of studied isotopes, we provide further
evidence for deficiencies in these Hamiltonians which need to
be addressed by the next generation of interactions from chiral
EFT.

For neutron-rich Ca isotopes, we predict a very flat trend for
the ground-state and two-neutron separation energies, which
inhibits a clear identification of the drip line. The interplay of
different interaction terms and continuum effects may give rise
to interesting physics in this region. Fortunately, these specific
Ca isotopes will be investigated in experimental campaigns in
the near future.
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R. Roth, Phys. Rev. C 88, 054319 (2013).
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